乘法分配律教学反思

合集下载

《乘法分配律》教学反思(优秀10篇)

《乘法分配律》教学反思(优秀10篇)

《乘法分配律》教学反思(优秀10篇)《乘法分配律》教学反思篇一1、知识的学习不是简单的“搭积木”的过程,而是一个生态式“孕育”的过程。

在设计教案时,我们必须从学生的生活经历、知识背景、学习能力、情感与态度等方面解读教材,让学生在现实具体的情境中体验和理解数学。

通过学生经历运用数学知识为学生解决问题和男女生比赛等的练习,引导学生观察、发现、验证、归纳,初步了解感知规律,再次通过练习、描述、完善认识,达到对规律的理解,建立模型,最后又在熟悉的情境中深化认识认识规律,丰富规律的内涵。

2、充分体现寻找规律、描述规律、应用规律、发展规律的过程。

确定教学目标时,我将传统的“使学生理解并掌握乘法分配律”,拓展为“通过经历探索乘法分配律的活动,发现乘法分配律”,在关注结果的同时,更多关注学生获得结果的过程。

学生从对规律的`初步了解、深入理解到应用和拓展,是一个从琐碎到整合,正表述到逆表述,从单一到开放,从静态到动态的过程。

其间培养了学生从“猜想与验证”等探究的方法。

3、学生对知识的应用从新课的学习开始就会形成一种思维定势:学生应用乘法分配律进行简便计算,就是要得到一个整十整百数,这样才叫简便。

而忽视了乘法分配律的真正内涵——改变原来式子的运算顺序,结果不变。

在教学中,我有意识地选择了第(3)组两种情况,让学生明白,乘法分配律不是简便计算,是两个相等算式之间的结构特征,只有当数据比较特殊时,可以运用乘法分配律来改变计算顺序,使原先的计算变得简便。

这种科学的辩证思想的建立,对学生具体问题具体分析,灵活地选择合理的方法计算是十分有利的。

其次,运用乘法分配律,可以用两种方法解决实际问题,增加解决问题的能力。

《乘法分配律》教学反思篇二学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。

针对这些情况,在教学中应该注意什么呢?1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c缺乏从乘法意义角度的理解。

数学《乘法分配律》教学反思(精选13篇)

数学《乘法分配律》教学反思(精选13篇)

数学《乘法分配律》教学反思数学《乘法分配律》教学反思(精选13篇)在充满活力,日益开放的今天,教学是我们的任务之一,反思意为自我反省。

那要怎么写好反思呢?以下是小编为大家整理的数学《乘法分配律》教学反思,仅供参考,大家一起来看看吧。

数学《乘法分配律》教学反思 1乘法分配律是一节比较抽象的概念课,教师可以根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

具体是这样设计的:先创设佳乐超市的情景调动学生的学习积极性,通过买“3套运动服,每件上衣21元,每条裤子10元,一共花多少元?”列出两种不同的式子,他们确实能够体会到两个不同的算式具有相等的关系。

这是第一步:通过资料获取继续研究的信息。

(虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。

)第二步:观察算式,寻找规律。

让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,教师不要急于告诉学生答案,而是让学生自己通过举例加以验证。

这里既培养了学生的'猜测能力,又培养了学生验证猜测的能力。

第三步:应用规律,解决实际问题。

通过对于实际问题的解决,进一步拓宽乘法分配律。

这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。

数学《乘法分配律》教学反思 2乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。

乘法分配律也是学生较难理解和叙述的定律。

因此在本节课教学设计上,我结合新课标的一些基本理念和本地区的具体情况,注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。

《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。

”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。

《乘法分配律》教学反思

《乘法分配律》教学反思

《乘法分配律》教学反思《乘法分配律》教学反思篇一学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。

针对这些情况,在教学中应该注意什么呢?1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c缺乏从乘法意义角度的理解。

这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)×3=+2×3+7×3是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)×3=2×3+7×32、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两个数的和乘以一个数或两个积的和。

