材料的磁学性能共49页文档
合集下载
第三章 材料的磁学性能

材料的磁学性能
物质的磁性 磁性的基本量 (磁矩,磁化强度M,磁化率,磁导率) 抗磁性与顺磁性(弱磁性) 铁磁性(强磁性) (磁滞回线,自发磁化,磁畴与技术磁化) 磁性材料及应用
磁性的基本量及单位
Magnetic Terminology & Units 一. 磁矩
磁矩
磁矩是表示磁体本质的一个物理量。任何一个封闭
的电流都具有磁矩m=IS。其方向与环形电流法线 的方向一致,其大小为电流与封闭环形的面积的乘 积IΔS。
电子磁矩: 由电子的轨道磁矩和自旋磁矩组成.
磁性的基本量及单位
二. 磁化强度M
磁化强度M:单位体积内的磁矩矢量和: 后其磁性强弱的一个物理量。
m M V
i
单位体积的总磁矩 M(安/米).M是描述磁质被磁化
M H
( χ 无量纲 )
χ称为磁化率或磁化系数,反映物质磁化的难易程度。
三. 磁场强度H和磁感应强度B
• Definitions of Three Magnetic Vectors:
Magnetic field, 磁场强度 Magnetization, 磁化强度 Magnetic induction, 磁感应强度
B M
B M
μ
Hs H
m = B/H
H
Two Units
Quantity Gaussian (cgs units) S.I. Units
Conversion factor (cgs to S.I.)
Magnetic Induction (B)
Applied Field (H) Magnetisation (M) Magnetisation (4pM)
材料磁学性能(材料科学基础)

➢ 在外磁场中,这类磁化了的介质内部,B小于真空中的B0 ➢ 抗磁性物质的抗磁性一般很微弱,磁化率一般为-10-5 磁化率χ <0,相对磁导率μr <1,磁感应强度B < B0 ➢ 周期表中前18个元素主要表现为抗磁性,这些元素构成了陶 瓷材料中几乎所有的阴离子,如O2-、F-、Cl-、S2-等。
h
2
(3)磁感应强度
真空
B。=。H 。
B 磁感强度(Wb·m-2) (magnetic flux density)
H 磁场强度(A·m-1)(magnetic field strength)
0 真空磁导率,4×l0-7(H/m) (亨/米)
介质 B0(HM )HM: 磁化强度
h
3
(4)磁化率 χ(magnetic susceptibility)
➢ 不具“永久磁矩” :原子各层都充满电子(电子自旋磁矩相互抵消)
如锌(3d104s2),具有各层都充满电子的原子结构,其电子磁矩相互 抵消,因而不显磁性。
h
5
(2)“交换”作用
铁具有很强的磁性,这种磁性称为铁磁性。铁磁性除与电子结构有关外, 还决定于晶体结构。
处于不同原子间的、未被填满壳层上的电子发生特殊的相互作用,这种 相互作用称为“交换”作用。这是因为在晶体内,参与这种相互作用的电子 已不再局限于原来的原子,而是“公有化”了,原子间好象在交换电子,故 称为“交换”作用。
由这种“交换”作用所产生的“交换能”J与晶格的原子间距有密切关系。 当距离很大时,J接近于零,随着距离的减小,相互作用有所增加。 J为正值,就呈现出铁磁性,J为负值,就呈现出反铁磁性。
a:原子间距 D:未被填满的电子壳层直h 径
a/D >3时 交换能为正值, 为铁磁性 a/D <3时 交换能为负值, 为反铁磁性
h
2
(3)磁感应强度
真空
B。=。H 。
B 磁感强度(Wb·m-2) (magnetic flux density)
H 磁场强度(A·m-1)(magnetic field strength)
0 真空磁导率,4×l0-7(H/m) (亨/米)
介质 B0(HM )HM: 磁化强度
h
3
(4)磁化率 χ(magnetic susceptibility)
➢ 不具“永久磁矩” :原子各层都充满电子(电子自旋磁矩相互抵消)
如锌(3d104s2),具有各层都充满电子的原子结构,其电子磁矩相互 抵消,因而不显磁性。
h
5
(2)“交换”作用
铁具有很强的磁性,这种磁性称为铁磁性。铁磁性除与电子结构有关外, 还决定于晶体结构。
处于不同原子间的、未被填满壳层上的电子发生特殊的相互作用,这种 相互作用称为“交换”作用。这是因为在晶体内,参与这种相互作用的电子 已不再局限于原来的原子,而是“公有化”了,原子间好象在交换电子,故 称为“交换”作用。
