经济数学基础应用题大全

合集下载

经济数学基础应用题

经济数学基础应用题

经济数学基础应用题1、设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本与边际成本;(2)当产量q 为多少时,平均成本最小?解:(1)因为总成本、平均成本与边际成本分别为:q q q C 625.0100)(2++=,625.0100)(++=q qq C ,65.0)(+='q q C . 所以,1851061025.0100)10(2=⨯+⨯+=C , 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C . (2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去). 因为20=q 就是其在定义域内唯一驻点,且该问题确实存在最小值,所以当q =20时,平均成本最小.2、某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q=1000-10p(q 为需求量,p 为价格)。

试求:1)成本函数,收入函数;2)产量为多少吨时利润最大?解 1)成本函数C(q)=60q+2000、因为q=1000-10p,即p=100-q 101, 所以收入函数R(q)=p ⨯q=(100-q 101)q=100q-2101q (2)因为利润函数L(q)=R(q)-C(q)=100q-2101q -(60q+2000) =40q-2101q -2000且'L (q)=(40q-2101q -2000)'=40-0、2q 令'L (q)=0,即40-0、2q=0,得q200,它就是L(q)的最大值点,即当产量为200吨时利润最大。

3、设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元,又已知需求函数q=2000-4p,其中p 为价格,q 为产量。

《经济数学基础12》形考任务4应用题答案

《经济数学基础12》形考任务4应用题答案

1.设生产某种产品个单位时的成本函数为
(万元),
求:①时的总成本、平均成本和边际成本;②产量为多少时,平均成本最小.
2.某厂生产某种产品件时的总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到最大?最大利润是多少?
3.投产某产品的固定成本为36(万元),边际成本为(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.
4.生产某产品的边际成本为(万元/百台),边际收入为(万元/百台),其中为产量,求:①产量为多少时利润最大;②在最大利润产量的基础上再生产2百台,利润将会发生什么变化.。

数学经济类应用题

数学经济类应用题

数学经济类应用题假设有一家电器生产公司,该公司每天生产x台电视机和y台冰箱,其生产成本和销售收入如下:单位电视机的生产成本为500元,单位冰箱的生产成本为400元;单位电视机的销售收入为1200元,单位冰箱的销售收入为900元。

现假设每天最多能销售180台电视机和210台冰箱,并且公司制定了以下规则:1. 每天生产的电视机和冰箱总数不能超过300台;2. 每天销售的电视机和冰箱总数不能超过350台。

问题一:优化生产和销售策略,使得公司的利润最大化。

解答:设电视机的生产量为x,冰箱的生产量为y,根据题目条件,可以列出如下不等式:1. x ≥ 0,y ≥ 0;2. x + y ≤ 300;3. x ≤ 180,y ≤ 210;该问题可转化为目标函数的最大化求解:目标函数:利润 = 销售收入 - 生产成本利润 = 1200x + 900y - (500x + 400y)= 700x + 500y由于我们要求最大值,因此需要找到目标函数在可行区域内的最大值点。

根据条件和不等式,可得到可行区域如下图所示(请忽略图形的略微偏差):[插入图示]从图中可以看出,可行区域是一个由三个顶点围成的多边形。

对于多边形的顶点,我们只需要计算目标函数在顶点处的值,然后比较大小即可。

以下是三个顶点的计算结果:顶点1: (x, y) = (180, 0)利润 = 700*180 + 500*0 = 126000顶点2: (x, y) = (0, 210)利润 = 700*0 + 500*210 = 105000顶点3: (x, y) = (120, 180)利润 = 700*120 + 500*180 = 174000从计算结果可以看出,利润最大的情况出现在顶点3,即每天生产120台电视机和180台冰箱,利润为174000元。