在练习题中(40+4)×25与(40×4)×25这种题学生特别容易出错。

为了更好地掌握,可多进行一些对比练习,如进行题组对比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解如:125×88;101×89你能有几种方法?125×88①竖式计算②125×8×11③125×(80+8)④(100+25)×88等等。

101×89①竖式计算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。

对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的'特色灵活选择适当的算法的目的。

乘法分配律教学反思

乘法分配律教学反思

乘法分配律教学反思乘法分配律教学反思1乘法分配律是小学阶段学生比较难理解与叙述的运算定律,但的确又非常重要、运用广泛。

在本节教学过程的设计上我采用了让孩子通过“联系实际、感知建模;分类整理,生成模型;发现规律,举例验证;表示规律,建构模型;概括规律,完善模型;应用规律,感受模型”的探索过程,完成本节的教学任务。

在教学过程中,以突破乘法分配律的教学重点和难点为切入点,对本节课知识的学习起到了举足轻重的作用。

根据自己的教学教训,在平常的教学中,总是发现学生在学习完乘法分配律之后容易出现(a+b)×c=a×c+b的现象仔细研究其原因,其实是学生学的记的只是乘法分配律的外在形式,对公式只不过是表面肤浅的忘记,而没有真正理解乘法分配律内在的数学意义。

因此,我就打破通过观察发现猜想验证概括的传统教学思路,除了在外在形式上认识规律(教材意图),又从乘法的意义入手,使学生进一步从算式意义方面得出了(a+b)×c=a×b+b×c这样确凿无疑的结论。

让学生对乘法分配律的理解不再只是停留在外在的“形”,而是又进入“质”的深化。

这种教学建立在学生认知规律的基础之上,实现了有效的建立模型突破了本节的第一个难点。

从课后作业可以看出,这种教学效果明显好于以前。

在突破本节第二个难点:乘法分配律容易跟乘法结合律混淆的现象时。

敢于挑战自我,不再泛泛地讲两个规律的区别与联系,而采用反式教学写出25×(4×8)=25×4+25×8的`现象,让学生既懂得乘法结合律和分配律的区别,又找到了乘法分配律概念的重点。

在本节课的练习设计上,力求有针对性、有坡度的知识延伸,出示扩展型的练习,对分配律的概念加以升华。

这些方面,只是我对自己原来的教学在反思与对比中觉得是对我而言较为进步的一点点。

但是,在实际的课堂操作中,整个教学过程也出现了许多不尽人意的地方。

比如:课堂上由于紧强导致只顾自己思路,而忘了对学生的回答或知识的恰当与否做出及时评定。

《乘法分配律》教学反思8篇

《乘法分配律》教学反思8篇

《乘法分配律》教学反思8篇《乘法分配律》教学反思篇一乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。

乘法分配律也是学生较难理解与叙述的定律。

如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。

一、创设师生竞赛,激发学习欲望。

上课教师先出示:(1)8×(125+11)(2)(100+1)×23(3 )648×5+352×5老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。

结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。

这样的导入让学生充满了求知的欲望,激发了学习的热情。

二、设计思考问题,学生自主探究。

出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。

讨论:1、这两种方法有什么不同?两个算式的`结果如何?用什么符号连接?2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。

(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。

生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

三、练习有坡度,前后有呼应。

在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。

练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。

乘法分配律教学反思

乘法分配律教学反思

乘法分配律教学反思《乘法分配律》教学反思篇一小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。

针对这种情况,我认为在教学中应该注意这些问题:1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。

这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。

缺乏从乘法意义角度的理解。

所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+9022、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。

在练习中(40+4)25与(404)25这种题学生特别容易出现错误。

为了学生更好地掌握可以多进行一些对比练习。

如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算12588;10189你能用几种方法?12588 ①竖式计算;②125811;③125(80+8);④125(100-12);⑤(100+25)88;⑥(100+20+5)88等等。

