牛顿第二定律的应用

合集下载

牛顿第二定律应用方法

牛顿第二定律应用方法
方法一: 方法一: 整体法和隔离法的应用 1、如图,光滑水平地面上有两个木块 、B,质量分 、如图,光滑水平地面上有两个木块A、 , 别为M和 ,在水平推力F作用下 作用下, 别为 和m,在水平推力 作用下,求AB间的相互作用 间的相互作用 力。 若地面不光滑呢? 若地面不光滑呢? A B N 的大小与 无关 的大小与µ无关 变形:、如图所示,置于水平面上的相同材料的m和 变形 、如图所示,置于水平面上的相同材料的 和M 用轻绳连接, 上施一水平力F(恒力 用轻绳连接 , 在 M上施一水平力 恒力 使两物体作 上施一水平力 恒力)使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( A B ) (A)水平面光滑时,绳拉力等于 水平面光滑时, 水平面光滑时 绳拉力等于mF/(M+m); + ; (B)水平面不光滑时,绳拉力等于 F/(M+m); 水平面不光滑时, 水平面不光滑时 绳拉力等于m + ; (C)水平面不光滑时,绳拉力大于 水平面不光滑时, 水平面不光滑时 绳拉力大于mF/(M+m); + ; (D)水平面不光滑时,绳拉力小于 水平面不光滑时, 水平面不光滑时 绳拉力小于mF/(M+m)。 + 。 F m M
练习、如图,将质量为 的物体分置于质量为M的 练习、如图,将质量为m1、m2的物体分置于质量为 的 物体的两侧,均处于平衡状态, , 物体的两侧,均处于平衡状态,m1>m2,α < β,下 述说法正确的是( 述说法正确的是( ACD) m2 m1 A)m1对M的正压力一定大于 2对M的正压力 ) 的正压力一定大于m 的正压力 的正压力一定大于 M β α B)m1对M的摩擦力一定大于 2对M的摩擦力 的摩擦力一定大于m ) 的摩擦力一定大于 的摩擦力 C)水平地面对 的支持力一定等于 的支持力一定等于(M+m1+m2)g )水平地面对M的支持力一定等于 D)水平地面对 的摩擦力一定等于零 )水平地面对M的摩擦力一定等于零 变式:如图所示 一质量为M的楔形木块放在水平桌面 如图所示, 变式 如图所示,一质量为 的楔形木块放在水平桌面 它的顶角为90 两底角为α和 ; 、 为两个位于 上,它的顶角为 o,两底角为 和β;a、b为两个位于 斜面上质量均为m的小木块 的小木块。 斜面上质量均为 的小木块。已知所有接触面都是光滑 现发现a、 沿斜面下滑 而楔形木块静止不动, 沿斜面下滑, 的。现发现 、b沿斜面下滑,而楔形木块静止不动,这 时楔形木块对水平桌面的压力等于: 时楔形木块对水平桌面的压力等于: A A.Mg+mg; B.Mg+2mg; A. ; . ; C.Mg+mg(sinα+sinβ) . ( ) D.Mg+mg(cosα+cosβ) . )

高考物理复习:牛顿第二定律的应用

高考物理复习:牛顿第二定律的应用


绳瞬间a受到的合力F=mg+FT1=mg+2mg=3mg,故加速度 a1==3g ,故A、B
错误。设弹簧S2的拉力为FT2,则FT2=mg,FT1=2FT2,根据胡克定律F=kΔx可
得Δl1=2Δl2,故C正确,D错误。
能力形成点3
动力学两类基本问题——规范训练
整合构建
1.解决两类动力学基本问题应把握的关键
项错误。剪断细绳瞬间,对 A 球由牛顿第二定律有
mAgsin 30°=mAaA,得 A 的加速度 aA=gsin
1
30°= g,D
2
项正确。
归纳总结抓住“两关键”、遵循“四步骤”
(1)分析瞬时加速度的“两个关键”:
①明确绳或线类、弹簧或橡皮条类模型的特点。
②分析瞬时前、后的受力情况和运动状态。
(2)“四个步骤”:
B.1 N/C=1 V/m
C.1 J=1.60×10-19 eV
D.库仑不是国际单位制中的基本单位
解析:根据牛顿的定义,1 N=1 kg·
m/s2,则1 kg·
m/s=1 N·
s,故A正确。1 N/C
和1 V/m都是电场强度的单位,所以1 N/C=1 V/m,故B正确。电子伏是能量
的单位,1 eV=1.60×10-19 J,故C错误。库仑不是国际单位制中的基本单
牛顿第二定律的应用