因此,公司应该采取这种生产和销售策略,以使利润最大化。

问题二:如果销售额度有所变化,该如何调整生产策略以达到利润最大化?解答:假设电视机的销售额度为A,冰箱的销售额度为B。

中央电大经济数学基础应用题和计算题复习资料

中央电大经济数学基础应用题和计算题复习资料

五、应用题(本题20分)1.设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?解:(1)总成本q q q C 625.0100)(2++=,平均成本625.0100)(++=q qq C , 边际成本65.0)(+='q q C .所以,1851061025.0100)10(2=⨯+⨯+=C (万元),5.1861025.010100)10(=+⨯+=C (万元)116105.0)10(=+⨯='C .(万元) (2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去).因为20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20=q 时,平均成本最小.2..某厂生产某种产品q 件时的总成本函数为201.0420)(q q q C ++=(元),单位销售价格为q p 01.014-=(元/件),问产量为多少时可使利润达到最大?最大利润是多少. 解:成本为:201.0420)(q q q C ++=收益为:201.014)(q q qp q R -==利润为:2002.010)()()(2--=-=q q q C q R q Lq q L 04.010)(-=',令004.010)(=-='q q L 得,250=q 是惟一驻点,利润存在最大值,所以当产量为250个单位时可使利润达到最大,且最大利润为12302025002.025010)250(2=-⨯-⨯=L (元)。

3.投产某产品的固定成本为36(万元),且边际成本为402)(+='q q C (万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 解:成本函数为:36)402()(0++=⎰qdx x q C当产量由4百台增至6百台时,总成本的增量为=+=+=∆⎰6464264|40|)402(x x dx x C 100(万元)364036)402()(20++=++=⎰q q dx x q C qqq q C 3640)(++=∴ 2361)(q q C -=',令0361)(2=-='qq C 得,6,6-==q q (负值舍去)。

经济应用数学习题及答案

经济应用数学习题及答案

经济应用数学习题第一章 极限和连续 填空题1. sin limx xx→∞=0 ;2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的; 3当 0x → 时,1cos x - 是比 x 高 阶的无穷小量。

4. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25.2lim(1)x x x →∞-=2-e选择题1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )12.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件计算题1.求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x 2. xx x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u - 2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。

2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4.设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D )(A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导(C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y y y dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -= 5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。

国开电大经济数学基础12形考任务4应用题答案

国开电大经济数学基础12形考任务4应用题答案

国开电大经济数学基础12形考任务4应用题答案二、应用题1.解析:根据总成本、平均成本和边际成本的定义,可以得到以下公式:总成本:C(x) = 60x + 4000平均成本:AC(x) = C(x)/x = 60 + 4000/x边际成本:MC(x) = C'(x) = 601)根据平均成本的公式,可以得到AC'(x) = -4000/x^2,由此可知平均成本的最小值为唯一的驻点,且该最小值为20.因此,当产量为20时,平均成本最小。

2)根据利润函数的公式,可以得到π(x) = 100x - 60x^2 - 4000.令π'(x) = 0,解得唯一驻点为x = 250.由于利润函数存在最大值,因此当产量为250时,利润最大,最大利润为.2.解析:根据利润函数的公式,可以得到π(x) = 100x -2x^2 - 4000.令π'(x) = 0,解得唯一驻点为x = 25.由于利润函数存在最大值,因此当产量为25时,利润最大,最大利润为1875.3.解析:当产量由400台增至600台时,总成本的增量为:ΔC = C(600) - C(400) = (60*600 + 4000) - (60*400 + 4000)=又根据平均成本的公式,可以得到AC(x) = 60 + 4000/x。

令AC'(x) = 0,解得唯一驻点为x = 6.由此可知,当产量为600台时,平均成本最小。

4.解析:根据利润函数的公式,可以得到L(x) = 100x - 10x^2.令L'(x) = 0,解得唯一驻点为x =5.由于L(x)存在最大值,因此当产量为10百台时,利润最大,最大利润为2500.又根据L(x)的公式,可以得到L(12) - L(10) = (100*12 - 10*12^2) - (100*10 - 10*10^2) = -20.因此,从利润最大时的产量再生产200台,利润将减少20万元。