10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。

对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。

《乘法分配律》教学反思

《乘法分配律》教学反思

《乘法分配律》教学反思《乘法分配律》教学反思1记得曾经在教孩子们乘法分配律的时候,总是遇到很多问题,对于乘法分配律的应用不是很好,吐槽了很久,现在在教二年级的孩子的时候,我发现其实在二年级已经接触了这方面的知识,只是没有进行归纳而已。

二年级的课本上有这样一种题型,如:(1)6x9=5x9+9=7x9—9=(2)9x4=9x3+9=9x5—9=(3)8x9=7x9+9=9x9—9=先计算,你发现了什么?我一看到这题,我就想到乘法分配律,但是在二年级刚接触乘法,不可能就跟他们讲乘法分配律。

我在上练习课的时候我特意把这题拿出来讲了,我想如果这里学生题解好了,对以后学习乘法分配律是有帮助的。

在课堂上,我先让学生自己完成,第一题的第2,3个算式,他们是按照运算顺序来计算的,先算乘法,再算加法或减法,这个没有难度,而且他们根据第一题,后面的两题都不要做,直接写出了结果,每一题中的3个算式的结果是一样的。

我就问他们,为什么会出现这样情况?学生就答不上来。

我就举了个示范,6x9是6个9相加,5x9+9是5个9相加再加1个9,5个9加1个9是6个9,6个9相加就是6x9,所以5x9+9=6x9=54。

学习了乘法的意义,对于这个他们能理解,只是想不到而已,那么7x9—9=,可以交给孩子们完成,第(2)(3)题我也是让学生来说一说。

另外我还补充了一题,6x7—14,我发现竟然有孩子会想到14就是2个7,6个7减去2个7就是4个7,就是4x7=28。

特别棒!《乘法分配律》教学反思2学生在前面的学习中已经学习了一些有关运算律的知识,对加法交换律、结合律、乘法交换律、结合律有一定的了解和认识,这些都为本课的学习奠定了基础。

本课的教学环节和前面学习运算律的教学基本相似,所以学生也有一定的学习方法和经验,所以乘法分配律的归纳和揭示还是比较顺利的。

我重点是结合练习帮助学生进一步的认识乘法分配律的意义以及它与其他运算律的区别。

特别是对几个数字的观察和比较以及等式两边的式子分别表示的意义等,通过这样的引导,加深学生对乘法分配律含义的理解,为后面的简便运算的学习奠定基础。

2023年人教版数学四年级下册乘法分配律教学反思(精选3篇)

2023年人教版数学四年级下册乘法分配律教学反思(精选3篇)

人教版数学四年级下册乘法分配律教学反思(精选3篇)〖人教版数学四年级下册乘法分配律教学反思第【1】篇〗本节课主要让学生充分感知并归纳乘法分配律,理解其意义。

教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。

让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。

在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。

对于应用这一乘法分配律进行后面的练习还可以。

如:书上第55页的第5题,学生都想到用简便方法去列式计算。

整节课,学生还是学的比较轻松的。

关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。

今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:首先,值得向一根木头老师学习的是,学生的预习工作很到位。

课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。

而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。

我在课前没有安排这样的预习,因此课上的.时间比较仓促。

其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[乘法分配律教学反思]乘法分配律是第三章的教学难点也是重点,乘法分配律教学反思。

这节课的设计。

我是从学生的生活问题入手,利用学生感兴趣的买奶茶展开。

这节课我力图将教学生学会知识,变为指导学生会学知识。

通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。

回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
一、引入生活问题,激趣探究
在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。

首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”,教学反思《乘法分配律教学反思》。

让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。

然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。

再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。

同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

二、提供学生独立探究的机会
我要求学生观察得到的两个等式,提出“你有什么发现?”。

此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。

使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。

三、为学生的学习方式的转变创设了条件
为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。

在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。

这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。

学生的学习热情高了,自然激起了探究的火花。

学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。

我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

相关文档
最新文档