由这种“交换”作用所产生的“交换能”J与晶格的原子间距有密切关系。 当距离很大时,J接近于零,随着距离的减小,相互作用有所增加。 J为正值,就呈现出铁磁性,J为负值,就呈现出反铁磁性。
a:原子间距 D:未被填满的电子壳层直h 径
a/D >3时 交换能为正值, 为铁磁性 a/D <3时 交换能为负值, 为反铁磁性
材料的磁学性能magneticpropertiesofmaterials

Br 剩余磁感应强度 remanence, or remanent flux density,
退磁过程中的变化B落后于H的变化
材料的磁滞
损耗与回线
H 为交变磁场
面积成正比
硬磁 具有大磁滞回线和剩磁的 铁磁性材料(Hard magnetic material) 软磁 具有小磁滞回线和小能量 损 耗 的 铁 磁 性 材 料 (Soft magnetic
电子的自旋磁矩(spin)>>轨道磁矩(orbital)
孤立原子 具有“永久磁矩” 有未被填满的电子壳层
不具磁性
原子各层都充满电子
(2)“交换”作用
不同原子间的、 未被填满壳层上 的电子发生的特 殊相互作用
铁磁性 物质
晶体结构
原子间距
a/D >3时 交换能为正值 a/D <3时 交换能为负值,为反铁磁性
材料的磁学性能magneticpropertiesofmaterials
介质
B 0 (H M ) H
D、磁化率 χ(magnetic susceptibility)
( 1)H M 0
M=(μr -1)H =χH
2、磁性的本质
(1)电子的磁矩 (Magnetic moments)
3、磁性的分类——根据材料磁化率的分类 (1)抗磁性(Ferrimagnetism) M<0 Bi,Cu,Ag,Au
磁矩应为0; x<0,μr <1 外磁场中,感生一个磁矩,与外磁场方向相反
抗磁性来源——原子轨道中电子轨道的变化
(2)顺磁性(Diamagnetism) 原子内部存在永久磁矩
无外磁场,宏观无磁性; 有外磁场,显示极弱磁性。 磁化率很小室温下约为10-5 :
如Fe3+(Fe3+M2+)04
材料的磁学性能

材料的磁学性能
材料的磁学性能是指材料在外加磁场下的磁化特性,包括磁化强度、磁导率、磁化曲线等。
磁学性能对于材料的应用具有重要的意义,尤其是在电子、通信、医疗等领域。
本文将从磁性材料的基本概念、磁性材料的分类、磁性材料的应用等方面进行介绍和分析。
磁性材料是指在外加磁场下会产生磁化现象的材料。
根据材料在外加磁场下的磁化特性,可以将磁性材料分为铁磁性材料、铁素磁性材料、铁氧体材料和软磁性材料等几类。
铁磁性材料在外加磁场下会产生明显的磁化现象,具有较高的磁导率和磁化强度,主要用于制造电机、变压器等电器设备。
铁素磁性材料具有较高的电阻率和磁导率,主要用于制造电感元件、磁芯等。
铁氧体材料具有较高的磁导率和磁化强度,主要用于制造微波器件、磁记录材料等。
软磁性材料具有较低的矫顽力和磁导率,主要用于制造变压器、电感器等。
磁性材料在电子、通信、医疗等领域具有广泛的应用。
在电子领域,磁性材料主要用于制造电感元件、变压器、磁芯等,用于电源、通信、计算机等设备中。
在通信领域,磁性材料主要用于制造微波器件、天线等,用于无线通信、卫星通信等设备中。
在医疗领域,磁性材料主要用于制造医疗设备、磁共振成像设备等,用于诊断、治疗等用途。
总之,磁性材料的磁学性能对于材料的应用具有重要的意义。
通过对磁性材料的基本概念、分类和应用的介绍和分析,可以更好地了解磁性材料的特性和用途,为相关领域的科研和生产提供参考和指导。
希望本文能够对读者有所帮助,谢谢阅读。
第三章材料的磁学性能

1907年法国人外斯提出了铁磁性的“分子场”假说: 认为在铁磁质内部存在很强的“分子场”,在分 子场的作用下,原子磁矩趋向平行排列,即自发磁化 至饱和,称为自发磁化。 在这个理论的基础上发展了现代的铁磁理论。
铁磁质自发磁化成若干个小区 域(自发磁化至饱和的小区域“磁 畴”),由于各个区域的磁化方向 各不相同,其磁性彼此相消,所以 大块铁磁质对外并不显示磁性。
1.抗磁体:χ 为负值,很小,约在10-6数量级。
2.顺磁体:χ 为正值,很小,约在10-3~10-6数量
级。
3.反铁磁体:χ 为正值,很小。 4.铁磁性体:χ 为正值,很大,约在10~106数量
级。
5.亚铁磁体:χ 为正值,没有铁磁性体大。
物质的磁性分类、磁性特征及磁化机制???