01
第一环节
必备知识落实
02
第二环节
关键能力形成
第一环节
必备知识落实
知识点一
超重
失重
1.超重
(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的
现象。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用、超重与失重一、应用牛顿第二定律分析问题的基本思路:(1)已知力求物体的运动状态:先对物体进行受力分析,由分力确定合力;根据牛顿第二定律确定加速度,再由初始条件分析物体的运动状态,应用运动学规律求出物体的速度或位移。

(2)已知物体的运动状态求物体的受力情况:先由物体的运动状态(应用运动学规律)确定物体的加速度;根据牛顿第二定律确定合力,再根据合力与分力的关系求出某一个分力。

二、解题步骤:(1)根据题意,确定研究对象;(2)用隔离法或整体法分析研究对象的受力情况,画受力示意图;(3)分析物理过程是属于上述哪种类型的问题,应用牛顿第二定律分析问题的基本思路进行分析;(4)选择正交坐标系(或利用力的合成与分析)选定正方向,列动力学方程(或结合初始条件列运动学方程);(5)统一单位,代入数据,解方程,求出所需物理量;(6)思考结果的合理性,决定是否需要讨论。

三、例题分析:例1:如图所示,质量m=2kg的物体,受到拉力F=20N的作用,F与水平成37°角。

物体由静止开始沿水平面做直线运动,物体与水平面间的摩擦因数μ=0.1,2s末撤去力F,求:撤去力F 后物体还能运动多远?(sin37°=0.6,cos37°=0.8)例2:一个质量m=2kg的物体放在光滑的水平桌面上,受到三个与桌面平行的力作用,三个力大小相等F1=F2=F3=10N,方向互成120°,方向互成120°,则:(1)物体的加速度多大?(2)若突然撤去力F1,求物体的加速度?物体运动状况如何?(3)若将力F1的大小逐渐减小为零,然后再逐渐恢复至10N,物体的加速度如何变化?物体运动状况如何?例3:如图所示,停在水平地面的小车内,用轻绳AB、BC拴住一个小球。

绳BC呈水平状态,绳AB 的拉力为T1,绳BC的拉力为T2。

当小车从静止开始以加速度a水平向左做匀加速直线运动时,小球相对于小车的位置不发生变化;那么两绳的拉力的变化情况是:()A、T1变大,T2变大B、T1变大,T2变小C、T1不变,T2变小D、T1变大,T2不变例4:如图所示,物体A质量为2kg,物体B质量为3kg,A、B叠放在光滑的水平地面上,A、B间的最大静摩擦力为10N;一个水平力F作用在A物体上,为保证A、B间不发生滑动,力F的最大值为多少?如果力F作用在B上,仍保证A、B间不滑动,力F最大值为多少?四、超重和失重(1)重力:重力是地球对物体吸引而使物体受到的作用力,是引力,G=mg。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用在物理学中,牛顿第二定律是描述力、质量和加速度之间关系的基本定律。