(完整版)经济数学基础试题及答案

(完整版)经济数学基础试题及答案

经济数学基础(05)春模拟试题及参考答案、单项选择题(每小题 3分,共30分)1.下列各函数对中,()中的两个函数是相等的.2C. f (x) In x , g(x) 2ln x22,、D. f (x) sin x cos x , g(x)A. x y 1 C. x y 1B. x y 1 D. x y14 .下列函数在区间(,)上单调减少的是( ).A. sin xB. 2 xC. x 25 .若 f(x)dx F (x) c,则 xf (1 x 2)dx=()12 xA. - F (1 x ) c___ 2C. 2F(1 x ) c 6.下列等式中正确的是( A . sin xdx d(cos x)~ 1 …C.a dx d(a ) ln a1 2、8. - F (1 x ) c____2D. 2F(1 x ) c8. ln xdx d(-) x1 . D. dx d(、, x) .x25, 22, 35, 20, 24是一组数据,则这组数据的中位数是(B. 23C. 22.5D. 2228.设随机变量X 的期望E(X) 1,万差D(X) = 3,则E[3(X2)]=()9.设A, B 为同阶可逆矩阵,则下列等式成立的是( )A. f(x) x 2 1 x 1,g(x) x 1B. f(x) xx 2 , g(x) x2.设函数f(x ) xsin — k,x 1,在x = 0处连续,则k =()•A. -2B. -1C. 1D. 23.函数f (x)ln x 在x 1处的切线方程是(A. 36B. 30C. 6D. 9D. 3 - x7.设 23, A. 23.5 ).2.-一11.若函数 f(x 2) x 4x 5,则 f (x)13 . d cosxdx .14 .设A,B,C 是三个事件,则 A 发生,但B,C 至少有一个不发生的事件表示 为. 15 .设A, B 为两个n 阶矩阵,且I B 可逆,则矩阵方程 A BX X 的解X三、极限与微分计算题(每小题 6分,共12分)17 .设函数y y(x)由方程x 2 y 2 e xy e 2确定,求y(x).四、积分计算题(每小题6分,共12分)18 .2xcos2xdx19 .求微分方程 y Y x 21的通解. x五、概率计算题(每小题 6分,共12分)20 .设A, B 是两个相互独立的随机事件,已知 P(A) = 0.6 , P(B) = 0.7 ,求A 与B 恰有 一个发生的概率.一 一一 2._ . 一 — 一 一一 一21 .设 X ~ N(2,3 ),求 P( 4 X 5)。

经济数学基础试题及答案

经济数学基础试题及答案

1、若函数 f(x),g(x) 分别是 R 上的奇函数,偶函数,且知足f(x)-g(x)=ex,则有().[A]f(2)<f(3)<g(0)[B]g(0)<f(3)<f(2)[C] f(2)<g(0)<f(3) [D]g(0)<f(2)<f(3)[K] D[Q] 函数的弹性是函数对自变量的()[A]导数[B]变化率[C]相对变化率 [D] 微分 [K]C[Q] 以下论断正确的选项是()[A]可导极值点必为驻点[B]极值点必为驻点 [C] 驻点必为可导极值点 D、驻点必为极值点[K] A[Q] 设 A 为 4×5 矩阵,则齐次线性方程组AX=0 ()。

[A]无解[B] 只有零解[C] 有独一非零解[D] 有无量多组解[K] D[Q] 函数在x=0处连续,则k =( ) . [A]-2[B]-1[C]1 [D]2 [K] C[Q] 函数f(x)= 在点 x = 1 处的切线方程是() . [A]2y一x=1 [B]2y-x =2 [C]y-2x = 1 [D]y-2x =2 [K] A[Q]以下函数在区间 (- ∞, + ∞ ) 上单一减少的是 () . [A]cosx [B]2x[C]x2[D]3-x [K] D[Q]设矩阵 Am ×n, Bs×m,Cn× p,则以下运算能够进行的是().[A]BA[B]BC[C]AB[D]CB [K] A[Q] 设线性方程组AX =b 的增广矩阵经过初等行变换化为,则此线性方程组解的状况是().[A] 有独一解[B] 有无量多解[C] 无解 [D] 解的状况不定 [K] A[Q] 以下结论正确的选项是().[A]对角矩阵是数目矩阵[B] 数目矩阵是对称矩阵[C] 可逆矩阵是单位矩阵[D] 对称矩阵是可逆矩阵 [K] B[Q]在使用 IRR 时,应依照的准则是 ( ) 。

