2020-2021学年山东省济南市章丘区九年级(上)期末数学试卷 (解析版)
2020-2021学年济南市济阳区九年级上学期期末数学试卷(含答案解析)

2020-2021学年济南市济阳区九年级上学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.关于x的一元二次方程有实数根,则m的取值范围是()A. B.C. 且D. 且2.由6个大小相同的小正方体拼成的几何体如图所示,则其三视图中哪两种视图完全一样的是()A. 主视图和俯视图B. 左视图和俯视图C. 主视图和左视图D. 以上都不正确3.如图,在平行四边形ABCD和平行四边形BEFG中,已知AB=BC,BG=BE,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠DCB=∠GFE=120°,则PGPC=()A. √2B. √3C. √22D. √334.将抛物线y=x2+1先向左平移1个单位,再向上平移1个单位,得到新抛物线()A. y=(x+1)2B. y=(x+1)2+2C. y=(x−1)2D. y=(x−1)2+25.直角三角形两直角边长分别为和l,那么它的外接圆的直径是()A. 1B. 2C. 3D. 46.已知点A(−1,y1),B(1,y2),C(2,y3)是函数y=−1x图象上的三点,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. 无法确定7.已知关于x的一元二次方程ax2+bx+c=0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为−1和4,那么:2b+3ca=()A. 3B. −6C. 9D. 128.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在反比例函数y=6x(x>0)图象上的概率为()A. 118B. 112C. 19D. 149.四边形ABCD为平行四边形,则∠A:∠B:∠C:∠D为()A. 1:2:3:4B. 2:3:4:1C. 2:3:2:3D. 2:3:3:210.如果反比例函数y=1−2mx的图象在每个象限内,y随着x的增大而增大,则m的最小整数值为()A. −1B. 0C. 1D. 211.如图,边长为1的正△ABC,分别以顶点A、B、C为圆心,1为半径作圆,则这三个圆所覆盖的图形面积为()A. 3π2+√3 B. 5π2−√3 C. 7π2−2√3 D. 3π−2√312.如图,点P是双曲线y=7225x(x<0)上一动点,动直线与x轴,y轴正半轴分别交于点A,B,过点A与AB垂直的直线交y轴于点E,点F是AE的中点,FO的延长线交过B点与AB垂直的直线于点Q,若点O到AB的距离等于OP的最小值,则1EF +1BQ的值是()A. 65√2 B. 7225C. 56D. 512二、填空题(本大题共6小题,共24.0分)13.16.已知如果2m=5,2n=3.则2m+2n的值为_________.14.如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AC于D,连接OC,过点D作DF//OC交AB于F,过点B的切线交AC的延长线于E.若AD=4,DF=52,则BE=______ .15.已知点C为线段AB的黄金分割点,线段AB=10cm(AC>BC),则AC为______cm.(结果保留根号)16.如图,直线y=x+b与双曲线y=kx交于A、B两点,延长AO交双曲线于C点,连接BC,且AB= 2BC=4√2,则k=______ .17.二次函数y=ax2+bx+c的图象与x轴相交于(−1,0)和(5,0)两点,则该抛物线的对称轴是.18.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边交于点G(不同于点B),若BG=AE,BF=______.AC三、解答题(本大题共9小题,共78.0分)19.计算:2−1+4cos45°−(π−2013)0−√8.20.如图,某海城景区为扩大景区范围,以O为圆心,100米为半径的圆形区域内正在施工,景点A在O的南偏西60°,距O点120米处,景点B在O在正南方向,距O点120米处,景点C在O的正东方向,距O点120米处,一游客乘船沿着A→B→C的路线进行游览,请判断该游客在游览过程中是否会经过施工区,并说明理由(√2≈1.141,√3≈1.73,√5≈2.24,结果保留一位小数).21.某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图(如图)的信息回答下列问题:(1)本次调查的学生总数为______人,被调查学生的课外阅读时间的中位数是______小时,众数是______小时;(2)请你补全条形统计图,在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是______;(3)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?(4)若学校需要,从二男二女四名同学中随机选取两人分享读后感,恰好是一男一女的概率?(列表或树状图)22.探究:如图①,在矩形ABCD中,以点A为直角顶点作Rt△AEF,连结BE、DF,直线DF交直线BE于点G,DG与AB交于点H,且AEAF =ABAD.(1)求证:△ABE∽△ADF.(2)求证:DG⊥BE;拓展:如图②,在▱ABCD中,以点A为顶点作∠EAF=∠BAD,连结BE、DF,直线DF交直线BE于点G,且AEAF =ABAD,若∠BCD=130°,则∠EGD的大小为______度.23.在Rt△ABC中,∠C=90°,a=3,c=5,求sinA和tanA的值.24.如图所示,利用一面墙(墙的长度足够),用篱笆围成一个形如矩形ABCD的场地,在AD,BC边上各有一个宽为1m的缺口,在场地中有用篱笆做的隔断EF,且EF⊥AB,AB>EF,已知所用篱笆总长度为38m.(1)设隔断EF的长为x(m),请用含x的代数式表示AB的长.(2)所围成形如矩形ABCD的场地的面积为100m2时,求AB的长.(3)所围成矩形ABCD场地的面积能否为140m2?若能,求AB的长;若不能,说明理由.并写出所围成的矩形ABCD场地面积的最大值.25.已知一次函数y=kx+b的图象与反比例函数y=m的图象交于点A,与xx轴交于点B(5,0),若OB=AB,且S△OAB=15.2(1)求反比例函数与一次函数的表达式;(2)直接写出当x>0时,kx+b<m的解集;x(3)若点P为x轴上一点,△ABP是等腰三角形,直接写出点P的坐标.(4)已知点D(0,6),连接AD,过原点O的直线l将四边形OBAD分成面积相等的两部分,用尺规作图,作出直线l,保留作图痕迹,并直接写出直线l的解析式.26.如图,已知等边△ABC的边长为8,点M、N分别在AB、AC边上,CN=3.(1)把△ABC沿MN折叠,使得点A的对应点是点A′落在AB边上(如图1),求折痕MN的长度;(2)如图2,若点P在BC上运动,且始终保持∠MPN=60°.①请判断△MBP和△PCN是否相似?并说明理由;②当点P在何位置时线段BM长度最大,并求出线段BM长度的最大值.27.如图,抛物线y=mx2+2mx−3m(m≠0)的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H、B关于直线l:对称,过点B作直线BK//AH交直线l于K点.(1)求A、B两点坐标,并证明点A在直线l上;(2)求此抛物线的解析式;(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,直接写出NK的长.参考答案及解析1.答案:D解析:试题分析:根据一元二次方程有实数根可得△≥0,得到关于m的不等式,同时结合一元二次方程二次项系数不为0求解即可.∵关于x的一元二次方程有实数根,∴,解得:m≤3且m≠2.故选D.考点:一元二次方程的概念以及一元二次方程根的判别式.2.答案:C解析:解:该组合体的主视图和左视图如下:其俯视图如下:故选:C.根据三视图的概念画出图形可得答案.本题考查了简单组合体的三视图,画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.答案:B解析:解:延长GP交DC于点H,∵AB=BC,BG=BE,∴平行四边形ABCD和平行四边形BEFG都是菱形,∵P是线段DF的中点,∴FP=DP,由题意可知DC//GF,∴∠GFP=∠HDP,∵∠GPF=∠HPD,∴△GFP≌△HDP,∴GP=HP,GF=HD,∵四边形ABCD、四边形BEFG都是菱形,∴CD=CB,GB=GF,∴CG=CH,∴△CHG是等腰三角形,∴PG⊥PC,(三线合一)又∵∠DCB=∠GFE=120°,∴∠GCP=60°,=√3.∴tan∠GCP=PGPC故选:B.可通过构建全等三角形求解.延长GP交DC于H,可证三角形HDP和GFP全等,已知的有DC//GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(AAS),于是两三角形全等,那么HP=PG,可根据三角函数来得出PG、CP的比例关系.此题主要考查了菱形的判定与性质,全等三角形的判定以及锐角三角函数等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.4.答案:B解析:解:由“左加右减”的原则可知,将抛物线y =x 2+1先向左平移1个单位可得到抛物线y =(x +1)2+1;由“上加下减”的原则可知,将抛物线y =(x +1)2+1再向上平移1个单位可得到抛物线y =(x +1)2+2. 故选:B .根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.答案:A解析:解:根据勾股定理,得该直角三角形的斜边是:√(√3)2+12=2. 根据直角三角形的外接圆的半径是斜边的一半,则其外接圆的半径是1; 故选:A .6.答案:B解析:解:∵点A(−1,y 1),B(1,y 2),C(2,y 3)是函数y =−1x 图象上的三点, ∴y 1=−1−1=1,y 2=−11=−1,y 3=−12=−12. ∵−1<−12<1,∴y 2<y 3<y 1故选:B .把点A 、B 、C 的坐标分别代入函数解析式,求得y 1、y 2、y 3的值,然后比较它们的大小. 本题考查了反比例函数图象上点的坐标特征.函数图象上点坐标都满足该函数解析式.7.答案:B解析:解:对于甲:设k(x −2)(x −4)=0, 得kx 2−6kx +8k =0,对于乙:设p(x +1)(x −4)=0, 得px 2−3px −4p =0, 分两种情况:①如果看错了二次项系数,那么{−6k =−3p 8k =−4p , 解得k =p =0,不合题意舍去;②如果看错了一次项的符号,那么{−6k −3p =08k =−4p,解得p=−2k,则a=p,b=3p,c=−4p,2b+3ca =6p−12pp=−6.故选:B.先利用两根分别表示出错误的方程为:甲,设k(x−2)(x−4)=0得kx2−6kx+8k=0;乙,设p(x+ 1)(x−4)=0得px2−3px−4p=0,乙的错误不可能是看错了一次项系数的符号,分两种情况:①如果看错了二次项系数的符号,那么甲和乙的方程里面一次项和常数项分别相等;②如果看错了一次项系数的符号,那么甲和乙的方程里面常数项相等,一次项互为相反数.此题考查了一元二次方程的特点,以及方程之间的关系,难度不小.需要利用方程的两根来表示出两个错误的方程,然后对乙的错误分情况讨论,这是解题的关键.8.答案:C解析:解:根据题意知x的取值有6种情况,y的取值有6种情况,(x,y)的取值有6×6=36种情况,∵点(1,6),(6,1),(2,3),(3,2)落在反比例函数y=6x(x>0)图象上,∴点(x,y)落在反比例函数y=6x (x>0)图象上的概率为436=19,故选:C.根据题意知x的取值有6种情况,y的取值有6种情况,(x,y)的取值有6×6=36种情况,因为点(1,6),(6,1),(2,3),(3,2)四个点落在反比例函数y=6x(x>0)图象上,故能得出概率.本题主要考查反比例函数图像上点的坐标特征及概率的应用,熟练掌握反比例函数图像上点的坐标特征及概率的应用是解题的关键.9.答案:C解析:解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有C符合条件.故选:C.根据两组对角分别相等的四边形是平行四边形,∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.10.答案:C解析:解:∵反比例函数y=1−2mx的图象在每个象限内,y随着x的增大而增大,∴1−2m<0,解得,m>12.∴m的最小整数值为1,故选:C.根据反比例函数的性质可得1−2m<0,再解不等式即可.本题考查了反比例函数的性质.对于反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.11.答案:A解析:解:连CD,BD,AC与BD交于点E,如图,∵△ABC为边长为1的等边三角形,∴∠ACB=60,∠BCD=120°,S△BCD=S△ABC=√34×12=√34;每两个圆的公共部分面积等于2个弓形BD的面积,而每个弓形的面积等于扇形CDB的面积减去△BDC的面积,∴每两个圆的公共部分面积为2(120π×1360−√34)=2(π3−√34)=2π3−√32,三个圆公共部分面积为三个弓形AB的面积加△ABC的面积,∴三个圆公共部分面积为3×60π×1360−2×√34=3×π6−2×√34=π2−√32,∴三个圆覆盖的面积为3π−3(2π3−√32)+(π2−√32)+π2−√32=3π2+√3.故选:A.连CD,BD,AC与BD交于点E,每两个圆的公共部分面积等于2个弓形BD的面积,而每个弓形的面积等于扇形CDB的面积减去△BDC的面积,而三个圆公共部分面积为三个弓形AB的面积加△ABC的面积,最后求三个圆所覆盖的图形面积即三个圆的面积减去三个两圆的公共部分面积,再加上一个三个圆公共部分面积.本题考查了扇形的面积公式:S=nπR2360,其中n为扇形的圆心角的度数,R为圆的半径),或S=12lR,l为扇形的弧长,R为半径.同时考查了三角形的面积公式以及弓形面积的求法.12.答案:C解析:解:如图,过点O作OG⊥AB于G,设EF=a,点P(x,y),∵点F是AE的中点,∴AE=2a,∵点P是双曲线y=7225x(x<0)上一动点,∴xy=7225,∵OP=√x2+y2=√(x−y)2+2xy,∴当x−y=0时,OP最小,即x=y时,OP的最小值是√2xy=√2×7225=125,∴OG=125,∵OG⊥AB,AE⊥AB,∴OG//AE,∴△BOG∽△BEA,∴OGAE =OBBE,即1252a=OBOE=65a,同理得:BQ//EF,∵∠BQO=∠OFE,∵∠BOQ=∠EOF,∴△BQO∽△EFO,∴OBOE =BQEF,∴OBOB+OE =BQBQ+EF,∴OBOE =BQBQ+EF,∴BQ⋅EFBQ+EF =65,则1EF+1BQ=EF+BQEF⋅BQ=56.故选:C.如图,过点O作OG⊥AB于G,设EF=a,点P(x,y),先确定当x−y=0时,OP最小,OP的最小值是√2xy=√2×7225=125,可得OG=125,证明△BOG∽△BEA和△BQO∽△EFO,列比例式,并根据比例的性质可得结论本题主要考查了反比例函数的应用,相似三角形的性质和判定,完全平方公式的非负性,最值问题,点到直线的距离等知识点.利用完全平方公式确定OP的最小值是本是本题的关键.13.答案:45解析:14.答案:152解析:解:∵OD⊥AC,AD=4,∴AD=DC=4,∵DF//OC,DF=52,∴OC=2DF=5,在Rt△COD中,OD=√OC2−CD2=3,∵BE是⊙O的切线,∴AB⊥BE,∵OD⊥AD,∴∠ADO=∠ABE,∵∠OAD=∠EAB,∴△AOD∽△AEB,∴ODBE =ADAB,即3BE=410,解得:BE=152,故答案为:152.根据垂径定理得到AD=DC,根据三角形中位线定理求出OC,根据勾股定理求出OD,证明△AOD∽△AEB,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用、垂径定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.15.答案:(5√5−5)解析:解:∵点C是线段AB的黄金分割点,线段AB=10cm(AC>BC),∴AC=√5−12AB=√5−12×10=(5√5−5)cm,故答案为:(5√5−5).直接根据黄金比值为√5−12进行计算即可.本题考查的是黄金分割的概念,熟练掌握黄金分割的概念、黄金比值为√5−12是解题的关键.16.答案:3解析:过O作OD⊥AB于点D,根据直线y=x+b中的k=1得到OD所在直线为y=−x,于是得到直线y=x+b关于此直线轴对称,双曲线y=k/x关于O中心对称,求得AD=BD,AO=OC,根据平行线的性质得到BC⊥AC,设A(x,y)则B(−y,−x),根据勾股定理和两点间的距离公式得到(2x)2+(2y)2=(2√10)2,(x+y)2+(y+x)2=(4√2)2求得点A坐标为(1,3)于是得到结论.本题考查了反比例函数与一次函数的交点坐标,勾股定理,两点间的距离公式,正确的理解题意是解题的关键.解:过O作OD⊥AB于点D,∴OD所在直线为y=−x,∴直线y=x+b关于此直线轴对称,双曲线y=k/x关于O中心对称,∴AD=BD,AO=OC,∴OD//BC,∴BC⊥AC,设A(x,y)则B(−y,−x),∵AB=2BC=4√2,∴AC=√AB2+BC2=2√10,∴(2x)2+(2y)2=(2√10)2,(x+y)2+(y+x)2=(4√2)2解得x=1,y=3∴点A坐标为(1,3)∴k=3.故答案为3.17.答案:直线x=2解析:分析:根据抛物线的与横轴的交点到对称轴的距离相等,可知其对称轴为与横轴两交点的和的一半.解答:解:∵二次函数y=ax2+bx+c的图象与x轴相交于(−1,0)和(5,0)两点,∴其对称轴为:x=故答案为:x=2.18.答案:54√2或310√2解析:解:设CE=x,则AB=4x,BE=3x,∵四边形ABCD是正方形,∴∠B=90°,AB=BC,∴AE=√AB2+BE2=5x,AC=√2AB=4√2x,有两种情形:①如图1,当G在AD边上时,连接EG,在Rt△ABG和Rt△BAE中,{AE=BGAB=BA,∵AE=BG,AB=AB,∠BAG=∠ABE=90°,∴Rt△ABG≌△Rt△BAE(HL),∴AG=BE,∵AG//BE,∴四边形ABEG是矩形,∴AE=BG,∴BF=12AE=52x,∴BFAC =52x4√2x=5√24;②当G在CD上时,如图2,同理可得△ABE≌△BCG,∴∠BAE=∠CBG,∵∠CBG+∠ABF=90°,∴∠BAE+∠ABF=90°,∴∠AFB=90°,∴BG⊥AE,∵12⋅AB⋅BE=12⋅AE⋅BF,∴BF=AB⋅BEAE =4x⋅3x5x=125x,∴BFAC =125x4√2x=310√2.综合以上可得BFAC 的值为54√2或310√2.故答案为54√2或310√2.设CE=x,则AB=4x,BE=3x,由勾股定理可求出AC=4√2x,分两种情形:①当G在AD边上时,②当G在CD上时,由全等三角形的性质分别求出答案即可.本题考查了全等三角形的判定和性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题.19.答案:解:原式=12+4×√22−1−2√2=−12.解析:此题主要考查了负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值、二次根式的化简等知识,正确化简各数是解题关键.分别利用负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值、二次根式的化简进行计算,化简求出答案.20.答案:解:作OD⊥AB于D,OE⊥BC于E.∵OA=OB=OC=120m,∠AOB=60°,∠BOC=90°,∴△AOB是等边三角形,△BOC是等腰直角三角形,在Rt△AOD中,OD=OA⋅sin60°=60√3≈103.8m,∵103.8m>100m,∴游客乘船沿着A→B时,游览过程中不会经过施工区,在Rt△OBC中,OE=OB⋅cos45°=60√2≈84.6m,∵84.6m<100m,∴游客乘船沿着B→C的路线进行游览,该游客在游览过程中会经过施工区.解析:作OD⊥AB于D,OE⊥BC于E.解直角三角形分别求出OD、OE即可解决问题.本题考查解直角三角形−方向角问题,锐角三角函数等知识,解题的关键是理解题意,学会根据直角三角形解决问题,属于中考常考题型.21.答案:(1)50,4,5,(2)144°(3)700×450=56,所以估计九年级一周课外阅读时间为6小时的学生有56人;(4)画树状图为:共有12种等可能的结果数,其中恰好是一男一女的结果数为8,所以恰好是一男一女的概率=812=23.解析:解:(1)(6+4)÷20%=50,所以本次调查的学生总数为50人,课外阅读时间为6小时的男生人数为50−10−16−20−3=1,所以被调查学生的课外阅读时间的中位数是4小时,众数是5小时;(2)课外阅读时间为5小时的扇形的圆心角度数=360°×2050=144°,补全条形统计图为:故答案为50;4;5;144°;(1)用阅读时间为3小数的人数除以它所占的百分比得到调查的总人数,再计算出阅读时间为6小时的男生人数,然后根据中位数、众数的定义求解;(2)先利用阅读时间为6小时的男生人数补全条形统计图,然后用360°乘以阅读时间为5小时的人数所占的百分比得到课外阅读时间为5小时的扇形的圆心角度数;(3)用700乘以样本中阅读时间为6小数的人数的百分比即可;(4)画树状图展示所有12种等可能的结果数,找出恰好是一男一女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.22.