具体而言,它表明力是物体质量乘以加速度的乘积。

牛顿第二定律在力学问题的解决中扮演着重要的角色,并且在各种实际应用中经常被使用。

本文将讨论牛顿第二定律在不同领域中的应用。

1. 机械运动牛顿第二定律在机械运动中有着广泛的应用。

例如,我们可以利用牛顿第二定律来计算物体的加速度,从而确定物体的运动状态。

在简单的情况下,我们可以使用公式F=ma,其中F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。

根据这个公式,我们可以计算物体所受的合力,进而预测物体的运动轨迹。

2. 交通工程牛顿第二定律在交通工程中也有重要的应用。

例如,我们常常需要研究车辆在不同道路状况下的行驶情况。

通过使用牛顿第二定律,我们可以计算出车辆所受的合力,并进一步预测车辆的加速度和速度。

这样的信息可以用于改善道路设计,提高交通效率,确保交通安全。

3. 弹道学牛顿第二定律在弹道学中也被广泛应用。

弹道学研究的是物体在空中飞行的轨迹和性质。

利用牛顿第二定律,我们可以计算出物体在受到力的作用下的加速度和速度变化情况。

这些信息对于炮弹、导弹和火箭的轨迹计算和控制非常重要。

4. 工程设计牛顿第二定律对于工程设计中的力学分析也是至关重要的。

在建筑和结构设计中,我们需要确保建筑物的稳定性和安全性。

通过应用牛顿第二定律,我们可以计算出分布在结构上的力,并评估结构的强度和稳定性。

这可以帮助工程师确定所需的材料和构建方法,从而确保设计的可行性和长期的稳定性。

5. 运动控制牛顿第二定律在运动控制领域也发挥着重要的作用。

例如,在机器人技术中,我们需要精确控制机器人的运动和位置。

通过应用牛顿第二定律,我们可以计算出所需施加在机器人身上的力,从而控制机器人的加速度和速度。

这使得机器人能够准确地执行特定的任务,如自主导航、工业生产等。

总结:牛顿第二定律在各个领域中都有广泛的应用。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用牛顿第二定律是经典力学中最基本且重要的定律之一,被广泛应用于解决各种力学问题。

它描述了物体的加速度与作用在物体上的净力之间的关系。

本文将讨论牛顿第二定律在不同领域的应用。

1. 机械领域中的应用在机械领域中,牛顿第二定律被用于计算物体的加速度和所受的力。

根据牛顿第二定律,一个物体的加速度正比于作用在它上面的净力,而与物体的质量成反比。

数学表达式为 F = ma,其中 F代表物体所受的净力,m代表物体的质量,a代表物体的加速度。

利用这个公式,可以计算出物体所受的力或者求解物体的加速度。

2. 飞行器的设计与控制牛顿第二定律的应用远不止在机械领域中,它在飞行器的设计与控制中也起到了重要的作用。

例如,在航空航天领域中,飞机的推进系统利用了牛顿第二定律。

飞机通过喷射出高速气流来提供后向的反作用力,从而推进自身前进。

牛顿第二定律可以帮助工程师计算出所需的推力和加速度,从而使飞机能够平稳地起飞和飞行。

3. 汽车的制动系统在车辆的制动系统中,牛顿第二定律同样起到了关键的作用。

汽车制动时,刹车片对轮胎施加了一个与车辆运动方向相反的摩擦力,这个摩擦力通过牛顿第二定律可以计算出来。

根据该定律,刹车片的净力与汽车质量乘以刹车片的摩擦系数之积相等,即 F = ma,其中F代表刹车片的净力,m代表汽车质量,a代表汽车的加速度。

通过控制刹车片的压力和摩擦系数,司机可以准确地控制汽车的制动效果。

4. 物体的竖直上抛运动在物理学中,牛顿第二定律被用于分析物体的竖直上抛运动。

当我们将一个物体从地面上抛出时,它所受的力由重力和空气阻力组成。

根据牛顿第二定律,物体的净力等于物体的重力减去空气阻力。

这个净力与物体的质量和加速度之间存在着简单的线性关系。

通过求解这个关系式,我们可以计算出物体的加速度和抛射初速度。

5. 摩天轮的运动模拟摩天轮是一个经典的游乐设施,它的运动过程可以通过牛顿第二定律进行模拟和分析。

摩天轮的运动受到重力和张力的影响,通过在摩天轮上设置电机或者其他驱动装置,可以产生一个向心力来维持摩天轮的运动。

8牛顿第二定律的简单应用

8牛顿第二定律的简单应用

1、物体受两个力的情形(1)利用平行四边形定则,将二力合成求出合力;(2)利用a m F =合求出加速度。

2、物体受多个力的情形(1)确定研究对象;(2)找出研究对象所受的力;①首先找出主动力②将主动力的作用效果分解,根据力的作用效果找出相应的反作用效果力③根据接触面的压力找出可能存在的摩擦力(3)建立直角坐标系:①一般以加速度方向为x 轴;②y 轴与x 轴垂直。