[A] 接受 IRR 大于公司要求的回报率的工程,拒绝 IRR 小于公司要求的回报率的工程[B] 接受 IRR 小于公司要求的回报率的工程,拒绝IRR 大于公司要求的回报率的工程[C] 接受IRR 等于公司要求的回报率的工程,拒绝 IRR 不等于公司要求的回报率的工程[D] 接受 IRR 不等于公司要求的回报率的工程,拒绝IRR 等于公司要求的回报率的工程 [K]A[Q] 一个可能的利润率值所占的概率越大,那么( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济数学基础的最后一道题一定在下面11题中出现。

1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.
1.解 当产量由4百台增至6百台时,总成本的增量为

+=∆64d )402(x x C =642)40(x x += 100(万元) 又 x c x x C x C x ⎰+'=00
d )()(=x x x 36402++ =x
x 3640++ 令 0361)(2=-='x
x C , 解得6=x . x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小.
2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?
2.解 因为边际利润
)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x
令)(x L '= 0,得x = 500 x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大.
当产量由500件增加至550件时,利润改变量为
5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)
即利润将减少25元.
3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?
3. 解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x
令L '(x )=0, 得 x = 10(百台)
又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.
又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x
即从利润最大时的产量再生产2百台,利润将减少20万元.
4.已知某产品的边际成本为34)
(-='x x C (万元/百台),x 为产量(百台),固定成本为18(万元),求最低平均成本.
4.解:因为总成本函数为
⎰-=x x x C d )34()(=c x x +-322
当x = 0时,C (0) = 18,得 c =18 即 C (x )=18322+-x x
又平均成本函数为 x
x x x C x A 1832)()(+-== 令 0182)(2=-='x
x A , 解得x = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为
93
18332)3(=+
-⨯=A (万元/百台) 5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求: (1) 利润最大时的产量;
(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?
5.解:(1) 因为边际成本为
1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7
由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.
(2) 当产量由7百吨增加至8百吨时,利润改变量为
8
7287)14(d )214(x x x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)
即利润将减少1万元.
6.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)
(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本;
(2)当产量x 为多少时,平均成本最小?
解(1)因为总成本、平均成本和边际成本分别为:
x x x C 625.0100)(2++=
625.0100)(++=x x
x C ,65.0)(+='x x C 所以,1851061025.0100)10(2=⨯+⨯+=C
5.1861025.010
100)10(=+⨯+=C , 116105.0)10(=+⨯='C
(2)令 025.0100)(2=+-='x
x C ,得20=x (20-=x 舍去) 因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.
7.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:
(1)成本函数,收入函数; (2)产量为多少吨时利润最大?
解 (1)成本函数C q ()= 60q +2000.
因为 q p =-100010,即p q =-
100110
, 所以 收入函数R q ()=p ⨯q =(100110-q )q =100110
2q q -. (2)因为利润函数L q ()=R q ()-C q () =100110
2q q --(60q +2000) = 40q -110
2q -2000 且 'L q ()=(40q -110
2q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点.
8.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,试求:(1)价格为多少时利润最大?(2)最大利润是多少?
解 (1)C (p ) = 50000+100q = 50000+100(2000-4p )
=250000-400p
R (p ) =pq = p (2000-4p )= 2000p -4p 2
利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令
)(p L '=2400 – 8p = 0
得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大.
(2)最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元).
9.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?
解 (1)由已知201.014)01.014(q q q q qp R
-=-== 利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=
则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .
因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,
(2)最大利润为
1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)
10.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最
低,每天产量应为多少?此时,每件产品平均成本为多少? 解 因为 C q ()=C q q ()=05369800.q q
++ (q >0) 'C q ()=(.)05369800q q ++
'=0598002.-q 令'C q ()=0,即0598002
.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.
所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为 C ()140=05140369800140
.⨯++=176 (元/件) 11.已知某厂生产q 件产品的成本为C q q q ()=++2502010
2(万元).问:要使平均成本最少,应生产多少件产品?
解 因为 C q ()=C q q ()=2502010
q q ++ 'C q ()=(
)2502010q q ++'=-+250110
2q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去), q 1=50是C q ()在其定义域内的唯一驻点.
所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。

相关文档
最新文档