答案:50解析:解:探究:(1)在矩形ABCD中,∵∠BAD=90°,∵∠AEF=90°,∴∠EAB+∠BAF=∠DAF+∠BAF=90°,∴∠EAB=∠DAF,∵AEAF =ABAD,∴△ABE∽△ADF;(2)∵△ABE∽△ADF,∴∠ADF=∠ABE,设AB与DG的交点为H,∵∠AHD=∠BHG,∴∠BGH=180°−∠ABG−∠BHG=180°−∠AHF−∠ADF=∠BAD=90°,∴DG⊥BE;拓展:在▱ABCD中,∵AB//CD,AD//BC,∴∠ABC=180°−∠C=50°,∠ADF=∠2,∵∠EAF=∠BAD,∴∠EAF−∠BAF=∠BAD−∠BAF,即∠EAB=∠DAF,∵AEAF =ABAD,∴△ABE∽△ADF,∴∠ADF=∠3,∴∠2=∠3,∵∠ABC=180°−∠GBC−∠3,∠EGD=180°−∠GBD−∠2,∴∠EGD=∠ABC=50°,故答案为:50.探究:(1)根据矩形的性质得到∠BAD=90°,根据余角的性质得到∠EAB=∠DAF,根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到∠ADF=∠ABE,根据对顶角相等得到∠AHD=∠BHG,根据三角形的内角和即可得到结论;拓展:根据平行四边形的性质得到AB//CD,AD//BC,求得∠ABC=180°−∠C=50°,∠ADF=∠2,根据相似三角形的性质得到∠ADF=∠3,根据三角形的内角和和平角的定义即可得到结论.本题考查了相似三角形的判定和性质,矩形的性质,正方形的性质,正确的识别图形是解题的关键.23.答案:解:在Rt△ABC中,c=5,a=3,∴b=√c2−a2=√52−32=4,∴sinA=ac =35,tanA=ab=34.解析:试题分析:先根据勾股定理求出b的长,再根据三角函数的定义就可求解.24.答案:解:(1)设隔断EF的长为x(m),则AB=38−3x+2=40−3x;(2)由题意可得:S=x(40−3x)=100,整理得:−3x2+40x−100=0,则3x2−40x+100=0解得:x1=10,x2=103,当EF=10m,则AB=40−30=10(m),此时EF=AB,不合题意,故x=103,则AB=40−3×103=30(m),答:AB的长为30m;(3)当S=140m2,则x(40−3x)=140,整理得:3x2−40x+140=0,则△=b2−4ac=1600−1680=−80<0,故所围成矩形ABCD场地的面积不能为140m2,S=x(40−3x)=−3x2+40x=−3(x 2−403x) =−3(x −203)2+4003, 当x =203时,所围成的矩形ABCD 场地面积的最大值为:4003m 2.解析:(1)根据题意可得AB =38−3x +2,即可得出答案;(2)利用矩形面积公式得出S =100,进而得出答案;(3)利用矩形面积公式得出S =140,再利用利用配方法即可求出函数最大值.本题考查了二次函数的应用,解答本题的关键是结合题意利用长方形的面积列出函数关系式并掌握求二次函数最值的方法.25.答案:解:(1)如图1,过点A 作AD ⊥x 轴于D ,∵B(5,0),∴OB =5,∵S △OAB =152, ∴12×5×AD =152,∴AD =3,∵OB =AB ,∴AB =5, 在Rt △ADB 中,BD =√AB 2−AD 2=4,∴OD =OB +BD =9,∴A(9,3),将点A 坐标代入反比例函数y =m x 中得,m =9×3=27,∴反比例函数的解析式为y =27x ,将点A(9,3),B(5,0)代入直线y =kx +b 中,{9k +b =35k +b =0, ∴{k =34b =−154,∴直线AB 的解析式为y =34x −154; (2)由{y =34x −154y =27x解得{x =9y =3或{x =−4y =−274, ∴两个函数的交点分别为(9,3)或(−4,−274),结合图象可知:当x >0时,不等式kx +b <mx 的解集为0<x <9.(3)由(1)知,AB =5,∵△ABP 是等腰三角形,∴①当AB =PB 时,∴PB =5,∴P(0,0)或(10,0),②当AB =AP 时,如图2,由(1)知,BD =4,易知,点P 与点B 关于AD 对称,∴DP =BD =4,∴OP =5+4+4=13,∴P(13,0),③当PB =AP 时,设P(a,0),∵A(9,3),B(5,0),∴AP 2=(9−a)2+9,BP 2=(5−a)2,∴(9−a)2+9=(5−a)2,∴a =658,∴P(658,0),即:满足条件的点P 的坐标为(0,0)或(10,0)或(13,0)或(658,0).(4)如图3中,直线l 即为所求.由题意直线OA 的解析式为y =13x ,直线BD 的解析式为y =−65x +6,直线AD 的解析式为y =−13x +6,可得G(52,3),∵GH//OA ,∴直线GH 的解析式为y =13x +136, 由{y =13x +136y =−13x +6,解得{x =234y =4912, ∴H(234,4912),∴直线l 的解析式为y =4969x.解析:(1)先求出OB ,进而求出AD ,得出点A 坐标,最后用待定系数法即可得出结论;(2)构建方程组求出直线与反比例函数的两个交点坐标即可判断.(3)分三种情况,①当AB =PB 时,得出PB =5,即可得出结论;②当AB =AP 时,利用点P 与点B 关于AD 对称,得出DP =BD =4,即可得出结论;③当PB =AP 时,先表示出AP 2=(9−a)2+9,BP 2=(5−a)2,进而建立方程求解即可得出结论. (4)作线段BD 的中垂线EF 交BD 于G ,连接OG ,AG ,OA ,作GH//OA 交AD 于H ,作直线OH ,直线OH 即为所求的直线l .此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键,学会构造平行线平分四边形面积. 26.答案:解:(1)∵等边△ABC 的边长为8,∴∠A =∠B =∠C =60°,AB =BC =AC =8,∵CN =3,∵把△ABC沿MN折叠,点A的对应点A′恰好落在AB边上,∴∠NMA=90°,∴sinA=MNAN,∴MN=AN⋅sin60°=5×√32=5√32;(2)①∵∠MPN=60°,∴∠MPB+∠NPC=120°,∴∠NPC=∠BMP,∵∠B=∠C=60°,∴△MBP∽△PCN;②设BP=x,BM=y,则PC=8−x,∵△MBP∽△PCN,∴BMPC =BPCN,∴y8−x =x3,∴y=−13(x2−8x)=−13(x−4)2+163,当x=4时,y最大值为163,因此,当点P位于BC的中点时,线段BM长度最大值为163.解析:(1)根据等边三角形的性质和三角函数解答即可;(2)①根据相似三角形的判定解答即可;②根据相似三角形的判定和性质得出二次函数,进而利用二次函数的最值解答即可.此题考查相似三角形的综合题,关键是根据相似三角形的判定和性质以及二次函数的最值解答.解析:(1)令y=0,解关于x的一元二次方程,即可得到点A、B的坐标;然后把点A的坐标代入直线l的解析式,计算即可证明点A在直线上;(2)根据轴对称的性质可得AH=AB,根据直线l的解析式求出直线l与x轴的夹角为30°,然后得到∠HAB的度数是60°,过点H作HC⊥x轴于点C,然后解直角三角形求出AC、HC,从而得到OC的长度,然后写出点H的坐标,再把点H的坐标代入抛物线解析式计算求出m的值,即可得解;(3)根据平行直线的解析式的k值相等求出直线BK的解析式的k值,然后利用待定系数法求出直线BK 的解析式,与直线l的解析式联立求解得到点K的值,再利用抛物线解析式求出相应横坐标上的点,从而求出抛物线向上移动的距离,然后得到平移后的抛物线的顶点N的坐标,根据两点间的距离公式计算即可得到NK的值.。
山东省济南市章丘区2019-2020学年九年级上学期期末数学试题(解析版)

山东省济南市章丘区2019-2020学年九年级上学期期末数学试题一.选择题1.﹣3﹣(﹣2)的值是()A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣﹣﹣2﹣=﹣3+2=﹣1﹣故选A﹣【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.2.下列立体图形中,主视图是三角形的是(﹣.A. B. C. D.【答案】B【解析】【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【详解】A﹣C﹣D主视图是矩形,故A﹣C﹣D不符合题意;B、主视图是三角形,故B正确;故选B﹣【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形.3.将6497.1亿用科学记数法表示为()A. 6.4971×1012B. 64.971×1010C. 6.5×1011D. 6.4971×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6497.1亿=649710000000=6.4971×1011.故选:D.【点睛】此题主要考查科学记数法,解题的关键是熟知科学记数法的表示方法.4.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A. 20°B. 30°C. 40°D. 50°【答案】C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.5.+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】分析:直接利用﹣3,进而得出答案.详解:∵﹣3﹣∴故选B﹣的取值范围是解题关键.6.下列四个图案中,不是轴对称图案的是()A. B. C. D.【答案】C【解析】分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.计算:x (1﹣21x )÷221x x x++的结果是( ) A. 11x + B. x+1 C. 11x x -+ D. 1x x+ 【答案】C【解析】【分析】直接利用分式的性质化简进而得出答案.【详解】解:原式=()()()2111x x x x x +-⋅+ =11x x -+. 故选:C .【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.8.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A. 众数是8B. 中位数是8C. 平均数是8.2D. 方差是1.2【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.9.如图,点A﹣B在反比例函数1(0)y xx=>的图象上,点C﹣D在反比例函数(0)ky kx=>的图象上,AC//BD//y轴,已知点A﹣B的横坐标分别为1﹣2﹣△OAC与△ABD的面积之和为32,则k的值为(﹣A. 4B. 3C. 2D. 3 2【答案】B【解析】【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为32,列出方程,求解得出答案.【详解】把x=1代入1yx=得:y=1,∴A(1,1),把x=2代入1yx=得:y=12,∴B(2, 12 ),∵AC//BD// y轴,∴C(1,K),D(2,k 2 )∴AC=k-1,BD=k2-12,∴S△OAC=12(k-1)×1,S△ABD=12(k2-12)×1,又∵△OAC与△ABD的面积之和为32,∴12(k-1)×1+12(k2-12)×1=32,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.10.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则BD 的最小值是()A. B. C. D. 10【答案】B【解析】【分析】如图,作DH﹣AB于H,CM﹣AB于M.由tanA=BEAE=2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH BD,推出BD=CD+DH,由垂线段最短即可解决问题.详解】解:如图,作DH﹣AB于H,CM﹣AB于M.﹣BE﹣AC ,﹣﹣AEB =90°,﹣tanA =BE AE=2,设AE =a ,BE =2a , 则有:100=a 2+4a 2,﹣a 2=20,﹣a =,﹣BE =2a =﹣AB =AC ,BE﹣AC ,CM﹣AB ,﹣CM =BE =)﹣﹣DBH =﹣ABE ,﹣BHD =﹣BEA ,﹣sin﹣DBH =DH AE BD AB ,﹣DH BD ,=CD+DH , ﹣CD+DH≥CM ,的最小值为 【点睛】此题主要考查三角函数的应用,解题的关键是熟知等腰三角形的性质及解直角三角形的应用. 11.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1﹣0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E﹣A﹣B﹣C﹣D﹣E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41﹣cos24°≈0.91﹣tan24°=0.45﹣﹣ ﹣A. 21.7米B. 22.4米C. 27.4米D. 28.8米【答案】A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.如图,一段抛物线y=﹣x2+4﹣﹣2≤x≤2)为C1,与x轴交于A0﹣A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2﹣C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1﹣x1﹣y1﹣﹣P2﹣x2﹣y2),与线段D1D2交于点P3﹣x3﹣y3),设x1﹣x2﹣x3均为正数,t=x1+x2+x3,则t的取值范围是()A. 6﹣t≤8B. 6≤t≤8C. 10﹣t≤12D. 10≤t≤12【答案】D【解析】【分析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题.【详解】翻折后的抛物线的解析式为y=﹣x﹣4﹣2﹣4=x2﹣8x+12﹣∵设x1﹣x2﹣x3均为正数,∴点P1﹣x1﹣y1﹣﹣P2﹣x2﹣y2)在第四象限,根据对称性可知:x1+x2=8﹣∵2≤x3≤4﹣∴10≤x1+x2+x3≤12﹣即10≤t≤12﹣故选D﹣【点睛】本题考查二次函数与x轴的交点,二次函数的性质,抛物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.二.填空题13.因式分解:(a-b)2-(b-a)=___________.【答案】﹣a﹣b﹣﹣a﹣b+1﹣【解析】【分析】先提取后边项的负号,再提取公因式(a-b )即可.【详解】解:(a ﹣b )2﹣(b ﹣a )=(a ﹣b )2+(a ﹣b )=(a ﹣b )(a ﹣b+1).故答案为(a ﹣b )(a ﹣b+1).【点睛】本题主要考查了因式分解这一知识点,其步骤为:有公因式的先提公因式,没有公因式的考虑运用公式法,分解因式必须分解到每一步都不能再分解为止.14.如图,随机闭合开关123,,S S S 中的两个,能让灯泡发光的概率是_______.【答案】23【解析】【分析】先列出所有可能的情况数,再判断能让灯泡发光的的情况数,然后利用概率公式计算即可.【详解】解:随机闭合开关123,,S S S 中的两个,共有三种情况,分别是:S 1、S 2,S 1、S 3,S 2、S 3,其中能让灯泡发光的有:S 1、S 2,S 1、S 3﹣﹣﹣﹣.所以能让灯泡发光的概率=23. 故答案为:23. 【点睛】本题是与物理中的电学相结合的题目,主要考查了简单事件的概率求解,难度不大,掌握求解的方法是解题关键.15.若正六边形的内切圆半径为2,则其外接圆半径为__________.【解析】【分析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ;则2OG =,∵六边形ABCDEF 正六边形,∴OAB V 是等边三角形,∴60OAB ∠=︒,∴sin 60OG OA ===︒, ∴正六边形的内切圆半径为2.故答案3. 【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.16.若m ﹣1m =3,则m 2+21m=_____. 【答案】11【解析】【分析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案.【详解】解:﹣21m m ⎛⎫- ⎪⎝⎭=m 2﹣2+21m =9,﹣m 2+21m=11, 故答案为11.【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.17.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.【答案】210.【解析】【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当120x >时,2l 对应的函数解析式为y kx b =+,120480160720k b k b +=⎧⎨+=⎩,得6240k b =⎧⎨=-⎩, 即当120x >时,2l 对应的函数解析式为6240y x =-,当150x =时,6150240660y =⨯-=,由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450⨯=(元),660450210-=(元), 即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元,故答案210.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.如图,BC⊥y轴,BC<OA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=14 OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_____.【答案】6﹣2或6或9﹣【解析】【分析】可得到﹣DOE=﹣EAF,﹣OED=﹣AFE,即可判定﹣DOE﹣﹣EAF,分情况进行讨论:﹣当EF=AF时,﹣AEF 沿AE翻折,所得四边形为菱形,进而得到OE的长;﹣当AE=AF时,﹣AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;﹣当AE=EF时,﹣AEF沿AF翻折,所得四边形为菱形,进而得到OE的长.【详解】解:连接OD,过点BH﹣x轴,﹣沿着EA翻折,如图1:﹣﹣OAB=45°,AB=3,﹣AH=BH=,﹣CO=2,﹣BD=12OA=2,﹣BD=2,OA=8,﹣BC=8,﹣CD=6﹣2;﹣四边形FENA是菱形,﹣﹣FAN=90°,﹣四边形EFAN是正方形,﹣﹣AEF是等腰直角三角形,﹣﹣DEF=45°,﹣DE﹣OA,﹣OE=CD=6﹣2;﹣沿着AF翻折,如图2:﹣AE=EF,﹣B与F重合,﹣﹣BDE=45°,﹣四边形ABDE是平行四边形﹣AE=BD=2,﹣OE=OA﹣AE=8﹣2=6;﹣沿着EF翻折,如图3:﹣AE=AF,﹣﹣EAF=45°,﹣﹣AEF是等腰三角形,过点F作FM﹣x轴,过点D作DN﹣x轴,﹣﹣EFM﹣﹣DNE,﹣FM EMDN NE=,22AE AENE=,﹣NE=3﹣2,﹣OE=6﹣2+3﹣2=9﹣;综上所述:OE的长为6﹣2或6或9﹣,故答案为6或6或9﹣.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质、平行四边形、菱形及正方形的性质,利用三角函数、勾股定理及相似三角形的性质进行求解.三.解答题19.计算:﹣012﹣﹣1【答案】【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×12--1+2点睛:此题主要考查了实数运算,正确化简各数是解题关键.20.解不等式组1(1)222323xx x⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和.【答案】6.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.详解:解不等式12﹣x+1﹣≤2,得:x≤3﹣解不等式2323x x++≥,得:x≥0﹣则不等式组的解集为0≤x≤3﹣所以不等式组的整数解之和为0+1+2+3=6﹣点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.21.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.【答案】(1)见解析;(2)4【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:﹣四边形ABCD是菱形,﹣AC﹣BD,﹣﹣COD=90°.﹣CE﹣AC,DE﹣BD,﹣平行四边形OCED是矩形;(2)解:由(1)知,四边形OCED是菱形,则CE=OD=1,DE=OC=2.﹣四边形ABCD是菱形,﹣AC=2OC=4,BD=2OD=2,﹣菱形ABCD的面积为:12AC•BD=12×4×2=4.【点睛】此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知菱形的性质及矩形的判定定理. 22.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.﹣1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?