3.1.3 磁化曲线和磁滞回线
3.3.1铁磁质的自发磁化
3.3.1铁磁质的自发磁化
“分子场”来源于电子间的静电相互作用。 实验证明铁磁质自发磁化的起因是源于原子未被 抵消的电子自旋磁矩,而轨道磁矩对铁磁性几乎无贡 献。 物质具有铁磁性的基本条件: (1)物质中的原子有磁矩;
(2)原子磁矩之间有一定的相互作用。
铁磁性物质在居里温度以上是顺磁性;居里温 度以下原子磁矩间的相互作用能大于热振动能,显 现铁磁性。
非金属中除氧和石墨外,都是抗磁体。如 Si、S、 P以及许多有机化合物,它们基本上是以共价键结合 的,由于共价电子对的磁矩互相抵消,因而它们部 成为抗磁体。
在Cu、Ag、Au、Zn、Cd、Hg等金属中,由 于它们的离子所产生的抗磁性大于自由电子的顺磁 性,因而它们属抗磁体 。
所有的碱金属和除Be以外的碱土金属都是顺磁 体。虽然这两族金属元素在离子状态时有与惰性气 体相似的电子结构,似应成为抗磁体,但是由于自 由电子产生的顺磁性占据了主导地位,故仍表现为 顺磁性。
铁磁质自发磁化成若干个小区 域(自发磁化至饱和的小区域“磁 畴”),由于各个区域的磁化方向 各不相同,其磁性彼此相消,所以 大块铁磁质对外并不显示磁性。
1.抗磁体:χ 为负值,很小,约在10-6数量级。
2.顺磁体:χ 为正值,很小,约在10-3~10-6数量
级。
3.反铁磁体:χ 为正值,很小。 4.铁磁性体:χ 为正值,很大,约在10~106数量
级。
5.亚铁磁体:χ 为正值,没有铁磁性体大。
物质的磁性分类、磁性特征及磁化机制???
3.1.3 磁化曲线和磁滞回线
3.3.1铁磁质的自发磁化
3.3.1铁磁质的自发磁化
“分子场”来源于电子间的静电相互作用。 实验证明铁磁质自发磁化的起因是源于原子未被 抵消的电子自旋磁矩,而轨道磁矩对铁磁性几乎无贡 献。 物质具有铁磁性的基本条件: (1)物质中的原子有磁矩;
(2)原子磁矩之间有一定的相互作用。
铁磁性物质在居里温度以上是顺磁性;居里温 度以下原子磁矩间的相互作用能大于热振动能,显 现铁磁性。
非金属中除氧和石墨外,都是抗磁体。如 Si、S、 P以及许多有机化合物,它们基本上是以共价键结合 的,由于共价电子对的磁矩互相抵消,因而它们部 成为抗磁体。
在Cu、Ag、Au、Zn、Cd、Hg等金属中,由 于它们的离子所产生的抗磁性大于自由电子的顺磁 性,因而它们属抗磁体 。
所有的碱金属和除Be以外的碱土金属都是顺磁 体。虽然这两族金属元素在离子状态时有与惰性气 体相似的电子结构,似应成为抗磁体,但是由于自 由电子产生的顺磁性占据了主导地位,故仍表现为 顺磁性。
磁学性能

3. 物质的顺磁性
来源:原子(离子)的固有磁矩。 无外H时:由于热运动的影响,固有磁矩取向无序,宏观上无磁性。 外H作用下:固有磁矩与H作用,有较高的静磁能,为降低静磁能,固 有磁矩改变与H的夹角,趋于排向外H方向,表现为正向磁化。在常温和 H不是很高的情况下,M与H成正比,磁化要克服热运动的干扰,磁矩难 以有序排列,故顺磁化进行十分困难,磁化率较小。 常温下顺磁体达到饱和磁化所需的H非常大,技术上难以达到,但温度 降至接近0K时,就容易了。 根据顺磁磁化率与温度的关系,可把顺磁体分为三类: 正常顺磁体:磁化率随温度升高而降低的顺磁体。 符合居里定律: 或居里-外斯定律:
根据磁化率符号和大小,可把磁介质分为五类。