(4)正交分解:将不在坐标轴上力分解到坐标轴上(5)列方程:x 轴上,a m F =合(以加速度方向为正方向);y 轴上,0F =合或负正y y F F =用牛顿第二定律解题,就要对物体进行正确的受力分析,求合力,物体的加速度既和物体的受力相联系,又和物体的运动情况相联系,加速度是联系力和运动的纽带,物体的运动情况是由物体的初速度和受力情况共同决定的。

3、外力和内力如果以物体系研究对象,受到系统之外的作用力,这些力是系统受到的力,而系统内各物体间的相互作用力为。

应用牛顿第二定律列方程不考率力。

如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的力。

4、连接体问题的分析方法(1)整体法:连接体中的各物体如果,求加速度时可以把连接体作为一个整体。

运用列方程求解。

(2)隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。

(3)整体法与隔离法是相对统一,相辅相成的。

本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。

质量为m 1、m 2的两个物体分别受到相同的合外力F 的作用,产生的加速度分别为6m/s 2和3m/s 2,当质量是M=m 1+m 2的物体也受到相同的合外力F 的作用时,产生的加速度是。

质量是2kg 的物体,受到4个力的作用而处于静止状态。

当撤去其中F 1、F 2两个力后,物体的加速度为1m/s 2,方向向东,则F 1、F 2的合力大小是,方向。

质量为m 的物体,在两个大小相等,夹角为120°的共点力作用下,产生的加速度大小为a ,当两个力的大小不变,夹角为0°时,物体是加速度大小变为;夹角为90°时,物体的加速度大小变为。