﹣2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【答案】(1)甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.﹣2﹣乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【解析】分析: (1)设甲队原计划平均每天的施工土方量为x 万立方,乙队原计划平均每天的施工土方量为y 万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a 万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设甲队原计划平均每天的施工土方量为x 万立方,乙队原计划平均每天的施工土方量为y 万立方.根据题意,得()15015012040110103.2x y y x y +=⎧⎨++=⎩解之,得0.420.38x y =⎧⎨=⎩答:甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.﹣2)设乙队平均每天的施工土方量至少要比原来提高z 万立方.根据题意,得40﹣0.38+z﹣+110(0.38+z+0.42≥120﹣解之,得z≥0.112﹣答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.点睛:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a 的一元一次不等式.23.如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 为⊙O 上一点,过点E 作直线DC 分别交AM﹣BN 于点D﹣C ,且CB=CE﹣﹣1)求证:DA=DE﹣﹣2)若【答案】(1)证明见解析;(2)3π【解析】【分析】﹣1﹣连接OE﹣BE,根据已知条件证明CD为⊙O的切线,然后再根据切线长定理即可证明DA=DE﹣﹣2﹣ 如图,连接OC,过点D作DF⊥BC于点F,根据S阴影部分=S四边形BCEO﹣S扇形OBE﹣利用分割法即可求得阴影部分的面积.【详解】﹣1﹣如图,连接OE﹣BE﹣∵OB=OE﹣∴∠OBE=∠OEB﹣∵BC=EC﹣∴∠CBE=∠CEB﹣∴∠OBC=∠OEC﹣∵BC为⊙O的切线,∴∠OEC=∠OBC=90°﹣∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A﹣∴DA=DE﹣﹣2)如图,连接OC﹣过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF﹣DF=AB=6﹣∴∵=∴∴在直角△OBC 中,tan ∠BOC=BC OB﹣ ∴∠BOC=60°﹣在△OEC 与△OBC 中, OE OB OC OC CE CB =⎧⎪=⎨⎪=⎩﹣∴△OEC ≌△OBC﹣SSS﹣﹣∴∠BOE=2∠BOC=120°﹣∴S 阴影部分=S 四边形BCEO ﹣S 扇形OBE =2×12BC•OB﹣2120?·360OB π =﹣3π﹣【点睛】本题考查了切线的判定与性质、切线长定理,扇形的面积等,正确添加辅助线,熟练运用相关知识是解题的关键.24.某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.请根据图中信息,解决下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中E 部分所对应的扇形圆心角度数;(4)身高在()170175x cm ≤<的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.【答案】(1)50;(2)详见解析;(3)72︒;(4)25【解析】【分析】(1)根据D 的人数除以所占的百分比即可的总人数;(2)根据C 的百分比乘以总人数,可得C 的人数,再根据总人数减去A 、B 、C 、D 、F ,便可计算的E 的人数,分别在直方图上表示即可.(3)根据直方图上E 的人数比总人数即可求得的E 百分比,再计算出圆心角即可.(4)画树状图统计总数和来自同一班级的情况,再计算概率即可.【详解】解:(1)总人数为1326%50÷=人,答:两个班共有女生50人;(2)C 部分对应的人数为5028%14⨯=人,E 部分所对应的人数为50261314510-----=; 频数分布直方图补充如下:(3)扇形统计图中E 部分所对应扇形圆心角度数为103607250⨯︒=︒; (4)画树状图:共有20种等可能的结果数,其中这两人来自同一班级的情况占8种,所以这两人来自同一班级的概率是82 205.【点睛】本题是一道数据统计的综合性题目,难度不大,这类题目,往往容易得分,应当熟练的掌握. 25.如图1,在平面直角坐标系xOy中,已知△ABC﹣∠ABC=90°,顶点A在第一象限,B﹣C在x轴的正半轴上(C在B的右侧),△ADC与△ABC关于AC所在的直线对称.﹣1)当OB=2时,求点D的坐标;﹣2)若点A和点D在同一个反比例函数的图象上,求OB的长;﹣3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=kx﹣k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P﹣A1﹣D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【答案】﹣1)点D坐标为(【解析】分析:﹣1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE﹣CE即可解决问题;﹣2)设OB=a,则点A的坐标(),由题意),点A﹣D在同一反比例函数图象上,可得﹣3+a﹣﹣求出a的值即可;﹣3)分两种情形:①如图2中,当∠PA1D=90°时.②如图3中,当∠PDA1=90°时.分别构建方程解决问题即可;详解:(1)如图1中,作DE⊥x轴于E﹣∵∠ABC=90°﹣∴tan ∠ACB=AB BC∴∠ACB=60°﹣根据对称性可知:DC=BC=2﹣∠ACD=∠ACB=60°﹣∴∠DCE=60°﹣∴∠CDE=90°-60°=30°﹣∴∴OE=OB+BC+CE=5﹣∴点D 坐标为(﹣2)设OB=a ,则点A 的坐标(﹣﹣由题意∵点A﹣D 在同一反比例函数图象上,∴﹣3+a﹣﹣∴a=3﹣∴OB=3﹣﹣3)存在.理由如下:①如图2中,当∠PA 1D=90°时.∵AD ∥PA 1﹣∴∠ADA 1=180°-∠PA 1D=90°﹣在Rt △ADA 1中,∵∠DAA 1∴AA 1=30AD cos=4﹣ 在Rt △APA 1中,∵∠APA 1=60°﹣∴∴﹣设P﹣m﹣3),则D 1 ∵P﹣A 1在同一反比例函数图象上,∴3m=﹣m+7﹣﹣ 解得m=3﹣∴∴﹣②如图3中,当∠PDA 1=90°时.∵∠PAK=∠KDA 1=90°﹣∠AKP=∠DKA 1﹣∴△AKP ∽△DKA 1﹣ ∴1AK PK KD KA =﹣ ∴1KA PK AK DK=﹣ ∵∠AKD=∠PKA 1﹣∴△KAD ∽△KPA 1﹣∴∠KPA 1=∠KAD=30°﹣∠ADK=∠KA 1P=30°﹣∴∠APD=∠ADP=30°﹣∴﹣AA 1=6﹣设,则D 1∵P﹣A 1在同一反比例函数图象上,∴解得m=3﹣∴∴﹣点睛:本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会了可以参数构建方程解决问题,属于中考压轴题.26.已知等边△ABC 的边长为2,(1)如图1,在边BC 上有一个动点P ,在边AC 上有一个动点D ,满足∠APD =60°,求证:△ABP ~△PCD (2)如图2,若点P 在射线BC 上运动,点D 在直线AC 上,满足∠APD =120°,当PC =1时,求AD 的长(3)在(2)的条件下,将点D 绕点C 逆时针旋转120°到点D',如图3,求△D′AP 的面积.【答案】(1)见解析;(2)72;(3)8【解析】【分析】 (1)先利用三角形的内角和得出﹣BAP+﹣APB =120°,再用平角得出﹣APB+﹣CPD =120°,进而得出﹣BAP =﹣CPD ,即可得出结论;(2)先构造出含30°角的直角三角形,求出PE ,再用勾股定理求出PE ,进而求出AP ,再判断出﹣ACP﹣﹣APD ,得出比例式即可得出结论;(3)先求出CD ,进而得出CD',再构造出直角三角形求出D'H ,进而得出D'G ,再求出AM ,最后用面积差即可得出结论.【详解】解:(1)﹣﹣ABC 是等边三角形,﹣﹣B =﹣C =60°,在﹣ABP 中,﹣B+﹣APB+﹣BAP =180°,﹣﹣BAP+﹣APB =120°,﹣﹣APB+﹣CPD =180°﹣﹣APD =120°,﹣﹣BAP =﹣CPD ,﹣﹣ABP﹣﹣PCD ;(2)如图2,过点P 作PE﹣AC 于E ,﹣﹣AEP=90°,﹣﹣ABC是等边三角形,﹣AC=2,﹣ACB=60°,﹣﹣PCE=60°,在Rt﹣CPE中,CP=1,﹣CPE=90°﹣﹣PCE=30°,﹣CE=12CP=12,根据勾股定理得,PE2=,在Rt﹣APE中,AE=AC+CE=2+12=52,根据勾股定理得,AP2=AE2+PE2=7,﹣﹣ACB=60°,﹣﹣ACP=120°=﹣APD,﹣﹣CAP=﹣PAD,﹣﹣ACP﹣﹣APD,﹣AP AC AD AP=,﹣AD=2APAC=72;(3)如图3,由(2)知,AD=72,﹣AC =2,﹣CD =AD ﹣AC =32, 由旋转知,﹣DCD'=120°,CD'=CD =32, ﹣﹣DCP =60°,﹣﹣ACD'=﹣DCP =60°,过点D'作D'H﹣CP 于H ,在Rt﹣CHD'中,CH =12CD'=34,根据勾股定理得,D'H , 过点D'作D'G﹣AC 于G ,﹣﹣ACD'=﹣PCD',﹣D'G =D'H (角平分线定理),﹣S 四边形ACPD '=S ﹣ACD '+S ﹣PCD '=12AC•D'G+12CP•DH'=12×2×4+12×1×4, 过点A 作AM﹣BC 于M ,﹣AB =AC ,﹣BM =12BC =1,在Rt﹣ABM 中,根据勾股定理得,AM﹣S ﹣ACP =12CP•AM =1212,﹣S﹣D'AP=S四边形ACPD'﹣S﹣ACP.【点睛】此题主要考查四边形综合,解题的关键是熟知等边三角形的性质、旋转的特点及相似三角形的判定与性质、勾股定理的应用.27.已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.【答案】(1)y=12x2﹣12x﹣3;(2)D(0,﹣6);(3)3≤h≤15【解析】【分析】(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=12,即可求解;(2)CH=HD,tan﹣ADC=23m+=tan﹣DBC=HDBH=,解得:m=3或﹣4(舍去﹣4),即可求解;(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即可求解.【详解】解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=12,故抛物线的表达式为:y=12x2﹣12x﹣3;(2)设CD=m,过点D作DH﹣BC交BC的延长线于点H,则CH=HD=2m,tan﹣ADC=23m+=tan﹣DBC=mHDBH=,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=12x2﹣12x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=12×9+32﹣h,解得:h=15,故3≤h≤15.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法求解析式、三角函数的定义及二次函数平移的特点.。
山东省济南市2020-2021学年高三上学期期末考试数学试题(含解析)

山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3C .D .46.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2C D8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是A .()12f x π−为奇函数 B .()f x 的最小正周期为πC .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点 11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是 A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32π D .直线PB 1与平面BCC 1B 112.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白 第11题球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 . 15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积. 18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)如图,在三棱柱ABC—A 1B 1C 1中,AB =AC =2,D 为BC 的中点,平面BB 1C 1C ⊥平面ABC ,设直线l 为平面AC 1D 与平面A 1B 1C 1的交线.(1)证明:l ⊥平面BB 1C 1C ;(2)已知四边形BB 1C 1C 为边长为2的菱形,且∠B 1BC =60°,求二面角D—AC 1—C 的余弦值.某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率; (2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性; (2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围.山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 答案:D解析:{}2A |60x x x =−−≤=[﹣2,3],{}B |10x x =−<=(−∞,1),故AB =[﹣2,1).选D .2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−答案:D解析:i i(1i)1i1i (1i)(1i)22z −===+++−,则1i 22z =−.选D . 3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:“直线l 的方程为y =2”⇒“直线l 与圆224x y +=相切”, “直线l 与圆224x y += 相切”“直线l 的方程为y =2”,故选A .4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种答案:B解析:甲若选牛,则有1124C C 种;甲若选马,则有1124C C 种.故共有16种,选B .5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3 C.D .4答案:B解析:由题意知△AEF 的等边三角形,故AE AF +=3,选B .6.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒ 答案:C解析:221321240e e 2k k −−=+⇒=,6311240e 1240()172k θ−=+=+⨯=,故选C . 7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2CD 答案:B解析:将直线AP 与斜率为正数的渐近线方程联立:()a y x a bb y x a ⎧=+⎪⎪⎨⎪=⎪⎩,解得P(322a b a −,222a b b a −),因为OP =a ,则322222222()()a a b a b a b a+=−−,化简得2222222334a b a c a c a =⇒=−⇒=2e ⇒=,选B .8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 答案:C解析:0()0f x <,参变分离得:000(1)e x x a x <+,令000()(1)(1)e x x g x x x =≥+,2000201()0(1)e x x x g x x +−'=−<+,所以0()g x 在[1,+∞)且0x Z ∈单调递增, 求得1(1)2e g =,22(2)3eg =,故要使存在唯一的正整数0x ,使得0()0f x <, 则223e ≤a <12e,选C . 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大 答案:AC解析:班级甲该周每天的人均体育锻炼时间的中位数为65,故B 错误;班级甲该周每天的人均体育锻炼时间的平均值比班级乙的小,故D 错误.综上选AC .10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是 A .()12f x π−为奇函数 B .()f x 的最小正周期为π C .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点答案:BD解析:()12f x π−为偶函数,故A 错误;()f x 在区间[12π−,125π]上单调,但不一定是单调递增,故C 错误.综上选BD .11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32πD .直线PB 1与平面BCC 1B 1答案:ABD解析:因为平面AB 1D 1∥平面BC 1D ,PB 1⊂平面AB 1D 1,所以直线PB 1∥平面BC 1D ,A 正确;V P—BC1D =V A—BC1D =V C1—ABD =111112=323⨯⨯⨯⨯,故B 正确;三棱锥D 1—BC 1D=S 球=246ππ=,故C 错误;PB 1min 点P 到平面BCC 1B 1的距离为1,所以直线PB 1与平面BCC 1B 1所成角的正弦值的最,故D 正确.综上选ABD .12.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 答案:ACD解析:第n 此取出球是红球的概率为n P ,则白球概率为(1)n P −,对于第1n +次,取出红球有两种情况. ①从红箱取出1(1)58n n P P +=⋅(条件概率), ②从白箱取出2(1)3(1)8n nP P +=−⋅, 对应121(1)(1)3184n n n n P P P P +++=+=+(转化为数列问题), 所以1111()242n n P P +−=−, 令12n n a P =−,则数列{n a 为等比数列,公比为14,因为158P =,所以118a =, 故2(21)2n n a −+=即对应(21)122n n P −+=+, 所以21732P =,故选项A 正确; [2(1)1](21)231111112[2]222224n n n n n P P −++−+−−+−=+−⨯+=−,故117232n n P P +=+不成立,故选项B 错误; 经验证可得,211221()2n n n n n n P P P P P P ++++−=−+,故选项C 正确;1(21)(21)11111()()2222n ni j i j i j n i j i P P −−+−+<==+−−=⋅∑∑∑ 1(21)(23)(23)142[22]3n i i n i −−+−+−+==⋅−∑11(44)(23)(21)114[222]3n n i n i i i −−−+−+−+===−∑∑ 844(23)3214164[(22)2(22)]3153n n n −−−−+−−−=−−⋅− 424141122218045369n n n −−−=−⋅−⋅+⋅ 421(14252)180n n −−=+⋅−⋅ 221(142)(12)180n n −−=−⋅−11(14)(14)180n n −−=−−,故D 正确. 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 答案:13解析:51sin()sin[()]sin()6663ππαπααπ−=−+=+=. 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 .答案:4解析:11lg lg lg()1x y x y xy x y x y+=+⇒=+⇒+=, 11()()24y xxy x y x y x y x y=+=++=++≥,当且仅当x =y =2时取“=”.15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .答案:(0,3)(﹣5,﹣1)解析:0(1)0(1)0x xf x f x >⎧+>⇒⎨+>⎩或003(1)0x x f x <⎧⇒<<⎨+<⎩或51x −<<−,故原不等式的解集为(0,3)(﹣5,﹣1).16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)答案:16,252解析:当PQ 为抛物线通径时△PTQ 的面积最小,为16;当TF =5时,可得线段PQ 中点的纵坐标为3或﹣3,故PQ 的斜率为43或43−,故PQ =2228254sin 2()5p α==. 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积.解:在△ABC 中,由余弦定理可得:所以在△ACD 中,由正弦定理可得:,即所以所以 因为,所以所以所以18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:(1)因为所以所以当时,适合上式,所以(2)若选①: 因为所以若选②:因为所以则两式相减可得:所以若选③:当n为偶数时,当n为奇数时,综上:19.(本小题满分12分)如图,在三棱柱ABC—A1B1C1中,AB=AC=2,D为BC的中点,平面BB1C1C⊥平面ABC,设直线l为平面AC1D与平面A1B1C1的交线.(1)证明:l⊥平面BB1C1C;(2)已知四边形BB1C1C为边长为2的菱形,且∠B1BC=60°,求二面角D—AC1—C的余弦值.解:(1)证明:因为AB=AC=2,D为BC的中点,所以AD⊥BC,又因为平面BB1C1C⊥平面ABC,且平面BB1C1C平面ABC=BC,AD 平面ABC,所以AD⊥平面BB1C1C,而AD∥平面A1B1C1,且AD⊂平面AC1D,平面AC1D平面A1B1C1=l,所以AD∥l,所以l⊥平面BB1C1C;(2)因为AD⊥平面BB1C1C,AD⊂平面AC1D,所以平面AC1D⊥平面BB1C1C,在平面BB1C1C内,过C作CH⊥DC1于点H,则CH⊥平面AC1D,过C作CG⊥AC1于点G,则G为线段AC1的中点,连接HG,则∠CGH就是二面角D—AC1—C的平面角,在直角中,在中,,在中,,在直角中,,所以所以二面角D—AC1—C的余弦值为20.(本小题满分12分)某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率;(2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由. 解:(1)从红枣中任意取出一个,则该红枣为优质品的概率是,记“如果该农户采用方案一装箱,一箱红枣被定为A 类”为事件A ,则(2)记“如果该农户采用方案一装箱,一箱红枣被定为B 类”为事件B ,“如果该农户采用方案一装箱,一箱红枣被定为C 类”为事件C ,则所以如果该农户采用方案一装箱,每箱红枣收入的数学期望为:元;由题意可知,如果该农户采用方案二装箱,则一箱红枣被定为A 类的概率为,被定为C 类的概率也为,所以如果该农户采用方案二装箱,每箱红枣收入的数学期望为: 元;所以该农户采用方案二装箱更合适.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.解:(1)由题可知22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为,所以所以椭圆C 的标准方程为(2)因为折线与椭圆C 相交于A ,B 两点,设点B 关于x 轴的对称点为B′, 则直线与椭圆C 相交于A ,B′两点,设则由得所以所以整理得解得22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性;(2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围. 解:(1)若,,此时在上单调递减;若,由得,此时在上单调递减,在上单调递增;综上所述,,在上单调递减;,在上单调递减,在上单调递增;(2)因为记所以在上单调递增,所以,所以恒成立;若不合题意;若,由(1)知,在上单调递减,所以不合题意;若,记记所以在上单调递增,所以所以符合题意;综上实数a的取值范围是.。