亚铁磁性材料
顺磁性材料 反铁磁性材料
0
抗磁性材料
H
2. 磁化率与物质磁性的分类
1)抗磁体 χ为甚小负常数,约在10-6数量级,即M与H方向相反,在磁场中使磁场稍减弱, 受微弱斥力,约有一半的简单金属是抗磁体。分为: (1)“经典”抗磁体,χ 不随T变化,如铜、银、金、汞、锌等。 (2)反常抗磁体,χ 随T变化,为前者10~100倍,如铋、镓、锑、锡等。 2)顺磁体 χ为正常数,约为10-3~10-6数量级,即M与H方向相同,在磁场中使磁场稍增 强,受微弱引力,分为: (l)正常顺磁体,χ 随T变化,且符合与T反比关系,如铂、钯、奥氏体不锈钢、 稀土金属等。 (2)χ 与T无关的顺磁体,如锂、钠、钾、铷等。 3)反铁磁体 χ是甚小的正常数,当T高于某个温度时(尼尔温度TN),转换为顺磁体,T- χ曲线?如α-Mn、铬、氧化镍、氧化锰等。 4)铁磁体 χ为很大的正变数,约在10~106数量级,且不大的H就能产生很大的M,在磁场 中被强烈磁化,受强大的吸力,如铁、钴、镍等。其M-H 、 χ-H曲线? 5)亚铁磁体 类似铁磁体,但χ值没有铁磁体大,如磁铁矿(Fe3O4)等。
材料性能学 第二章 材料的磁学性能

式中: li—为轨道角量子数,可取0,1,2,3,…,n-1,分别 代表s、p、d、f层的电子态。
B : 为玻尔磁子,是磁矩的最小单位。=9.27×10-24Am2
②电子自旋磁矩
由电子自旋运动产生的磁矩称为自旋磁矩。用 ms 表示。
ms 2 Si (Si 1)B 为矢量,其方向平行于自旋轴。
式中: Si—为自旋量子数,其值为1/2。
第一节 基本磁学性能
1、 材料的磁性 早在公元前600年人们就发现天然磁石吸引铁的现象,现在的磁 铁多是人工制成的。以上物质具有吸引铁、钴、镍等物质的特性, 这种特性称之为磁性。 材料的磁性来源:电子(电荷)的循规和自旋运动以及原子核的 磁矩。但原子核的磁矩仅有电子磁矩的1/2000,一般可忽略。 注意:一切物质都具有磁性,任何空间都存在磁场。 1.1 磁矩 “磁”来源于“电”,任何一个封闭的电流都具有磁矩,其方 向与环形电流法线方向一致,大小为电流与封闭环形面积乘积。
第二节 抗磁性与顺磁性
原子的固有磁矩与磁场发生相互作用, 具有较高的静磁能。
EH ml • H ml H cos
为降低静磁能,外场须使磁矩发生转动, 改变二者之间夹角。
H
(a)无磁场
(a)无磁场
(b)弱磁场
(c)强磁场
第二节 抗磁性与顺磁性
注意:①常温下,使原子磁矩转向磁场方向,要克服磁矩间相互 作用所产生的无序倾向,克服原子热运动所造成的严重干扰,故 顺磁磁化十分困难。室温磁化率约为10-6。 ②将温度降低到0K,磁化率便可提高到10-4; ③顺磁金属只有当温度接近0K或外加磁场极强时才有可能达到磁 饱和,即所有原子磁矩都排向磁场方向。 2、影响抗磁性与顺磁性的因素 ①原子结构 规律:电子循规运动产生抗磁矩;离子固有磁矩则产生顺磁矩; 自有电子主要产生顺磁矩;磁性取决于哪种因素占主导地位。
B : 为玻尔磁子,是磁矩的最小单位。=9.27×10-24Am2
②电子自旋磁矩
由电子自旋运动产生的磁矩称为自旋磁矩。用 ms 表示。
ms 2 Si (Si 1)B 为矢量,其方向平行于自旋轴。
式中: Si—为自旋量子数,其值为1/2。
第一节 基本磁学性能