牛顿第二定律的原理及应用

牛顿第二定律的原理及应用

牛顿第二定律的原理及应用牛顿第二定律是经典物理学中最基本的定律之一,它描述了力对物体的作用方式,形式化地表达了物体受力时运动的规律。

本文将探讨牛顿第二定律的原理及其在实际应用中的重要性。

1. 牛顿第二定律的原理牛顿第二定律可以简单地表述为:当一个物体受到作用力时,它的加速度正比于作用力,反比于物体的质量,方向与作用力方向相同。

换句话说,当一个物体受到作用力F时,其加速度a的大小与F成正比,与物体质量m成反比,即a=F/m。

这个定律描述了物体运动的规律,告诉我们:当物体受到的力增加时,它会加速运动;当物体的质量增加时,它会减缓运动。

在良好的近似情况下,牛顿第二定律适用于所有物体,并且在许多工程和科学领域中都是无可替代的。

例如,汽车碰撞测试中使用的模型就基于牛顿第二定律,因为它可以计算出车辆在不同速度下碰撞时的加速度和动量变化。

2. 应用:力的测量牛顿第二定律的另一个重要应用是测量力的大小。

由于牛顿第二定律建立了力与加速度之间的关系,因此如果可以测量一个物体的质量和加速度,就可以通过牛顿第二定律计算出作用力的大小。

例如,在电子磅秤中,我们可以通过测量物体的质量和磅秤显示的加速度来计算物体所受的重力。

在工业生产中,也常常需要测量机器所受的拉力或推力,这时采用的仪器就是力计,其原理也是基于牛顿第二定律。

3. 应用:运动学分析牛顿第二定律在运动学分析中也扮演着重要的角色。

例如,我们可以通过牛顿第二定律来计算发射的火箭所需要的动力和燃料,以保证它能够成功地到达目标。

另一个运动学分析中的实际应用是动力学分析,它包括了各种不同类型的力学系统,如机械系统、流体系统和电磁系统等,以及各种物理现象,如声音、火焰和电磁辐射等。

在动力学分析中,牛顿第二定律可以描述系统的动力学性质,并可以计算系统受到的各种力的大小和方向。

4. 应用:运动的优化牛顿第二定律的应用不仅限于理论分析,还可以用于优化运动过程。

例如,我们可以通过牛顿第二定律来计算体育运动员的力量和速度,以帮助他们在比赛中取得最佳成绩。

牛顿第二定律基本应用

牛顿第二定律基本应用

选向上为正方向,速度的改变量Δv=v2-(-v1)= 18 m/s(向上).③ 用a表示加速度,Δt表示接触时间,则Δv=aΔt.④
接触过程中运动员受到向上的弹力F和向下的重力mg ,由牛顿第二定律得F-mg=ma⑤
由以上五式解得 F=1.5×103 N.
7.(2010年浙江理综,14)如图所示,A、B两物体叠 放在一起,以相同的初速度上抛(不计空气阻力).下 列说法正确的是( )
先将运动 先自由落体,后触网 【思路点拨】 过程分段 ―→ 上、下,再竖直上抛
―→
由运动学公式 求出加速度
―→
受力分析,应用 牛顿定律求力
【解析】 (1)将运动员看作质量为 m 的质点,从 h1 高处下落,刚 接触网时的速度大小
v1= 2gh1=8 m/s(向下)① 弹跳后到达的高度为 h2,则离网时的速度大小 v2= 2gh2=10 m/s(向上)②
A.加速上升 B.减速上升 C.匀速下降 D.减速下降
1、关于物体的加速度与受力情况的关系,下
列说法正确的是:( BCD)
A、物体不受力时,加速度也可能改变。
B、物体受力变化时,加速度才会改变。 C、物体受力不变时,加速度也不变。 D、物体不受力时,加速度等于零。
2、下列说法正确的是: ( D)
答案:A
8.(2010年山东理综,16)如图甲所示,物体沿斜面 由静止滑下,在水平面上滑行一段距离后停止,物
体与斜面和水平面间的动摩擦因数相同,斜面与水 平面平滑连接.图乙中v、a、f和s分别表示物体速 度大小、加速度大小、摩擦力大小和路程.图乙中 正确的是( )
解析:物体在斜面上受重力、支持力、摩擦力作用, 其摩擦力大小为f1=μmgcos θ,做初速度为零的匀加 速直线运动,其v t图象为过原点的倾斜直线,A错 ,加速度大小不变,B错,其s t图象应为一段曲线 ,D错;物体到达水平面后,所受摩探力f2=μmg>f1 ,做匀减速直线运动,所以正确选项为C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代入数据:
图所示,仍以向右为正方向,
由牛顿第二定律F合=ma可知: 0 – f = 10a2
解之得: F支=100N
水平方向: 0 – f = ma2 竖直方向: F支– G=0
F支 – 10×10 =0
f =15N
f = µF支
f = 0.15 F支
a2= – 1.5m / s2
可编辑ppt
11
方法一:
9
F支
v0=0
a1
f
F
F支
v1=? a2
f
v2=0
µ=0.15 G
t=5s x1=? G
x2=?
解:(1)以木块为研究对象,对第 代入数据:
一过程分析,受力如左边图
所示,以向右为正方向,由牛 顿第二定律F合=ma可知:
水平方向:F – f = ma1
20 – f = 10a1
F支 – 10×10 =0
§4.4牛顿第二定律应用(1)
----由物体受力求物体运动情况
一、教学目标:
1、知识与技能:①进一步理解牛顿第二定律,②熟练运 用牛顿第二定律公式求解物体的加速度。