2020-2021学年山东省济南市市中区九年级(上)期末数学试卷及参考答案

2020-2021学年山东省济南市市中区九年级(上)期末数学试卷一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)如图所示的几何体的俯视图是()A.B.C.D.2.(4分)已知点(3,﹣1)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(1,3)B.(﹣3,﹣1)C.(﹣1,3)D.(3,1)3.(4分)方程x2=4的解是()A.x1=4,x2=﹣4B.x1=x2=2C.x1=2,x2=﹣2D.x1=1,x2=4 4.(4分)如图,已知AB∥CD∥EF,若AC=6,CE=2,BD=3,则BF的长为()A.6B.5.5C.4D.4.55.(4分)抛物线y=x2﹣2x的对称轴是()A.直线x=﹣2B.直线x=﹣1C.y轴D.直线x=1 6.(4分)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,其中摸到白色球的概率是,则口袋中白色球可能有()A.12个B.24个C.32个D.28个7.(4分)如图,在5×4的正方形网格中,每个小正方形的边长均是1,△ABC的顶点均在小正方形的顶点上,则sin A的值为()A.B.C.D.8.(4分)关于方程2x2﹣3x+1=0的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断9.(4分)如图,D是△ABC的AB边上的一点,过点D作DE∥BC交AC于E,已知AD:DB=2:3,则S△ADE:S△ABC()A.2:3B.4:9C.4:5D.4:2510.(4分)如图,AB是⊙O的直径,C,D两点在⊙O上,∠BCD=25°,则∠AOD的度数为()A.120°B.125°C.130°D.135°11.(4分)函数与y=kx+1(k≠0)在同一坐标系内的图象大致为图中的()A.B.C.D.12.(4分)已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2,0),则下列说法正确的是()①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:<m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1,x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:<m<11.A.①②③④B.①②④C.①③④D.②③④二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)13.(4分)若=3,则=.14.(4分)如图,P是反比例函数y=图象上一点,矩形OAPB的面积是6,则k=.15.(4分)同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.16.(4分)在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为m.17.(4分)如图,正方形的空地内部要做一个绿化带(阴影部分),已知正方形ABCD外切于⊙O,且边长为10米,则绿化带的周长为.(结果保留π)18.(4分)如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG 最小值为.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)(1)解方程:x2﹣4x+3=0;(2)计算:tan30°+(π﹣3.14)0﹣|﹣6|.20.(6分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,如果BC=,AC=3,求CD的长.21.(6分)学校进行实践活动,喜欢数学的小伟沿笔直的河岸BC进行数学实践活动,如图,河对岸有一码头A,小伟在河岸B处测得∠ABC=45°,沿河岸到达C处,在C处测得∠ACB=30°,已知河宽为20米,求B、C两点之间的距离.22.(8分)中秋节吃月饼是中华民族的传统习俗.某超市现有甲品牌A、B、C三个口味的月饼,乙品牌有A、B、D三个口味的月饼.小明计划在甲、乙两个品牌中各选择一个口味的月饼;(1)小明在甲品牌月饼中恰好选中A口味的概率是;(2)请利用列表法或画树状图的方法,求小明选择到不同口味月饼的概率.23.(8分)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=28°,求∠C的度数;(2)若AC=2,CE=2,求⊙O半径的长.24.(8分)如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度为10m)围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45m2的花圃,求AB的长度.(2)如果要使围成的花圃面积最大,求最大面积是多少m2.25.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点C(0,2),与反比例函数y=(x>0)的图象交于点A(1,a).(1)求一次函数和反比例函数的表达式;(2)一次函数y=x+b的图象与x轴交于B点,求△ABO的面积;(3)设M是反比例函数y=(x>0)图象上一点,N是直线AB上一点,若以点O、M、C、N为顶点的四边形是平行四边形,求点N的坐标.26.(12分)△ABC为等边三角形,AB=8,D、E、F分别是BC、AB、AC的中点,连接EF、CE,分别取EF、CE的中点M、N,连接MN、DN.(1)如图1,MN与DN的数量关系是,∠DNM=;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,①当0°<α<90°时,(1)中的结论是否依然成立?说明理由;②连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,求△ADN的面积.27.(12分)定义:关于x轴对称且对称轴相同的两条抛物线叫做“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点B′、C′,连接BC、CC′、B′C′、BB′.①当四边形BB′C′C为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.2020-2021学年山东省济南市市中区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看,是一行两个矩形.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.【分析】利用反比例函数图象上点的坐标特征进行判断.【解答】解:∵点(3,﹣1)在反比例函数y=的图象上,∴k=3×(﹣1)=﹣3,而1×3=﹣3×(﹣1)=3×1=3,﹣1×3=﹣3,∴点(﹣1,3)在该反比例函数图象上.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.3.【分析】直接开平方法求解可得.【解答】解:∵x2=4,∴x=2或x=﹣2,故选:C.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.【分析】根据平行线分线段成比例定理得到=,然后根据比例的性质求BF.【解答】解:∵AB∥CD∥EF,∴=,即=,∴BF=4.故选:C.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.5.【分析】根据二次函数的对称轴公式列式计算即可得解.【解答】解:抛物线y=x2﹣2x的对称轴是直线x=﹣=1.故选:D.【点评】本题考查了二次函数的性质,主要利用了对称轴公式,需熟记.6.【分析】根据概率的意义,由频数=数据总数×频率计算即可.【解答】解:∵摸到白色球的频率是,∴口袋中白色球可能有40×=24个.故选:B.【点评】本题考查了利用频率估计概率,难度适中.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.7.【分析】在直角△AEC中,根据边角间关系,计算得结论.【解答】解:如图所示,AE=3,CE=4,则AC=5.在Rt△ACE中,sin A==.故选:B.【点评】本题考查了解直角三角形,找到合适的直角三角形是解决本题的关键.8.【分析】先计算判别式的值,然后根据判别式的意义判断根的情况.【解答】解:∵方程2x2﹣3x+1=0中的a=2,b=﹣3,c=1,∴Δ=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.9.【分析】根据DE∥BC推出△ADE∽△ABC,再结合图形根据线段之间的和差关系推出AD:AB=2:5,进而利用相似三角形的性质进行求解即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,又AD:DB=2:3,AD+BD=AB,∴AD:AB=2:5,:S△ABC=4:25,∴S△ADE故选:D.【点评】本题考查相似三角形的判定与性质,通常先利用相似三角形的判定定理推出三角形的相似关系,再利用相似三角形的性质进行求解,注意运用数形结合的思想方法.10.【分析】由∠BCD=25°,根据圆周角定理得出∠BOD=50°,再利用邻补角的性质即可得出∠AOD的度数.【解答】解:∵∠BCD=25°,=,∴∠BOD=2∠BCD=50°,∴∠BCD=180°﹣50°=130°.故选:C.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,解题的关键是同弧所对的圆周角等于圆心角的一半.11.【分析】根据反比例函数及一次函数的性质对四个选项进行逐一分析即可.【解答】解:A、由此反比例函数的图象在二、四象限可知,k<0;而一次函数的图象经过一、三象限k>0,相矛盾,故本选项错误;B、由此反比例函数的图象在一、三象限可知,k>0;而一次函数的图象经过二、四象限,k<0,相矛盾,故本选项错误;C、由此反比例函数的图象在二、四象限可知,k<0;而一次函数的图象经过一、三象限,k<0,两结论一致,故本选项正确;D、由此反比例函数的图象在一、三象限可知,k>0;而一次函数的图象经过一、三象限,k<0,因为1>0,所以此一次函数的图象应经过一、二、三象限,故本选项错误.故选:C.【点评】本题考查的是反比例函数的图象与一次函数的图象,熟知反比例函数的图象与一次函数的图象的特点是解答此题的关键,12.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①y=(m﹣2)x2+2mx+m﹣3=m(x+1)2﹣2x2﹣3,当x=﹣1时,y=﹣5,故该函数图象一定过定点(﹣1,﹣5),符合题意;②若该函数图象开口向下,则m﹣2<0,且Δ>0,Δ=b2﹣4ac=20m﹣24>0,解得:m,且m<2,故m的取值范围为:<m<2,符合题意;③当m>2,函数的对称轴在y轴左侧,当1≤x≤2时,y的最大值在x=2处取得,故y的最大为:(m﹣2)×4+2m×4+m﹣3=9m﹣11,故原答案错误,不符合题意;④当m>2,x=﹣3时,y=9(m﹣2)﹣6m+m﹣3=4m﹣21,当x=﹣2时,y=m﹣11,当﹣3<x1<﹣2时,则(4m﹣21)(m﹣11)<0,解得:<m<11;同理﹣1<x2<0时,m>3,故m的取值范围为:<m<11正确,符合题意;故选:B.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)13.【分析】根据已知条件求出x=3y,再代入求出答案即可.【解答】解:∵=3,∴x=3y,∴===,故答案为:.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果ad=bc,那么=.14.【分析】根据“P是反比例函数y=图象上一点,矩形OAPB的面积是6”可得S矩形OAPB=|k|=6,由此可得k值.【解答】解:∵P是反比例函数y=图象上一点,四边形OAPB是矩形,=|k|,∴S矩形OAPB∵矩形OAPB的面积是6,∴|k|=6,由图象可知,k>0,∴k=6故答案为6.【点评】本题考查反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.16.【分析】利用平行投影的性质,相似三角形的对应边成比例解答.【解答】解:设旗杆的高度为xm,根据题意,得:=,解得x=12,即旗杆的高度为12m,故答案为:12.【点评】本题只要是把平行投影的问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.此题的文字叙述比较多,解题时要认真分析题意.17.【分析】连接OE,OF,OH,OG,根据切线的性质得到OE⊥AB,OH⊥AD,求得∠A =∠AHO=∠AEO=90°,推出∠EOF=∠HOG=∠GOF=90°,DH=AH=OH,得到△DHH与△CFG是等腰直角三角形,根据弧长公式即可得到结论.【解答】解:连接OE,OF,OH,OG,∵正方形ABCD外切于⊙O,∴OE⊥AB,OH⊥AD,∴∠A=∠AHO=∠AEO=90°,∵OH=OE,∴四边形AHOE是正方形,∴∠HOE=90°,AH=OH,同理,∠EOF=∠HOG=∠GOF=90°,DH=AH=OH,∴△DHG与△CFG是等腰直角三角形,∴绿化带的周长为2×+2×5=5π+10.故答案为:5π+10.【点评】本题考查了弧长的计算,正方形的性质,正确的理解题意是解题的关键.18.【分析】如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E.证明△ADP∽△DHG,推出∠DHG=∠DAP=定值,推出点G在射线HF上运动,推出当CG⊥HF时,CG的值最小,想办法求出CG即可.【解答】解:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E.∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HF时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=1.5,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC==5,DH=,∴CH==,∴EH==,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故答案为.【点评】本题考查旋转变换,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形核或全等三角形解决问题.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.【分析】(1)利用因式分解法求解即可;(2)先代入三角函数值、计算零指数幂和绝对值,再计算乘法,最后计算加减即可.【解答】解:(1)∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,则x﹣1=0或x﹣3=0,解得x1=1,x2=3;(2)原式=×+1﹣6=1+1﹣6=﹣4.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【分析】根据题意∠DBC=∠A,结合图形中公共角∠DCB=∠BCA,推出△BCD∽△ACB,从而利用相似三角形的对应边成比例列出式子进行求解即可.【解答】解:∵∠DBC=∠A,∠DCB=∠BCA,∴△BCD∽△ACB,∴=,即=,解得CD=2,故CD长为2.【点评】本题考查相似三角形的判定与性质,通常先从图形中寻找相等的角从而利用相似三角形的判定定理推出三角形的相似关系,再利用相似三角形的性质进行求解,注意数形结合思想方法的运用.21.【分析】根据由图可知AD⊥BC,于是∠ABD=∠BAD=45°,以及∠ACD=30°,利用特殊角三角函数求出即可.【解答】解:如图,作AD⊥BC于点D,∴∠ABD=∠BAD=45°,∠ACD=30°.在Rt△ABD中,BD=AD=20米.在Rt△ACD中,CD=AD=20(米).∴BC=BD+CD=(20+20)米.答:BC之间的距离为(20+20)米.【点评】此题主要考查了解直角三角形主要是方向角问题,正确记忆三角函数的定义是解决本题的关键.22.【分析】(1)由概率公式即可得出答案;(2)画树状图,共有9个等可能的结果,小明选择到不同口味月饼的结果有7个,由概率公式即可得出答案.【解答】解:(1)小明在甲品牌月饼中恰好选中A口味的概率是,故答案为:;(2)画树状图如图:共有9个等可能的结果,小明选择到不同口味月饼的结果有7个,∴小明选择到不同口味月饼的概率为.【点评】此题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OA,根据圆周角定理求出∠AOC,根据切线的性质求出∠OAC,根据三角形内角和定理求出即可;(2)设OA=OE=r,根据勾股定理得出方程,求出方程的解即可.【解答】解:(1)连接OA,∵∠ADE=28°,∴由圆周角定理得:∠AOC=2∠ADE=56°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣56°﹣90°=34°;(2)设OA=OE=r,在Rt△OAC中,由勾股定理得:OA2+AC2=OC2,即r2+(2)2=(r+2)2,解得:r=2,答:⊙O半径的长是2.【点评】本题考查了圆周角定理、切线的性质和勾股定理等知识点,能求出∠OAC和∠AOC的度数是解此题的关键.24.【分析】(1)根据AB为xm,BC就为(24﹣3x),利用长方体的面积公式,可列出方程,解方程可求出x即AB的长;(2)当墙的宽度为最大时,有最大面积的花圃,此故可求.【解答】解:设AB=xm,围成的花圃面积为ym2,则BC长为(24﹣3x)m,(1)根据题意,得x(24﹣3x)=45,整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m;(2)由题意,得S=24x﹣3x2=﹣3(x﹣4)2+48,∵墙的最大可用长度为10m,0≤BC=24﹣3x≤10,∴≤x<8,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃,即:x=m,最大面积为:24×﹣3×()2=(m2).【点评】主要考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题的关键是垂直于墙的有三道篱笆.25.