1、 材料的磁性 早在公元前600年人们就发现天然磁石吸引铁的现象,现在的磁 铁多是人工制成的。以上物质具有吸引铁、钴、镍等物质的特性, 这种特性称之为磁性。 材料的磁性来源:电子(电荷)的循规和自旋运动以及原子核的 磁矩。但原子核的磁矩仅有电子磁矩的1/2000,一般可忽略。 注意:一切物质都具有磁性,任何空间都存在磁场。 1.1 磁矩 “磁”来源于“电”,任何一个封闭的电流都具有磁矩,其方 向与环形电流法线方向一致,大小为电流与封闭环形面积乘积。
第二节 抗磁性与顺磁性
原子的固有磁矩与磁场发生相互作用, 具有较高的静磁能。
EH ml • H ml H cos
为降低静磁能,外场须使磁矩发生转动, 改变二者之间夹角。
H
(a)无磁场
(a)无磁场
(b)弱磁场
(c)强磁场
第二节 抗磁性与顺磁性
注意:①常温下,使原子磁矩转向磁场方向,要克服磁矩间相互 作用所产生的无序倾向,克服原子热运动所造成的严重干扰,故 顺磁磁化十分困难。室温磁化率约为10-6。 ②将温度降低到0K,磁化率便可提高到10-4; ③顺磁金属只有当温度接近0K或外加磁场极强时才有可能达到磁 饱和,即所有原子磁矩都排向磁场方向。 2、影响抗磁性与顺磁性的因素 ①原子结构 规律:电子循规运动产生抗磁矩;离子固有磁矩则产生顺磁矩; 自有电子主要产生顺磁矩;磁性取决于哪种因素占主导地位。
材料的磁学性能

Ed
M
0 Hd dM
M NMdM 1 NM 2
0
2
2、铁磁质自发磁化的机理(铁磁质的自发磁化理论)
1)Wiss 铁磁性假说 分子场假说:铁磁质内部存在很强的分子场,在该分子场的作用下,原子磁
矩趋向于同方向平行排列 磁畴假说:铁磁质内分布有若干原子磁矩同向平行排列的小区域(磁畴),
各磁畴的磁化方向随机分布,彼此抵消,整体对外不显磁性
(l s j )i J 或
ji ( li si ) J
i
i
③原子序数在32~82之间,为两种混合耦合方式
3d 过渡族金属、 4f 稀土金属及其合金主要为 L-S 耦合
二、物质的磁化特性及磁介质分类
1、抗磁性(diamagnetic) 0 ,10-6~10-4数量级,与H、T无关的常数
亚铁磁Fe3O4中,Fe2+和 Fe3+的自旋磁矩的排列
1、铁磁质的磁化特性
1)磁化曲线和磁位能
第一阶段:磁化强度随外磁场缓慢增 加;撤除外磁场,磁化强度恢复为原 始值(可逆磁化) 第二阶段:磁化强度随外磁场快速增 加;去除外磁场,磁化强度不能完全 恢复至原始状态(不可逆磁化或有剩 磁) 第三阶段:磁化强度又随外磁场缓慢 增加并趋于饱和状态
顺磁 铁磁 亚铁磁 反铁磁
三、顺磁性及其物理本质 主要由各原子或离子实的磁矩 J 和各自由电子的自旋磁矩 s 在外磁场中的
取向过程造成
原子或离子实磁矩的顺磁性:
磁场H中的磁位能: EH J 0H J 0H cos
T 温度下磁矩数量: n exp( EH kBT ) +d之间的磁矩数量: n 2 sind
特点是:凡电学量如q、I、E、P、D等都采用CGSE制单位,凡磁学量如B、M、H等都采用 CGSM 制单位;电容率ε和磁导率μ都是无量纲的纯数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
ENDΒιβλιοθήκη 材料的磁学性能21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。