2、过程与方法:通过例题的讲解与练习,让学生掌握运 用牛顿第二定律的方法和解题的一般步骤。
3、情感、态度与价值观:通过例题的变形让学生体会到 具体问题具体分析的哲学方法。
14
y
F支
F2 f
F
370 F1
a1
x
F支’
v1=? a2
f’
v2=0
µ=0.15
G
t=5s x1=?
解(1)以木块为研究对象,对其
受力分析,如图所示,并建立
如图坐标。将F分解为F1与F2, 由牛顿第二定律可知:
x轴:Σ Fx=Fcom370 - f =ma1
y轴:Σ Fy=F支+Fsin370 -G=0
方法二:
由0=v1+a2t2可知:
0 = 2.5 +(– 1.5)×t2
t2 =1.67s
由2 a2 x2= 02 – v12 得: 2×(– 1.5) x2= – 2.52
x2=2.08m
由x2= v1t2+a2t22 / 2可知:
x2= 2.5× 1.67 +(– 1.5)× (1.67)2 / 2
4
分析探究
例1、一个静止在水平面上 的物体,质量是2kg,在 6.4N的水平拉力作用下沿水 平地面向右运动。物体与地 面间的摩擦力是4.2N。求物 体在4s末的速度和4s内发生 的位移。
V
例2、一个滑雪的人,质量 m=75kg,以v0=2m/s的初 速度沿山坡匀加速滑下, 山坡的倾角θ=300,在t= 5s的时间内滑下的路程 x=60m,求滑雪人受到的
竖直方向: F支– G=0
f = µF支
f = 0.15 F支
可编辑ppt
解之得: F支=100N f =15N
a1=0.5m / s2
10
由v1=v0+a1t可知: 由x1=a1t2 / 2可知:
v1=0.5×5m/
s
x1=(0.5×52 / 2)m
=6.25m
=2.5m/s
(2)当撤去外力F后,仍以木 块为研究对象,受力如中间
m
C、加速度方向与v的方向一致
D、加速度方向与F的方向一致
可编辑ppt
3
第一、二章我们学习了运动学,知道了匀变速直 线运动的一些规律:
速度公式: vt=v0+at
位移公式: x=v0t + at2 / 2 位移-速度公式: 2ax=vt2-v02
平均速度: v0=(v0+vt) / 2
可编辑ppt
阻力(包括摩擦和空气阻 力)
可编辑ppt
5
例1、一个静止在水平面上的物体,质量是2kg,在6.4N的 水平拉力作用下沿水平地面向右运动。物体与地面间的摩 擦力是4.2N。求物体在4s末的速度和4s内发生的位移。
解:物体受力情况如图, 取向右为正方向
则合外力 FF1F2
由牛顿第二定律 F m:
由物体 受力情 况
根据牛顿第二定 律:F=ma
物体的 加速度a
根据运动
求出物 体的运
学公式 动情况
解题一般步骤:
(1)确定研究对象。
(2)对研究对象受力分析并画出受力示意图。
(3)分析物体运动情况并画运动过程简图。
(4)利用牛顿第二定律求解加速度。
(5)列出方程,求解方程。
可编辑ppt
1
二、重点、难点:
1、重点:形成动力学问题的分析思路和解决方法。
2、难点:把动力学的分析思路和解决方法贯彻到 具体问题的解决之中。
可编辑ppt
2
三、教学过程:
复习:
下列说法正确的是:
( BCD )
A、由a= v 可知,a与v成正比,与 t反比
t
B、由a= F 可知,a与F成正比,与m反比
aF 1m F 26 .4 24 .2m s2 1 .1 m s2
V FN
则4s末的速度v和4s内的位移x为
vat1.14m s4.4m s F2
F1
x1at211.116m8.8m
22
可编辑ppt
G 6
例2、一个滑雪的人,质量m=75kg,以v0=2m/s的初速度 沿山坡匀加速滑下,山坡的倾角θ=300,在t=5s的时间内
可编辑ppt
G
7
例1:
一质量为10kg的木块,静止在水 平面上,木块与水平面间的动摩擦 因数为0.15,现对其施加一个20N 的水平向右的拉力,求(1)木块5s 末的速度及5s内的位移。(2)撤去 外力后木块还能滑行多远。
F
µ=0.15
可编辑ppt
8
F支
v0=0
a1
f
F
F支
v1=? a2
f
v2=0
µ=0.15 G
t=5s x1=? G
x2=?
解题思路:以木块为研究对象,对其受力分析, 求出合力,由合力求得加速度,再由运动学公式 求得速度、位移,当撤去外力后,再对木块进行 受力分析,求出第二过程的加速度,由撤去外力 时的速度(即第一过程的末速度v1)与第二过程加 速度求出第二过程的位移。
可编辑ppt
(6)检查答案是否完整,可合编辑理ppt。
13
变式1:
一质量为10kg的木块,静止在水平 面上,木块与水平面间的动摩擦因 数为0.15,现对其施加一个与水平 成370斜向右上方的20N的拉力,求 (1)木块5s末的速度及5s内的位移。 (2)撤去外力后木块还能滑行多远。
F
370
µ=0.15
可编辑ppt
滑下的路程x=60m,求滑雪人受到的阻力(包括摩擦和空
气阻力)
解:对滑雪人受力分析,并建立坐标系如图
由运动学公式:x
v0t
1 at2 2
滑雪人的加速度y:
a2xt 2v0t2602 5 25m s24m s2FN
由牛顿第二定律
F阻 G x
mFaGxF阻max得
m g sin m a
67.5 N
相关文档
最新文档