【分析】(1)将点C代入直线y=x+b中求出b,进而得出直线AB的解析式,进而求出点A的坐标,再代入双曲线的表达式中,即可得出结论;(2)根据三角形的面积公式即可得到结论;(3)设成点M,N坐标,分三种情况,利用平行四边形的对角线互相平分,建立方程求解,即可得出结论.【解答】解:(1)∵点C(0,2)在直线y=x+b上,∴b=2,∴一次函数的表达式为y=x+2;∵点A(1,a)在直线y=x+2上,∴a=3,∴点A(1,3),∵点A(1,3)在反比例函数y=(x>0)的图象上,∴k=1×3=3,∴反比例函数的表达式为y=;(2)在y=x+2中,令y=0,得x=﹣2,令x=0,得y=2,∴B(﹣2,0),C(0,2),+S△BOC=+=1+2=3;∴△ABO的面积=S△AOC(3)由(2)知,直线AB的表达式为y=x+2,反比例函数的表达式为y=,设点M(m,),N(n,n+2),若以点O、M、C、N为顶点的四边形是平行四边形,则①以OC和MN为对角线时,∴=0,=,∴m=,n=﹣或m=﹣(此时,点M不在第一象限,舍去),n=,∴N(﹣,﹣+2),②以CN和OM为对角线时,∴=,=,∴m=n=﹣2+或m=n=﹣2﹣(此时,点M不在第一象限,舍去),∴N(﹣2+,),③以CM和ON为对角线时,∴,=,∴m=n=或m=n=﹣(此时,点M不在第一象限,舍去),∴N(,2+),即满足条件的点N的坐标为(﹣,﹣+2)或(﹣2+,)或(,2+).【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质,中点坐标公式,利用中点坐标公式建立方程组求解是解本题的关键.26.【分析】(1)利用三角形中位线定理以及等边三角形的性质即可解决问题.(2)①如图2中,连接BE,CF,延长BE交CF的延长线与T.证明△BAE≌△CAF(SAS),可得结论.②当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.想办法求出AD,NH即可解决问题.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=AC=BC,∵EM=MF,EN=NC,BD=DC,∴MN∥FC,DN∥BE,MN=CF,DN=BE,∵AE=EB,AF=CF,∴BE=CF,EF=BC=AC=CF,∴MN=DN,∵CA=CB,AE=BE,∴CE⊥AB,∠ACE=∠BCE=∠ACB=×60°=30°,∴∠CEB=90°,∵DN∥BE,MN∥CF,∴∠END=90°,∠ENM=∠ECF=30°,∴∠DNM=90°+30°=120°.故答案为:MN=DN,120°.(2)①成立.理由:如图2中,连接BE,CF,延长BE交CF的延长线与T,设AF交BT于点O.∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∵AB=AC,AE=AF,∴△BAE≌△CAF(SAS),∴BE=CF,∠ABE=∠ACF,∵∠AOB=∠COT,∴∠T=∠BAO=60°,∴∠EBC+∠TCB=120°,∵EM=MF,EN=NC,BD=DC,∴MN∥FC,DN∥BE,MN=CF,DN=BE,∴MN=DN,∠NDC=∠EBC,∠ENM=∠ECT,∴∠DNM=∠DNE+∠ENM=∠NDC+∠DCN+∠ECF=∠TBC+∠TCB=120°.②(3)如图3﹣1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=,∵BJ=AD=2,∴BN≤BJ+JN,∴BN≤4+2,∴当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.∵KJ=AJ•tan30°=,JN=2,∴KN=+2,在Rt△HKN中,∠NHK=90°,∠NKH=60°,∴HN=NK•sin60°=(+2)×=2+,=•AD•NH=×4×(2+)=4+6.∴S△ADN【点评】本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.【分析】(1)根据顶点式y=a(x﹣h)2+k的顶点坐标为(h,k);(2)先化成顶点式,再求“同轴对称抛物线”的解析式;(3)①写出点B的坐标,再由对称轴求出点B',然后结合正方形的性质列出方程求a;②先由对称性分析得到封闭区域内在x轴上整点的个数,然后针对抛物线L开口的不同进行分类讨论.【解答】解:(1)由y1=(x﹣1)2﹣2知顶点坐标为(1,﹣2),由y2=﹣(x﹣1)2+2知顶点坐标为(1,2),故答案为:(1,﹣2),(1,2).(2)∵y=﹣2x2+4x+3y=﹣2(x﹣1)2+5,∴“同轴对称抛物线”的解析式为:y=2(x﹣1)2﹣5.(3)①当x=1时,y=1﹣3a,∴B(1,1﹣3a),∴C(1,3a﹣1),∴BC=|1﹣3a﹣(3a﹣1)|=|2﹣6a|,∵抛物线L的对称轴为直线x=﹣=2,∴点B'(3,1﹣3a),∴BB'=3﹣1=2,∵四边形BB'C'C是正方形,∴BC=BB',即|2﹣6a|=2,解得:a=0(舍)或a=.②抛物线L的对称轴为直线x=2,顶点坐标为(2,1﹣4a),∵L与“同轴对称抛物线”关于x轴对称,∴整点数也是关于x轴对称出现的,∴封闭区域内在x轴上的整点可以是3个或5个,L与x轴围成的区域内整点个数为4个或3个,(i)当a>0时,∵L开口向上,与y轴交于点(0,1),∴封闭区域内在x轴上只可能有3个整点,两个区域内各有4个整点,∴当x=1时,﹣2≤1﹣3a<﹣1,当x=2时,﹣3≤1﹣4a<﹣2,解得:<a≤1;(ii)当a<0时,∵L开口向下,与y轴交于点(0,1),∴封闭区域内在x轴上只可能有5个整点,两个区域内各有3个整点,∴当x=2时,1<1﹣4a≤2,当x=﹣1时,5a+1<0,解得:﹣≤a <﹣,综上所述:<a≤1或﹣≤a <﹣.【点评】本题考查了二次函数的顶点式和顶点坐标、二次函数的图象变换、正方形的性质、二次函数图象上点的坐标特征,第(3)题第②问的解题的关键是根据整数点为11个和封闭区域的对称性分析封闭区域内在x轴上整点的个数,然后抛物线L的开口方向进行分类讨论.第15页(共15页)。
2019-2020学年山东省济南市历城区九年级(上)期末数学试卷解析版

2019-2020学年山东省济南市历城区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)如图所示的几何体的俯视图是()A.B.C.D.2.(4分)一元二次方程x2+x=0的根的是()A.x1=0,x2=1B.x1=0,x2=﹣1C.x1=x2=0D.x1=x2=13.(4分)在Rt△ABC中,∠C=90°,AC=5,BC=12,则cos B的值为()A.B.C.D.4.(4分)如果用线段a、b、c,求作线段x,使a:b=c:x,那么下列作图正确的是()A.B.C.D.5.(4分)若反比例函数的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(﹣,3)C.(﹣3,﹣1)D.(,3)6.(4分)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有()A.34个B.30个C.10个D.6个7.(4分)如图,活动课小明利用一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为9m,AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是()A.3m B.27m C.(3+)m D.(27+)m8.(4分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.9.(4分)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF =1,则GF的长为()A.B.C.D.10.(4分)二次函数γ=ax2+bx+c的部分对应值如表,利用二次的数的图象可知,当函数值y>0时,x的取值范围是()x﹣3﹣2﹣1012y﹣12﹣50343A.0<x<2B.x<0或x>2C.﹣1<x<3D.x<﹣1或x>311.(4分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4B.4C.﹣2D.212.(4分)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D 的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论,其中正确的个数为()①△CMP是直角三角形②AB=BP③PN=PG④PM=PF⑤若连接PE,则△PEG∽△CMDA.5个B.4个C.3个D.2个二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)若=2,则=.14.(4分)已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是.15.(4分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=.16.(4分)如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为.17.(4分)在平面直角坐标系中,抛物线y=x2如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,过点A4作A4A5∥x轴交抛物线于点A5,则点A5的坐标为.18.(4分)如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是弧AB的中点,若扇形的半径为,则图中阴影部分的面积等于.三、解答题(本大题共7个小题,共78分.解答应写出文字说明、19.(8分)(1)解方程:x2﹣4x﹣3=0(2)计算:tan30°+(π+4)0﹣|﹣|20.(6分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.21.(6分)近年来,无人机航拍测量的应用越来越广泛.如图,拍无人机从A处观测得某建筑物顶点O时俯角为30°,继续水平前行10米到达B处,测得俯角为45°,已知无人机的水平飞行高度为45米,则这栋楼的高度是多少米?(结果保留根号)22.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC 边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.23.(8分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?24.(10分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14b%舞蹈816%书法1632%摄影a24%合计m100%根据以上信息,解答下列问题:(1)m=,b=.(2)求出a的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.25.(10分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.26.(10分)如图,已知正方形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.(1)如图1,直按写出的值;(2)将△EBF绕点B顺时针旋转到如图2所示的位置,连接AE、DF,猜想DF与AE的数量关系,并证明你的结论;(3)如图3,当BE=BA时,其他条件不变,△EBF绕点B顺时针旋转,设旋转角为α(0°<α<360°),当α为何值时,EA=ED?在图3或备用图中画出图形,并直接写出此时α=.27.(12分)若二次函数y=ax2+bx﹣2的图象与x轴交于点A(4,0),与y轴交于点B,且过点C(3,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=5,求点P的坐标;(3)在AB下方的抛物线上是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.2019-2020学年山东省济南市历城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.【解答】解:从上往下看,得两个长方形的组合体.故选:D.2.【解答】解:∵一元二次方程x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,故选:B.3.【解答】解:由勾股定理得,AB===13,则cos B==,故选:B.4.【解答】解:A、a:b=x:c与已知a:b=c:x不符合,故选项A不正确;B、a:b=c:x与已知a:b=c:x符合,故选项B正确;C、a:c=x:b与已知a:b=c:x不符合,故选项C不正确;D、a:x=b:c与已知a:b=c:x不符合,故选项D不正确;故选:B.5.【解答】解:∵反比例函数的图象经过(﹣1,3),∴k=﹣1×3=﹣3.∵﹣3×1=﹣3,﹣×3=﹣1,﹣3×(﹣1)=3,×3=1,∴反比例函数的图象经过点(﹣3,1).故选:A.6.【解答】解:∵摸到白色球的频率稳定在85%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选:D.7.【解答】解:∵AB⊥BE,DE⊥BE,AD∥BE,∴四边形ABED是矩形,∵BE=9m,AB=1.5m,∴AD=BE=9m,DE=AB=1.5m,在Rt△ACD中,∵∠CAD=30°,AD=9m,∴CD=AD•tan30°=9×=3,∴CE=CD+DE=3+1.5故选:C.8.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.9.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.10.【解答】解:∵抛物线经过点(0,3),(2,3),∴抛物线的对称轴为直线x=1,∴抛物线的顶点坐标为(1,4),抛物线开口向下,∵抛物线与x轴的一个交点坐标为(﹣1,0),∴抛物线与x轴的一个交点坐标为(3,0),∴当﹣1<x<3时,y>0.故选:C.11.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.12.【解答】解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=×180°=90°,∴△CMP是直角三角形;故①符合题意;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴AM=DM=AD=x=BN=NC,∴CM==x,∵∠PMC=90°=∠CNM,∠MCP=∠MCN,∴△MCN∽△NCP,∴CM2=CN•CP,∴3x2=x×CP,∴CP=x,∴BP=x∴AB=BP,故②符合题意;∵PN=CP﹣CN=x,∵沿着MP折叠,使得AM与EM重合,∴BP=PG=x,∴PN=PG,故③符合题意;∵AD∥BC,∴∠AMP=∠MPC,∵沿着MP折叠,使得AM与EM重合,∴∠AMP=∠PMF,∴∠PMF=∠FPM,∴PF=FM,故④不符合题意,如图,∵沿着MP折叠,使得AM与EM重合,∴AB=GE=x,BP=PG=x,∠B=∠G=90°∴=,∵==,∴,且∠G=∠D=90°,∴△PEG∽△CMD,故⑤符合题意,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.【解答】解:∵=2,∴x=2y,∴==2;故答案为:2.14.【解答】解:∵函数y=﹣(x+1)2+2的对称轴为x=﹣1,∴A(3,y1)、B(2,y2)在对称轴右侧,∵抛物线开口向下,在对称轴右侧y随x的增大而减小,3>2,∴y1<y2.故答案为:y1<y2.15.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=6.故答案为6.16.【解答】解:∵OC=AC=4,AC交反比例函数y=的图象于点F,∴F的纵坐标为4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直线OA的解析式为y=x,∴F关于直线OA的对称点是D点,∴点D的坐标为(4,),故答案为(4,)17.【解答】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9),故答案为(﹣3,9).18.【解答】解:两扇形的面积和为:=π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:××=1,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=π﹣2.故答案为:π﹣2.三、解答题(本大题共7个小题,共78分.解答应写出文字说明、19.【解答】解:(1)方程整理得:x2﹣4x=3,配方得:x2﹣4x+4=7,即(x﹣2)2=7,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)原式=3×+1﹣=1.20.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.21.【解答】解:过O点作OC⊥AB的延长线于C点,垂足为C,根据题意可知,∠OAC=30°,∠OBC=45°,AB=10米,AD=45米,在Rt△BCO中,∠OBC=45°,∴BC=OC,设OC=BC=x,则AC=10+x,在Rt△ACO中,tan30°===,解得x=5+5,则这栋楼的高度h=AD﹣CO=45﹣5﹣5=(40﹣5)(米).22.【解答】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°﹣60°﹣30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.23.【解答】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,,解得.∴y1=﹣x+7.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+13.(2)收益W=y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣(x﹣5)2+,∵a=﹣<0,∴当x=5时,W最大值=.故5月出售每千克收益最大,最大为.24.【解答】解:(1)m=8÷16%=50,b%=×100%=28%,即b=28,故答案为:50、28;(2)a=50×24%=12,补全图形如下:(3)估计选修“声乐”课程的学生有1500×28%=420(人).(4)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,则所抽取的2人恰好来自同一个班级的概率为=.25.【解答】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12;(2)①∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH⊥OB,∴AH∥BC,∴点A到BC的距离=BH=2,∴S△ABC=×3×2=3;②∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴=.26.【解答】解:(1)∵∵BD是正方形ABCD的对角线,∴∠ABD=45°,BD=AB,∵EF⊥AB,∴∠BEF=90°,∴∠BFE=∠ABD=45°,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴=,故答案为;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∴,由旋转知,∠ABE=∠DBF,∴△ABE∽△DBF,∴=,∴DF=AE;(3)如图3,连接DE,CE,∵EA=ED,∴点E在AD的中垂线上,∴AE=DE,BE=CE,∵AB=BE,∴CE=BE,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=BC,∴BE=CE=BC,∴△BCE是等边三角形,∴∠CBE=60°,如图3,∠ABE=∠ABC﹣∠CBE=90°﹣60°=30°,即:α=30°,如图4,∠ABE=∠ABC+∠CBE=90°+60°=150°,即:α=150°,故答案为30°或150°.27.【解答】解:(1)∵二次函数y=ax2+bx﹣2的图象过点A(4,0),点C(3,﹣2),∴解得:∴二次函数表达式为:y=x2﹣x﹣2;(2)设直线BP与x轴交于点E,过点P作PD⊥OA于D,设点P(a,a2﹣a﹣2),则PD=a2﹣a﹣2,∵二次函数y=x2﹣x﹣2与y轴交于点B,∴点B(0,﹣2),设BP解析式为:y=kx﹣2,∴a2﹣a﹣2=ka﹣2,∴k=a﹣,∴BP解析式为:y=(a﹣)x﹣2,∴y=0时,x=,∴点E(,0),∵S△PBA=5,∴×(4﹣)×(a2﹣a﹣2+2)=5,∴a=﹣1(不合题意舍去),a=5,∴点P(5,3)(3)如图2,延长BM到N,使BN=BO,连接ON交AB于H,过点H作HF⊥AO于F,∵BN=BO,∠ABO=∠ABM,AB=AB,∴△ABO≌△ABN(SAS)∴AO=AN,且BN=BO,∴AB垂直平分ON,∴OH=HN,AB⊥ON,∵AO=4,BO=2,∴AB===2,∵S△AOB=×OA×OB=×AB×OH,∴OH==,∴AH===,∵cos∠BAO=,∴=,∴AF=,∴HF===,OF=AO﹣AF=,∴点H(,﹣),∵OH=HN,∴点N(,﹣)设直线BN解析式为:y=mx﹣2,∴﹣=m﹣2,∴m=﹣,∴直线BN解析式为:y=﹣x﹣2,∴x2﹣x﹣2=﹣x﹣2,∴x=0(不合题意舍去),x=,∴点M坐标(,﹣),∴点M到y轴的距离为.。
专题05 二次函数的图象与性质(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优

2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题05 二次函数的图象与性质【典型例题】1.(2020·福建省连江第三中学初三月考)在同一坐标系内,函数y =kx 2和y =kx +2(k ≠0)的图象大致如图( ) A . B . C . D .【答案】D2.(2020·上海市静安区实验中学初三课时练习)抛物线()232y x =-+3可以看作把抛物线23y x =向_______平移_______个单位,向_______平移_______个单位得到. 【答案】右 2 上 33.(2020·湖南长沙·初三开学考试)已知一个二次函数的图象经过点()1,0A -、()3,0B 和()0,3C -三点. (1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.【答案】(1)设二次函数解析式为()()13y a x x =+-,∵抛物线过点()0,3C -,∴()()30103a -=+-,解得1a =,∴()()21323y x x x x =+-=--.(2)由(1)可知:223y x x =--, ∵a =1,b =-2,c =-3, ∴对称轴是直线12b x a =-=,244ac ba -=-4,顶点坐标是()1,4-.4.(2020·浙江杭州外国语学校初三月考)已知一条抛物线分别过点(3,2)-和(0,1),且它的对称轴为直线2x=,试求这条抛物线的解析式.【答案】解:∵抛物线的对称轴为2x =,∴可设抛物线的解析式为2(2)y a x b =-+把(3,2)-,(0,1)代入解析式得()()2232=202=1a b a b ⎧-+-⎪⎨-+⎪⎩, 解得1a =,3b =-,∴所求抛物线的解析式为2(2)3y x =-- 【专题训练】一、选择题1.(2020·竹溪县蒋家堰镇中心学校期末)函数()221y x ++=-的顶点坐标是() A .(2,-1) B .(-2,1) C .(-2,-1) D .(2,1)【答案】B2.(2020·江苏崇川·期末)抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x +1)2+3 B .y =(x +1)2﹣3 C .y =(x ﹣1)2﹣3 D .y =(x ﹣1)2+3【答案】D3.(2020·福建省连江第三中学初三月考)二次函数y =﹣(x -2)2+1的图象中,若y 随x 的增大而减小,则x 的取值范围是( )A .x <2B .x >2C .x <﹣2D .x >﹣2【答案】B4.(2020·竹溪县蒋家堰镇中心学校期末)若函数y =(a ﹣1)x 2﹣4x +2a 的图象与x 轴有且只有一个交点,则a 的值为( ). A .-1 B .2 C .-1或2 D .-1或2或1【答案】D5.(2021·福建学业考试)若二次函数2(0)y ax bx c a =++<的图像对称轴为直线12x =-经过不同的5点(),A p q ,()00,B y ,()12,C y ,)2D y ,()1,E p q --,则0y ,1y ,2y 的大小关系( )A .012y y y >>B .012y y y <<C .021y y y >>D .102y y y >>【答案】C6.(2020·竹溪县蒋家堰镇中心学校期末)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②b 2﹣4ac >0;③b >0;④4a ﹣2b +c <0;⑤a +c <23,其中正确结论的个数是( )A .②③④B .①②⑤C .①②④D .②③⑤【答案】B7.(2020·台州市椒江区前所中学月考)关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是( )A.1142t<<B.114t-<≤C.1122t-≤<D.112t-<<【答案】D8.(2020·湖南长沙·初三开学考试)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或315B.6或315或-10C.﹣19或6D.6或315或-19【答案】C9.(2020·湖南长沙·初三开学考试)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.【答案】D10.(2020·浙江杭州外国语学校初三月考)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2-2)>0D.若x1>x2,则a(x1+x2-2)<0【答案】D二、填空题11.(2020·湖南隆回·初三一模)二次函数243y x x =--+的最大值为_________.【答案】712.(2020·湖南广益实验中学开学考试)二次函数223y x x =-+-图象的顶点坐标是 .【答案】(1,﹣2).13.(2020·上海市静安区实验中学初三课时练习)抛物线(2)(3)y x x =+-的开口______,对称轴是_____________,顶点是_______. 【答案】向下 直线x =12 11(,6)2414.(2020·上海市静安区实验中学初三课时练习)已知抛物线22y x mx =+-的对称轴为x =1,则m =______. 【答案】-215.(2020·上海市静安区实验中学初三课时练习)某广告公司设计一幅周长为20米的矩形广告牌,设矩形的一边长为x 米,广告牌的面积为S 平方米,则S 与x 的函数关系式为________________.【答案】210S x x =-+16.(2020·浙江杭州外国语学校初三月考)抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.【答案】﹣3<x <117.(2020·湖南广益实验中学开学考试)在平面直角坐标系中,若点P (a ,b )的坐标满足a =b ≠0,则称点P 为“对等点”.已知二次函数y =x 2+mx ﹣m 的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_____.【答案】118.(2020·湖南长沙·初三开学考试)如图,二次函数2(0)y ax bx c a =++≠的图象经过点1(,0)2-,对称轴为直线1,x =下列5个结论:0abc <①;240a b c -+=②;20a b +>③;230c b -<④;()a b m am b +≤+⑤.其中正确的结论为_________________. (注:只填写正确结论的序号)【答案】②⑤三、解答题19.(2020·呼和浩特市敬业学校初二期末)直线33y x =-+与x 轴y 轴分别交于点A ,B ,抛物线2(2)y a x k =-+经过点A ,B ,并与x 轴交于另一点C ,其顶点为P , (1)求,a k 的值;(2)抛物线的对称轴上有一点Q ,使ABQ ∆是以AB 为底边的等腰三角形,求点Q 的坐标;【答案】解:(1)∵直线y=-3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x-2)2+k经过点A(1,0),B(0,3),∴43a ka k+=⎧⎨+=⎩,解得11ak=⎧⎨=-⎩,故a,k的值分别为1,-1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3-m)2,∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,∴Q点的坐标为(2,2).20.(2020·云南昆明·初三学业考试)如图,抛物线y =ax 2+bx 过点P (﹣1,5),A (4,0).(1)求抛物线的解析式;(2)在第一象限内的抛物线上有一点B ,当P A ⊥PB 时,求点B 的坐标.【答案】(1)由题意,把点(1,5),(4,0)P A -代入2y ax bx =+得51640a b a b -=⎧⎨+=⎩,解得14a b =⎧⎨=-⎩,则抛物线的解析式为24y x x =-;(2)如图,过P 点作PD x ⊥轴于D ,BE PD ⊥于E , ∵(1,5),(4,0)P A -,∴5,1,4PD OD OA ===,∴145AD OD OA =+=+=,∴5PD AD ==, 45APD DAP ∴∠=∠=︒,设2(,4)B m m m -,则21,45BE m PE m m =-=+-,点B 在第一象限内的抛物线上,4m ∴>,∵PA PB ⊥,即90APB ∠=︒,∴18045BPE APD APB ∠=︒-∠-∠=︒,∴PBE △是等腰直角三角形,∴BE PE =,即2145m m m -+=-,整理得:2560m m --=,解得6m =或14m =-<(舍去),此时22464612m m --=⨯=,故点B 的坐标为(6,12)B .21.(2020·上海市静安区实验中学初三课时练习)已知二次函数的图像过抛物线223y x x =++的顶点和坐标原点.(1)求二次函数的解析式(2)判断点A (-2,5)是否在这个二次函数的图像上 .【答案】解:(1)2223(1)2y x x x =++=++,∴顶点坐标为(-1,2)设2(1)2(0)y a x a =++≠,代入(0,0)得,02a =+,解得,2a =-∴二次函数的解析式为22(1)2y x =-++(2)当x =-2时,y =0,∴点A (-2,5)不在这个二次函数的图像上22.(2020·江苏如东·初三二模)已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1,且与x 轴只有一个公共点.(1)试用含a 的式子表示b 和c ;(2)若(x 1,y 1),(3,y 2)是该抛物线上的两点,y 2<y 1,求x 1的取值范围;(3)若将该抛物线向上平移2个单位长度所得新抛物线经过点(3,6),且当p ≤x ≤q 时,新抛物线对应的函数有最小值2p ,最大值2q ,求p ﹣q 的值.【答案】(1)∵抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1, ∴﹣2b a=1, ∴b =﹣2a ,∵抛物线与x轴只有一个公共点.∴b2﹣4ac=0,即(﹣2a)2﹣4ac=0,∴c=a;(2)∵(x1,y1),(3,y2)是该抛物线上的两点,对称轴为x=1,∴(3,y2)关于对称轴的对称点为(﹣1,y2),∵a>0,抛物线开口向上,∴y2<y1时,x1的取值范围是x1>3或x1<﹣1;(3)由(1)知:抛物线y=ax2﹣2ax+a=a(x﹣1)2(a>0),将该抛物线向上平移2个单位长度所得新抛物线为y=a(x﹣1)2+2,∵经过点(3,6),∴6=4a+2,解得a=1,∴新抛物线为y=(x﹣1)2+2,∴当x=1时,抛物线有最小值为2,∴2p=2,解得p=1,∴1≤x≤q,∵对称轴为x=1,∴当x=q时,在p≤x≤q范围内有最大值2q,∴2q=(q﹣1)2+2,解得q=3或1(舍去),∴p﹣q=1﹣3=﹣2.23.(2020·浙江金华·初三其他)已知:等腰△ABC的底边在x轴上,其中点C与平面直角坐标系原点重合,点A为(4,0),点B,点D是AB边的中点.抛物线y=ax2+bx+c始终经过A,C两点,(1)当△ABC是正三角形时,点B在抛物线上(如图).求抛物线的函数表达式;个单位后,发现抛物线经过点D,求n的值;(2)若将(1)中抛物线向下平移4(3)若将△ABC ABC n的值.【答案】解:(1)∵△ABC是正三角形,∴AC=BC=AB=4,∴点B(2,),设抛物线y=ax(x﹣4)且过(2,),∴=2a (2﹣4),∴a∴抛物线的解析式为y =﹣2x 2+; (2)∵AB =AC ,点A 为(4,0),点C (0,0),∴点B (2 n ), ∵点D 是AB 边的中点,∴点D (3n ),个单位,∴平移后的抛物线解析式为:y =﹣2x 2+﹣4, ∵平移后的抛物线经过点D ,∴2n =﹣2×9+3﹣4, ∴n =32;(3)∵△ABC 的重心坐标为(2),∴△ABC 向上平移3个单位后,重心坐标为(2,3 n +3),∵y2+x﹣2)2+∴顶点坐标为(2,,个单位,∵平移后△ABC的重心与抛物线顶点也相距3∴|∴n=4或6.24.(2020·浙江杭州外国语学校初三月考)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)的图象经过A (1,0),B (3,0),∴设抛物线解析式为:y =a (x ﹣1)(x ﹣3),∵抛物线y =a (x ﹣1)(x ﹣3)(a ≠0)的图象经过点C (0,6),∴6=a (0﹣1)(0﹣3),∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣3)=2x 2﹣8x +6;(2)∵y =2x 2﹣8x +6=2(x ﹣2)2﹣2,∴顶点M 的坐标为(2,﹣2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∴点N (2,2),设直线AN 解析式为:y =kx +b ,由题意可得:022=+⎧⎨=+⎩k b k b , 解得:22k b ==-⎧⎨⎩, ∴直线AN 解析式为:y =2x ﹣2,联立方程组得:222286=-⎧⎨=-+⎩y x y x x , 解得:1110x y =⎧⎨=⎩,2246=⎧⎨=⎩x y ,∴点D (4,6),∴S △ABD =12×2×6=6, 设点E (m ,2m ﹣2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4, ∴12×2×(2m ﹣2)=2或12×2×(2m ﹣2)=4, ∴m =2或3,∴点E (2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∴x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∴点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD 与PQ 互相平分, ∴22++=P Q A D x x x x ,∴x P =3,∴点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(﹣1,16)或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.25.(2020·竹溪县蒋家堰镇中心学校期末)如图1,抛物线()21y x a x a -++=与x 轴交于A ,B 两点(点A 位于点B的左侧),与y 轴负半轴交于点C ,若AB =4. (1)求抛物线的解析式;(2)如图2,E 是第三象限内抛物线上的动点,过点E 作EF ∥AC 交抛物线于点F ,过E 作EG ⊥x 轴交AC 于点M ,过F 作FH ⊥x 轴交AC 于点N ,当四边形EMNF 的周长最大值时,求点E 的横坐标;(3)在x 轴下方的抛物线上是否存在一点Q ,使得以Q 、C 、B 、O 为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q 的坐标;如果不存在,请说明理由.【答案】解:(1)依题意得:()21x a x a ++-=0,则12121,x x a x x a +=+=,则AB 4==,解得:a =5或﹣3,抛物线与y 轴负半轴交于点C ,故a =5舍去,则a =﹣3,则抛物线的表达式为:223y x x +=﹣…①;(2)由223y x x +=﹣得:点A 、B 、C 的坐标分别为:()3,0-、()()1,00-3、,, 设点E ()2,23m m m +﹣,OA =OC ,故直线AC 的倾斜角为45°,EF ∥AC ,直线AC 的表达式为:y =﹣x ﹣3,则设直线EF 的表达式为:y =﹣x +b ,将点E 的坐标代入上式并解得:直线EF 的表达式为:y =﹣x +()233m m +﹣…②,联立①②并解得:x =m 或﹣3﹣m ,故点F ()23,4m m m --+,点M 、N 的坐标分别为:(),3m m --、()33m m --+,,则EF ))23F E x x m MN -=--=,四边形EMNF 的周长C =ME +MN +EF +FN =(226m m --+-∵﹣2<0,故S 有最大值,此时m =32+-,故点E 的横坐标为:32+-; (3)①当点Q 在第三象限时,当QC 平分四边形面积时, 则1Q B x x ==,故点Q ()1,4--;当BQ 平分四边形面积时, 则1111,133222OBQ Q Q QCBO S y S x =⨯⨯=⨯⨯+⨯⨯四边形,则11121133222Q Q y x ⎛⎫⨯⨯=⨯⨯+⨯⨯ ⎪⎝⎭, 解得:32Q x =-,故点Q 315,24⎛⎫-- ⎪⎝⎭; ②当点Q 在第四象限时,同理可得:点Q ⎝⎭;综上,点Q 的坐标为:()1,4--或315,24⎛⎫-- ⎪⎝⎭或⎝⎭.。
精品解析:山东省济南市平阴县2020-2021学年九年级上学期期末数学试题(原卷版)

2020—2021学年第一学期期末学习诊断检测九年级数学试题一.选择题1. 如图所示的几何体的主视图为( )A. B. C. D.2. 若反比例函数y =﹣1x 的图象经过点A (2,m ),则m 的值是( )A. 12B. 2C. ﹣12 D. ﹣23. 在Rt ABC 中,90,C B α∠=∠=,若BC m =,则AB 的长为( )A. cos mα B. cos m α C. sin m α D. tan m α4. 抛物线2(1)3y x =-+-的顶点坐标是( )A. (1,﹣3)B. (1,3)C. (﹣1,3)D. (﹣1,﹣3) 5. 如图,点A 为O 上一点,OD ⊥弦BC 于点D ,如果60BAC ∠=︒,1OD =,则BC 为( )3 B. 2 C. 3 D. 46. 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A 的值为( )A. 35B. 45C. 13 D. 43 7. 一件商品标价100元,连续两次降价后的价格为81元,则两次平均降价的百分率是( )A. 10%B. 15%C. 18%D. 20%8. 对于反比例函数2y x =,下列说法正确的是( )A. 图象经过点(2,﹣1)B . 图象位于第二、四象限C. 当 x <0 时,y 随 x 的增大而减小D. 当 x >0 时,y 随 x 增大而增大9. 函数y =﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A. y =﹣2(x ﹣1)2+2B. y =﹣2(x ﹣1)2﹣2C. y =﹣2(x +1)2+2D. y =﹣2(x +1)2﹣210. 若点()()()1231,,1,,3,A y B y C y -在反比例函数3y x =-的图象上,则123,,y y y 的大小关系是() A. 123y y y << B. 231y y y << C.321y y y << D. 213y y y <<11. 一次函数y=ax+b 与反比例函数y=cx 在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A. B. C. D.12. 如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B.C. D.二、填空题13. 已知关于x的一元二次方程2a x x--+=有两个不相等的实数根,则a的取值范是(1)210__________________.14. 一个扇形的面积为2π,半径为10cm,则此扇形的弧长为_________cm.25cm15. 用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:x … 1 2 3 4 …y=ax2+bx+c …0 ﹣1 0 3 …那么该二次函数在x=0时,y=_____.16. 如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是______.17. 如图,平行四边形AOBC中,对角线交于点E,双曲线y=kx(k>0)经过A、E两点,若平行四边形AOBC的面积为30,则k=__________.18. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②b2-4ac<0;③3a+c<0;④m 为任意实数,则m(am-b)+b≤a;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=-2,其中正确的有______(只填序号).二.解答题19. 计算:sin30°+3tan60°﹣cos245°.20. 如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米,求旗杆的高度.21. 某路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°,求路况显示牌BC 的长度.(结果保留根号)22. 一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀. (1)从口袋中任意摸出1个球,恰好摸到红球的概率是 ;(2)先从口袋中随机摸出一个球,不放回,再从中口袋中随机摸出一个球.请用列举法(画树状图或列表)求摸出一个红球和一个白球的概率.23. 如图,AB 是⊙O 的直径,点D 在AB 的延长线上,AC 平分∠DAE 交⊙O 于点C ,且AE ⊥DC 的延长线,垂足为点E .(1)求证:直线CD 是⊙O 的切线;(2)若AB =6,BD =2,求CE 的长.24. 如图,在△ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /秒的速度移动,同时点Q 从B 点开始沿BC 边向点C 以2cm /秒的速度移动,且当其中一点到达终点时,另一个点随之停止移动.(1)P ,Q 两点出发几秒后,可使△PBQ 的面积为8cm 2.(2)设P ,Q 两点同时出发移动的时间为t 秒,△PBQ 的面积为Scm 2,请写出S 与t 的函数关系式,并求出△PBQ 面积的最大值.25. 如图,已知A(-4,n),B(2,-4)是一次函数y kx b =+和反比例函数m y x =的图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求∆AOB 的面积;(3)求不等式0m kx b x+-<的解集(请直接写出答案).26. 如图,在平面直角坐标系中,已知矩形OABC 的顶点A 在x 轴上,顶点C 在y 轴上,8OA =,4OC =,点P 为对角线AC 上一动点,过点P 作PQ PB ⊥,PQ 交x 轴于点Q .(1)tan ACB ∠=_________;(2)在点P 从点C 运动到点A 的过程中,PQ PB的值是否发生变化?如果变化,请求出其变化范围;如果不变,请求出其值;(3)若将QAB ∆沿直线BQ 折叠后,点A 与点P 重合,请求出PC 的长为多少?27. 如图,在平面直角坐标系xoy中,直线122y x=+与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是32x=-,且经过A、C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接P A,P C.求△P AC的面积的最大值,并求出此时点P 的坐标.(3)抛物线上有一点M,过点M作MN垂直x轴于点N,若以A、M、N为顶点的三角形与△ABC相似,请求出点M的坐标.。
2020-2021学年山东省济南市槐荫区九年级(上)期末数学试卷及参考答案

2020-2021学年山东省济南市槐荫区九年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)已知=,则的值为()A.B.C.D.2.(4分)下列几何体中,其俯视图与主视图完全相同的是()A.B.C.D.3.(4分)如图,直线a∥b∥c,分别交直线m,n于点A,B,C,D,E,F,若AB=2,BC=4,DE=3,则EF的长是()A.5B.6C.7D.84.(4分)如图,在△ABC中,∠C=90°,cos A=,AB=10,AC的长是()A.3B.6C.9D.125.(4分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°6.(4分)二次函数y=2(x+2)2﹣1的图象是()A.B.C.D.7.(4分)小强在一次训练中,掷出的实心球飞行高度y(米)与水平距离x(米)之间的关系大致满足二次函数y=﹣x2+x+,则小强此次成绩为()A.8米B.10米C.12米D.14米8.(4分)将函数y=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是()A.y=B.y=C.y=+1D.y=﹣1 9.(4分)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2 10.(4分)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=11.(4分)如图,△ABC是边长为6的等边三角形,以BC所在直线为x轴,BC的垂直平分线为y轴建立平面直角坐标系,点D为射线AO上任意一点(不与点A重合),以点D 为圆心的圆始终与AB所在直线相切,在点D沿着射线AO平移的过程中,⊙D与x轴相切时,其半径为()A.B.3C.或3D.2或3 12.(4分)二次函数y=ax2+bx+c,若ab<0,a﹣b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则()A.y1=﹣y2B.y1>y2C.y1<y2D.y1、y2的大小无法确定二、填空题(每小题4分,共24分)13.(4分)如图,小树AB在路灯O的照射下形成的投影为BC.若树高AB=2m,树影BC =3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为m.14.(4分)如图所示,∠1是放置在正方形网格中的一个角,则sin∠1的值是.15.(4分)如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.16.(4分)如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD于点P,过点P作PQ⊥BC于点Q,则PQ=.17.(4分)已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A.点P为抛物线对称轴上一点,连接OA、OP.当OA⊥OP时,P点坐标为.18.(4分)如图,以G(0,2)为圆心,半径为4的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上任意一点,CF⊥AE于F,则线段FG的长度的最小值为.三、解答题(共9小题,共78分)19.(6分)计算:2cos45°tan30°cos30°+sin260°.20.(6分)如图,在10×10网格中,点O是格点,△ABC是格点三角形(顶点在网格线交点上),且点A1是点A以点O为位似中心的对应点.(1)△A1B1C1与△ABC的位似比是;(2)画出△ABC以点O为位似中心的位似图形△A1B1C1.21.(6分)如图,在△ABC中,AB=6,AC=8,D、E分别在AB、AC上,BD=2,CE=5.求证:△AED∽△ABC.22.(8分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D.(1)证明:AD=3BD;(2)求弧BD的长度;(3)求阴影部分的面积.23.(8分)如图,二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)求点A到直线BC的距离.24.(10分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板,始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC 可绕着转轴B旋转.已知压柄BC的长度为15cm,BD=5cm,压柄与托板的长度相等.(1)当托板与压柄夹角∠ABC=37°时,如图①点E从A点滑动了2cm,求连接杆DE 的长度;(2)当压柄BC从(1)中的位置旋转到与底座AB的夹角∠ABC=127°,如图②.求这个过程中点E滑动的距离.(答案保留根号)(参考数据:sin37°≈0.6,cos37°≈0.8.tan37°≈0.75)25.(10分)如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,n)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1与反比例函数y2的表达式;(2)当y1<y2,时,自变量x的取值范围为;=S△AOB时,请求出点P的坐标.(3)点P是x轴上一点,当S△P AC26.(12分)如图,四边形ABCD是矩形.(1)如图1,E、F分别是AD、CD上的点,BF⊥CE,垂足为G,连接AG.①求证:;②若G为CE的中点,求证:sin∠AGB=;(2)如图2,将矩形ABCD沿MN折叠,点A落在点R处,点B落在CD边的点S处,连接BS交MN于点P,Q是RS的中点.若AB=2,BC=3,直接写出PS+PQ的最小值为.27.(12分)如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.2020-2021学年山东省济南市槐荫区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【分析】直接利用同一未知数表示出a,b的值,进而代入化简即可.【解答】解:∵=,∴设a=2x,b=5x,∴==.故选:C.【点评】此题主要考查了比例的性质,用同一未知数表示出各数是解题关键.2.【分析】根据圆锥、圆柱、正方体、三棱柱的主视图、俯视图进行判断即可.【解答】解:圆锥的主视图是等腰三角形,俯视图是圆,因此A不符合题意;圆柱的主视图是矩形,俯视图是圆,因此B不符合题意;正方体的主视图、俯视图都是正方形,因此选项C符合题意;三棱柱的主视图是矩形,俯视图是三角形,因此D不符合题意;故选:C.【点评】本题考查简单几何体的三视图,理解三视图的意义,明确各种几何体的三视图的形状是正确判断的前提.3.【分析】根据平行线分线段成比例定理得到=,然后根据比例的性质求EF的长.【解答】解:∵直线a∥b∥c,∴=,即=,∴EF=6.故选:B.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.4.【分析】直接利用锐角三角函数关系的答案.【解答】解:∵∠C=90°,cos A==,AB=10,∴AC=6.故选:B.【点评】此题主要考查了锐角三角函数的定义,正确掌握边角关系是解题关键.5.【分析】连接AD,先根据圆周角定理得出∠A及∠ADB的度数,再由直角三角形的性质即可得出结论.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.6.【分析】先根据解析式确定抛物线的顶点坐标、对称轴,然后对图象进行讨论选择.【解答】解:∵a=2>0,∴抛物线开口方向向上;∵二次函数解析式为y=2(x+2)2﹣1,∴顶点坐标为(﹣2,﹣1),对称轴x=﹣2.故选:C.【点评】判断图象的大体位置根据:(1)根据a的正负确定开口方向;(2)根据顶点坐标或对称轴确定图象位于哪些象限.7.【分析】根据实心球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答】解:在y=﹣x2+x+中,当y=0时,﹣x2+x+=0,解得x1=﹣2(舍去),x2=10,即小强此次成绩为10米,故选:B.【点评】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.8.【分析】由于把双曲线平移,k值不变,利用“左加右减,上加下减”的规律即可求解.【解答】解:将函数y=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是y=,故选:B.【点评】本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.9.【分析】将点A(x1,﹣5),B(x2,2),C(x3,5)分别代入反比例函数y=,求得x1,x2,x3的值后,再来比较一下它们的大小.【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.【点评】本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点的坐标都满足该函数的解析式.10.【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,过C作CE⊥OB于E,则∠OCE=30°,∴OE=OC=1,CE=,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y=的图象上,∴=,得k=﹣,即y=﹣,故选:B.【点评】本题考查待定系数法求反比例函数解析式、菱形的性质,解答本题的关键是明确题意,求出点C的坐标.11.【分析】如图1,当⊙D与x轴相切时,且⊙D在x轴的上方,即⊙D是△ABC的内切圆,连接BD,由△ABC是边长为6的等边三角形,得到∠DBO=30°,BO=3,求得半径OD=BO•tan30°=;如图2当⊙D与x轴相切时,且⊙D在x轴的下方,设⊙D与直线AB相切于E,连接DE,有△ABC是边长为6的等边三角形,得到∠EAD=30°,AO=3,∠AED=90°求得半径DE=3.【解答】解:如图1,当⊙D与x轴相切时,且⊙D在x轴的上方,即⊙D是△ABC的内切圆,连接BD,∵△ABC是边长为6的等边三角形,∴∠DBO=30°,BO=3,∴OD=BO•tan30°=;如图2,当⊙D与x轴相切时,且⊙D在x轴的下方,设⊙D与直线AB相切于E,连接DE,∵△ABC是边长为6的等边三角形,∴∠EAD=30°,AO=3,∠AED=90°∴DE=AD=(3+DE),∴DE=3,∴⊙D的半径为;或3,故选:C.【点评】本题考查了切线的性质,坐标与图形的关系,等边三角形的性质,三角函数,正确的画出图形是解题的关键.12.【分析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.【解答】解:∵a﹣b2>0,b2≥0,∴a>0.又∵ab<0,∴b<0,∵x1<x2,x1+x2=0,∴x2=﹣x1,x1<0.∵点A(x1,y1),B(x2,y2)在该二次函数y=ax2+bx+c的图象上,∴,.∴y1﹣y2=2bx1>0.∴y1>y2.故选:B.方法二:设抛物线对称轴为x0,∵ab<0,x0=﹣,∴x0>0,∵x1<x2,x1+x2=0,∴2x0>x1+x2,∴x0﹣x1>x2﹣x0,∵a﹣b2>0,∴a>0,抛物线开口向上,∴y1>y2.故选:B.【点评】此题主要考查了二次函数的性质,二次函数图象上点的坐标特征和函数值的大小比较,判断出字母系数的取值范围是解题的关键.二、填空题(每小题4分,共24分)13.【分析】找出相似三角形,利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△COP,∴=,∴=,∴OP==5(m),故答案为:5.【点评】本题考查中心投影以及相似三角形的应用.测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.14.【分析】先利用勾股定理的逆定理证明△ABC直角三角形,然后利用正弦的定义求解.【解答】解:如图,∵AC==,BC==,AB==,∴AC2+BC2=AB2,∴△ABC为等腰直角三角形,∴sin∠1===.故答案为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.灵活应用勾股定理和锐角三角函数.也考查了勾股定理的逆定理.15.【分析】证明△BOC的面积=△AOC的面积,而△AOC的面积=|k|=×6=3,即可求解.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|=×6=3,则△ABC的面积为6,故答案为6.【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.16.【分析】根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,∵E为CD的中点,∴DE=CD=AB,∴△ABP∽△EDP,∴,∴,∴,∵PQ⊥BC,∴PQ∥CD,∴△BPQ∽△DBC,∴,∵CD=2,∴PQ=,故答案为:.【点评】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.17.【分析】根据抛物线对称轴列方程求出a,即可得到抛物线解析式,再根据抛物线解析式写出顶点坐标,设对称轴与x轴的交点为E,求出∠OAE=∠EOP,然后根据锐角的正切值相等列出等式,再求解得到PE,然后利用勾股定理列式计算即可得解.【解答】解:∵抛物线y=ax2+x的对称轴为直线x=2,∴﹣=2,∴a=﹣,∴抛物线的表达式为:y=﹣x2+x,∴顶点A的坐标为(2,1),设对称轴与x轴的交点为E.如图,在直角三角形AOE和直角三角形POE中,tan∠OAE=,tan∠EOP=,∵OA⊥OP,∴∠OAE=∠EOP,∴=,∵AE=1,OE=2,∴=,解得PE=4,∴P(2,﹣4),故答案为:(2,﹣4).【点评】本题是二次函数综合题型,主要利用了二次函数的对称轴公式,二次函数图象上点的坐标特征,锐角三角函数的定义,正确的理解题意是解题的关键.18.【分析】连接AC,过点G作GM⊥AC于M,连接AG、MF、GF,由垂径定理得OA=OB=AB,易证∠GCA=∠GAC,求出sin∠OAG=,OA=2,得∠OAG=30°,AB=4,再由含30°角直角三角形的性质得AC=2OA=4,MG=AG=2,然后由∠AFC=90°,得点F在以AC为直径的⊙M上,由直角三角形的性质得出MF=AC=2,当点F在MG的延长线上时,FG的长度的最小,即可得出结果.【解答】解:连接AC,过点G作GM⊥AC于M,连接AG、MF、GF,如图所示:∵G(0,2),∴OG=2,GO⊥AB,∴OA=OB=AB,∵⊙G半径为4,∴AG=CG=4,∴∠GCA=∠GAC,在Rt△OAG中,sin∠OAG===,OA==2,∴∠OAG=30°,AB=2OA=4,∴∠AGO=90°﹣30°=60°,∵∠AGO=∠GCA+∠GAC=60°,∴∠GCA=∠GAC=30°,∴OA=AC,∴AC=2OA=4,MG=AG=×4=2,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,∵GM⊥AC,∴AM=CM,∴MF=AC=2,当点F在MG的延长线上时,FG的长度的最小,最小值为:FM﹣MG=2﹣2,故答案为:2﹣2.【点评】本题考查了垂径定理、等腰三角形的性质、直角三角形的性质、含30°角直角三角形的性质以及锐角三角函数定义等知识;熟练掌握垂径定理和直角三角形的性质是解题的关键.三、解答题(共9小题,共78分)19.【分析】先根据特殊角的三角函数值得到原式=2×﹣××+()2,然后计算二次根式的混合运算.【解答】解:原式=2×﹣××+()2=﹣+=.【点评】本题考查了特殊角的三角函数值:记住特殊角的三角函数值是解决此类题目的关键.20.【分析】(1)利用位似的性质求出OA1与OA的比得到位似比;(2)延长OB到B1使OB1=3OB,延长OC到C1使OC1=3OC,从而得到△A1B1C1.【解答】解:(1))△A1B1C1与△ABC的位似比=OA1:OA=3:1=3;故答案为3;(2)如图,△A1B1C1即为所求.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.位似图形与坐标.21.【分析】根据两边成比例夹角相等即可证明.【解答】证明:∵AB=6,BD=2,∴AD=4,∵AC=8,CE=5,∴AE=3,∴,,∴,∵∠EAD=∠BAC,∴△AED∽△ABC.【点评】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判断方法.22.【分析】(1)两次应用“直角三角形中30°角所对的直角边是斜边的一半”即可证得结论;(2)直接利用弧长公式求解即可;﹣S△COD”求解即可.(3)利用“阴影部分的面积=S扇形COD【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴∠BCD=30°,∴BC=2BD,∵∠A=30°,∴AB=2BC=4BD,∴AD=3BD;(2)由(1)得∠B=60°,∴OC=OD=OB=2,∴弧BD的长为=;(3)∵BC=4,∠BCD=30°,∴CD=BC=2,﹣S△COD=﹣×2×1=﹣.图中阴影部分的面积=S扇形COD【点评】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,属于中考常考题型.23.【分析】(1)根据二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),可以求得这个二次函数的表达式;(2)根据题意和(1)中的函数解析式可以得到点C的坐标,从而可以得到OB和OC 的关系,从而可以得到∠CBO的度数,从而可以求得点A到直线BC的距离.【解答】解:(1)∵二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),∴,解得,即这个二次函数的表达式是y=x2﹣4x+3;(2)作AD⊥BC于点D,∵二次函数的表达式是y=x2﹣4x+3,∴当x=0时,y=3,即点C的坐标为(0,3),∵B(3,0),∴BO=CO=3,∴∠CBO=45°,∴∠DBA=45°,∵AB=2,∴AD=AB•sin∠DBA=2×sin45°=2×=.【点评】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、待定系数法求二次函数的解析式,解答本题的关键是明确题意,利用数形结合的思想解答.24.【分析】(1)作DH⊥BE于H,在Rt△BDH中用三角函数算出DH和BH,再求出EH,在三角形DEH中用勾股定理即可求得DE;(2)作DH⊥AB的延长线于点H,在Rt△DBH和Rt△DEH中,用三角函数分别求出BH,DH,EB的长,从而可求得点E滑动的距离.【解答】解:(1)如图①,作DH⊥BE于H,在Rt△BDH中,∠DHB=90°,BD=5,∠ABC=37°,∴,=cos37°,∴DH=5sin37°≈5×0.6=3(cm),BH=5cos37°≈5×0.8=4(cm).∵AB=BC=15cm,AE=2cm,∴EH=AB﹣AE﹣BH=15﹣2﹣4=9(cm),∴DE===3(cm).答:连接杆DE的长度为cm.(2)如图②,作DH⊥AB的延长线于点H,∵∠ABC=127°,∴∠DBH=53°,∠BDH=37°,在Rt△DBH中,==sin37°≈0.6,∴BH=3cm,∴DH=4cm,在Rt△DEH中,EH2+DH2=DE2,∴(EB+3)2+16=90,∴EB=()(cm),∴点E滑动的距离为:15﹣(﹣3)﹣2=(16﹣)(cm).答:这个过程中点E滑动的距离为(16﹣)cm.【点评】本题属于解直角三角形的应用题,出题角度新颖,既贴近生活,又需要借助三角函数勾股定理等数学知识才能解决,难度中等偏大.25.【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;=S△AOD﹣S△BOD求得△AOB的面积,即可求得(3)先求得D的坐标,然后根据S△AOBS△P AC=S△AOB=24,根据中心对称的性质得出OA=OC,即可得到S△APC=2S△AOP,从而得到2×OP×8=24,求得OP,即可求得P的坐标.【解答】解:(1)将A(2,8)代入得,解得k=16,∴反比例函数的解析式为,把B(8,n)代入得,n==2,∴B(8,2),将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,=2S△AOP,∴S△APC把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴,∵,=24,∴2S△AOP∴,即,∴OP=3,∴P(3,0)或P(﹣3,0).【点评】本题考查了一次函数与反比例函数的交点问题,三角形的面积的计算,待定系数法求函数的解析式,数形结合是解题的关键.26.【分析】(1)①证明△FBC∽△ECD可得结论.②想办法证明∠AEB=∠AGB,可得sin∠AGB=sin∠AEB====.(2)如图2中,取AB的中点T,连接PT,CP.因为四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,所以PT=PQ,MN垂直平分线段BS,推出BP=PS,由∠BCS=90°,推出PC=PS=PB,推出PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴∠CDE=∥BCF=90°,∵BF⊥CE,∴∠BGC=90°,∴∠BCG+∠FBC=∠BCG+∠ECD=90°,∴∠FBC=∠ECD,∴△FBC∽△ECD,∴=.②证明:如图1中,连接BE,GD.∵BF⊥CE,EG=CG,∴BF垂直平分线段EC,∴BE=CB,∠EBG=∠CBG,∵DG=CG,∴∠CDG=∠GCD,∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,∴∠ADG=∠BCG,∵AD=BC,∴△ADG≌△BCG(SAS),∴∠DAG=∠CBG,∴∠DAG=∠EBG,∴∠AEB=∠AGB,∴sin∠AGB=sin∠AEB====.(2)如图2中,取AB的中点T,连接PT,CP.∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,∴PT=PQ,MN垂直平分线段BS,∴BP=PS,∵∠BCS=90°,∴PC=PS=PB,∴PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小,最小值===,∴PQ+PS的最小值为.故答案为.【点评】本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,轴对称,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.27.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2或4,经检验x=4是分式方程的增根,∴m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年山东省济南市章丘区九年级第一学期期末数学试卷一、选择题(共12小题).1.如图所示的几何体的左视图是()A.B.C.D.2.矩形,菱形,正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直3.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=6 4.如果3a=2b(ab≠0),那么比例式中正确的是()A.=B.=C.=D.=5.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个6.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)7.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y28.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.9.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=110°,则∠BOD的大小是()A.100°B.140°C.130°D.120°10.如图,竖直放置的杆AB,在某一时刻形成的影子恰好落在斜坡CD的D处,而此时1米的杆影长恰好为1米,现量得BC为10米,CD为8米,斜坡CD与地面成30°角,则杆的高度AB为()米.A.6+4B.10+4C.8D.611.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(共6小题).13.一元二次方程2x2+3x+1=0的两个根之和为.14.已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为cm2.15.如图,身高为1.6m的小李AB站在河的一岸,利用树的倒影去测对岸一棵树CD的高度,CD的倒影是C′D,且AEC′在一条视线上,河宽BD=12m,且BE=2m,则树高CD=m.16.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=.17.对于函数y=,当函数值y>﹣1时,自变量x的取值范围是.18.如图,在矩形ABCD中,AB=8,BC=6,连接BD,点M,N分别是边BC,DC上的动点,连接MN,将△CMN沿MN折叠,使点C的对应点P始终落在BD上,当△PBM 为直角三角形时,线段MC的长为.三、解答题(共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:﹣(﹣2)0+﹣tan60°.20.解方程(x﹣1)(x+2)=2(x+2).21.如图,正方形ABCD的对角线AC、BD交于点O,AE=BF.求证:∠ACF=∠DBE.22.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D.(1)若∠BAD=80°,求∠DAC的度数;(2)如果AD=6,AB=8,求AC的长.23.章丘区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划,学生可根据自己的喜好选修一门球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球),陈老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班共人;(2)将条形统计图补充完整;(3)该班班委4人中,1人选修足球,1人选修篮球,2人选修羽毛球,陈老师要从这4人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中至少有1人选修羽毛球的概率.24.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P由A出发向点C移动,点Q由C出发向点B移动,两点同时出发,速度均为1cm/s,运动时间为t秒.(1)几秒时△PCQ的面积为4cm2?(2)是否存在t的值,使△PCQ的面积为5cm2?若存在,求这个t值,若不存在,说明理由,(3)几秒时△PCQ的面积最大,最大面积是多少?25.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.26.如图,已知△ABC和△ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现:如图①,当∠ACB=∠AED=60°时,点B、D、E在同一直线上,连接CE,则∠CEB =°,线段BD、CE之间的数量关系是;(2)拓展探究:如图②,当∠ACB=∠AED=90°时,点B、D、E在同一直线上,连接CE,请判断∠CEB的度数及线段BD、CE之间的数量关系,并说明理由;(3)解决问题:如图③,∠ACB=∠AED=90°,AC=2,AE=2,连接CE、BD,在△AED绕点A 旋转的过程中,当DE⊥BD时,请直接写出EC的长.27.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.参考答案一、选择题(共12小题).1.如图所示的几何体的左视图是()A.B.C.D.解:图中几何体的左视图如图所示:故选:D.2.矩形,菱形,正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直解:矩形,菱形,正方形都具有的性质:对角线互相平分.故选:C.3.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=6解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.4.如果3a=2b(ab≠0),那么比例式中正确的是()A.=B.=C.=D.=解:∵3a=2b,∴a:b=2:3,b:a=3:2,即a:2=b:3,故A,B均错误,C正确,D错误.故选:C.5.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.6.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.7.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y随x的增大而减小.∵x1<x2<0<x3,∴(x1,y1)、(x2,y2)在第三象限,(x3,y3)在第一象限,∴y2<y1<0<y3.故选:B.8.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2.∴cos∠ABC==.故选:B.9.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=110°,则∠BOD的大小是()A.100°B.140°C.130°D.120°解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:B.10.如图,竖直放置的杆AB,在某一时刻形成的影子恰好落在斜坡CD的D处,而此时1米的杆影长恰好为1米,现量得BC为10米,CD为8米,斜坡CD与地面成30°角,则杆的高度AB为()米.A.6+4B.10+4C.8D.6解:如图,延长AB交DT的延长线于E.∵1米的杆影长恰好为1米,∴AE=DE,∵四边形BCTE是矩形,∴BC=ET=10米,BE=CT,在Rt△CDT中,∵∠CTD=90°,CD=8米,∠CDT=30°,∴DT=CD•cos30°=8×=4(米),CT=CD=4(米),∴AE=DE=ET+DT=(10+4)(米),BE=CT=4(米),∴AB=AE﹣BE=(10+4)﹣4=(6+4)(米),故选:A.11.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=﹣.故选:B.12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,直接填写答案.)13.一元二次方程2x2+3x+1=0的两个根之和为﹣.解:设方程的两根分别为x1、x2,∵a=2,b=3,c=1,∴x1+x2=﹣=﹣.故答案为:﹣14.已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为24cm2.解:∵一个菱形的两条对角线长分别为6cm和8cm,∴这个菱形的面积=×6×8=24(cm2).故答案为:24.15.如图,身高为1.6m的小李AB站在河的一岸,利用树的倒影去测对岸一棵树CD的高度,CD的倒影是C′D,且AEC′在一条视线上,河宽BD=12m,且BE=2m,则树高CD=8m.解:利用△ABE∽△CDE,对应线段成比例解题,因为AB,CD均垂直于地面,所以AB∥CD,则有△ABE∽△CDE,∵△ABE∽△CDE,∴,又∵AB=1.6,BE=2,BD=12,∴DE=10,∴,∴CD=8.故填8.16.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=4﹣.解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.故答案为4﹣.17.对于函数y=,当函数值y>﹣1时,自变量x的取值范围是x<﹣2或x>0.解:∵当y=﹣1时,x=﹣2,∴当函数值y>﹣1时,x<﹣2或x>0.故答案为:x<﹣2或x>0.18.如图,在矩形ABCD中,AB=8,BC=6,连接BD,点M,N分别是边BC,DC上的动点,连接MN,将△CMN沿MN折叠,使点C的对应点P始终落在BD上,当△PBM 为直角三角形时,线段MC的长为或.解:如图1中,当∠PMB=90°时,四边形PMCN是正方形,设CM=PM=PN=CN=x.∵PM∥CD,∴=,∴=,∴x=,∴CM=.如图2中,当∠BPM=90°时,点N与D重合,设MC=MP=y.∵CD=8,BC=6,∠C=90°,∴BD===10,∵PD=CD=8,∴PB=BD﹣PD=10﹣8=2,∵BM2=PB2+PM2,∴(6﹣y)2=22+y2,∴y=,∴CM=,综上所述,CM的值为或.故答案为:或.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.计算:﹣(﹣2)0+﹣tan60°.解:原式==.20.解方程(x﹣1)(x+2)=2(x+2).解:(x﹣1)(x+2)﹣2(x+2)=0,(x+2)(x﹣1﹣2)=0,(x+2)(x﹣3)=0,∴x+2=0,x﹣3=0,解得x1=﹣2,x2=3.21.如图,正方形ABCD的对角线AC、BD交于点O,AE=BF.求证:∠ACF=∠DBE.【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠EAB=∠CBF=∠ABO=∠BCO=45°,在△ABE与△BCF中,,∴△ABE≌△BCF,∴∠ABE=∠BCF,∴∠ACF=∠DBE.22.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D.(1)若∠BAD=80°,求∠DAC的度数;(2)如果AD=6,AB=8,求AC的长.解:(1)如图,连接OC,∵DC切⊙O于C,∴OC⊥CF,∴∠ADC=∠OCD=90°,∴AD∥OC,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∵∠BAD=80°,∴∠DAC=∠BAD=×80°=40°;(2)连接BC.∵AB是直径,∴∠ACB=90°=∠ADC,∵∠DAC=∠BAC,∴△ADC∽△ACB,∴,∵AD=6,AB=8,∴,∴AC=4.23.章丘区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划,学生可根据自己的喜好选修一门球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球),陈老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班共50人;(2)将条形统计图补充完整;(3)该班班委4人中,1人选修足球,1人选修篮球,2人选修羽毛球,陈老师要从这4人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中至少有1人选修羽毛球的概率.解:(1)该班总人数为12÷24%=50(人).故答案为:50;(2)E组人数为50×10%=5(人),A组人数为50﹣7﹣12﹣5﹣9=17(人),条形图如图所示:(3)画树状图为:A表示足球,B表示羽毛球,C表示篮球.共有12种等可能的结果数,其中选出的2人中,至少有1人选修羽毛球有10种可能,所以选出的2人至少有1人选修羽毛球概率为=.24.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P由A出发向点C移动,点Q由C出发向点B移动,两点同时出发,速度均为1cm/s,运动时间为t秒.(1)几秒时△PCQ的面积为4cm2?(2)是否存在t的值,使△PCQ的面积为5cm2?若存在,求这个t值,若不存在,说明理由,(3)几秒时△PCQ的面积最大,最大面积是多少?解:(1)∵两点同时出发,速度均为1cm/s,∴PC=(6﹣t)(cm),CQ=t(cm),∴(6﹣t)×t=4,∴t1=2,t2=4,答:经过2秒或4秒时△PCQ的面积为4cm2;(2)不存在,由题意可得(6﹣t)×t=5,∴t2﹣6t+10=0,∴△=36﹣40=﹣4<0,∴不存在t的值,使△PCQ的面积为5cm2.(3)由题意可得:△PCQ的面积=(6﹣t)×t=﹣(t﹣3)2+,∴当t=3时,△PCQ的面积有最大值,最大面积是.25.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.解:(1)∵反比例y=(x<0)的图象经过点A(﹣1,2),∴k2=﹣1×2=﹣2,∴反比例函数表达式为:y=﹣,∵反比例y=﹣的图象经过点B(﹣4,n),∴﹣4n=﹣2,解得n=,∴B点坐标为(﹣4,),∵直线y=k1x+b经过点A(﹣1,2),点B(﹣4,),∴,解得:,∴一次函数表达式为:y=+.(2)设直线AB与x轴的交点为C,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB=S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△PAB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).26.如图,已知△ABC和△ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现:如图①,当∠ACB=∠AED=60°时,点B、D、E在同一直线上,连接CE,则∠CEB=60°,线段BD、CE之间的数量关系是BD=CE;(2)拓展探究:如图②,当∠ACB=∠AED=90°时,点B、D、E在同一直线上,连接CE,请判断∠CEB的度数及线段BD、CE之间的数量关系,并说明理由;(3)解决问题:如图③,∠ACB=∠AED=90°,AC=2,AE=2,连接CE、BD,在△AED绕点A 旋转的过程中,当DE⊥BD时,请直接写出EC的长.解:(1)在△ABC为等腰三角形,AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴AC=AB,∠CAB=60°,同理:AE=AD,∠AED=∠ADE=∠EAD=60°,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∴△ACE≌△ABD(SAS),∴CE=BD,∠AEC=∠ADB,∵点B、D、E在同一直线上,∴∠ADB=180°﹣∠ADE=120°,∴∠AEC=120°,∴∠CEB=∠AEC﹣∠AEB=60°,故答案为60,BD=CE;(2)∠CEB=45°,BD=CE,理由如下:在等腰三角形ABC中,AC=BC,∠ACB=90°,∴AB=AC,∠CAB=45°,同理,AD=AE,∠AED=90°,∠ADE=∠DAE=45°,∴,∠DAE=∠CAB,∴∠EAC=∠DAB,∴△ACE∽△ABD,∴,∴∠AEC=∠ADB,BD=CE,∵点B、D、E在同一条直线上,∴∠ADB=180°﹣∠ADE=135°,∴∠AEC=135°,∴∠CEB=∠AEC﹣∠AED=45°;(3)由(2)知,△ACE∽△ABD,∴BD=CE,在Rt△ABC中,AC=2,∴AB=AC=2,①当点E在点D上方时,如图③,过点A作AP⊥BD交BD的延长线于P,∵DE⊥BD,∴∠PDE=∠AED=∠APD,∴四边形APDE是矩形,∵AE=DE,∴矩形APDE是正方形,∴AP=DP=AE=2,在Rt△APB中,根据勾股定理得,BP==6,∴BD=BP﹣AP=4,∴CE=BD=2;②当点E在点D下方时,如图④同①的方法得,AP=DP=AE=2,BP=6,∴BD=BP+DP=8,∴CE=BD=4,即:CE的长为2或4.27.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3).设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入,得:,解得,∴直线BC的解析式为y=﹣x+3,若PE=2ED,则PD=3ED,设P(m,﹣m2+2m+3),∵PD上x轴于点D,∴E(m,﹣m+3),∴﹣m2+2m+3=3(﹣m+3),∴m2﹣5m+6=0,解得m1=2,m2=3(舍),∴m=2,此时P(2,3),E(2,1),∴PE=2,∴S△PBC=×2×3=3.∴△PBC的面积为3;(3)∵△PBC是以BC为直角边的直角三角形,∴有两种情况:①点C为直角顶点;②点B为直角顶点.过点C作直线P1C⊥BC,交抛物线于点P1,连接P1B,交x轴于点D;过点B作直线BP2⊥BC,交抛物线于点P2,交y轴于点E,连接P2C,如图所示:∵B(3,0),C(0,3),∴OB=OC=3,∴∠BCO=∠OBC=45°.∵P1C⊥BC,∴∠DCB=90°,∴∠DCO=45°,又∵∠DOC=90°,∴∠ODC=45°=∠DCO,∴OD=OC=3,∴D(﹣3,0),∴直线P1C的解析式为y=x+3,联立,解得或(舍);∴P1(1,4);∵P1C⊥BC,BP2⊥BC,∴P1C∥BP2,∴设直线BP2的解析式为y=x+b,将B(3,0)代入,得0=3+b,∴b=﹣3,∴直线BP2的解析式为y=x﹣3,联立,解得或(舍),∴P2(﹣2,﹣5).综上,点P的坐标为(1,4)或(﹣2,﹣5).。