二次曲线中的万能弦长公式
高中数学:四大类弦长公式

高中数学中的四大类弦长公式一、平面直角坐标中的全场通用弦长公式1、已知两点坐标:()11,y x A ,()22,y x B ,则()()221221y y x x AB -+-=2、已知直线上两点:若()11,y x A ,()22,y x B 两点在直线b kx y +=(直线的斜率存在并且不为0)上,则ak x x k AB ∆+=-+=221211(∆,,21x x 是02=++c bx ax 的两根和判别式) ak y y k AB ∆+=-+=22121111(∆,,21y y 是02=++c by ay 的两根和判别式)注:以上公式适用于直线与曲线相交,将直线与曲线联立但不易求出交点坐标 时,采用设而不求思想的解决弦长问题,以上公式的证明会用到韦达定理)二、平面直角坐标中特殊曲线(例如:圆,抛物线,椭圆)中的弦长公式1、直线0:=++C By Ax l 与圆()()222:r b y a x M =-+-相交于B A ,,则222d r AB -=(其中22BA C Bb Aa d +++=为圆心),(b a M 到直线l 的距离)注:此公式证明需用垂径定理2、抛物线中的焦点弦弦长公式,过抛物线交点F 直线l 与抛物线相交的弦长,BF AF AB += ①α221sin 2p x x p AB =++=(其中抛物线开口向右,方程为px y 22=) ②)(21x x p AB +-=(其中抛物线开口向左,方程为px y 22-=) ③21y y p AB ++=(其中抛物线开口向上,方程为py x 22=) ④)(21y y p AB +-=(其中抛物线开口向下,方程为py x 22-=) 注:此公式的证明需用到抛物线的定义和焦半径公式.3、椭圆中的焦点弦的弦长公式,BF AF AB +=①过椭圆)0(12222>>=+b a by a x 的左焦点)0,(1c F -的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB ++=.②过椭圆)0(12222>>=+b a by a x 的左焦点)0,(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB +-=.③过椭圆)0(12222>>=+b a bx a y 的左焦点)0(1c F -,的直线l 与椭圆相交于 ()11,y x A ,()22,y x B 两点,则()212y y e a AB ++=.④过椭圆)0(12222>>=+b a by a x 的左焦点),0(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212y y e a AB +-=.注:此公式的证明需用到椭圆的第二定义和焦半径公式.三、直线标准参数方程下的弦长公式过定点),(00y x P ,倾斜角为α的直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 参数t 的几何意义为: t 为直线上任一点(,)x y 到定点00(,)x y 的数量;即:直线l 上的动点()()ααsin ,cos ,00t y t x M y x M ++=到点),(00y x P 的距离等于t .设点B A 、对应的参数分别为,,21t t 则有: ①2121,,t t AB t PB t PA -===②AB 中点M 对应的参数为221t t +,则.221t t PM += 证明:∵A 对应的参数分别为1t ∴()ααsin ,cos 1010t y t x A ++,∴ ()()()()1212120102010sin cos sin cos t t t y t y x t x PA =+=-++-+=αααα同理2t PB =,21t t AB -=还有一些可能会用到的公式,他们都可通过以上两个结论+绝对值的运算而得: 例如:③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PB PA ;⎩⎨⎧<+>-=-=-0,,2121212121t t t t t t t t t t PB PA④ 若AB 的中点为P ,则021=+t t .(∵AB 中点对应的参数为221t t +,P 对应的参数为0)过定点),(00y x P 的直线l 的参数方程也可表示为:⎩⎨⎧+=+=bt y y atx x 00 (b a ,是常数,t 为参数).设点N M 、对应的参数分别为21,t t ,即()()20201010,,,bt y at x N bt y at x M ++++则有:①122t b a PM +=,222t b a PN +=,()2122t t b a PN PM +=⋅②Aba t tb a MN ∆+=-+=222122(其中21,t t 是方程02=++C Bt At 的两根) ③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PN PM ; ⎪⎩⎪⎨⎧<++>-+=-+=-0,0,2121222121222122t t t t b a t t t t b a t t b a PN PM④ 若MN 的中点为P ,则021=+t t .(∵MN 中点对应的参数为221t t +,P 对应的参数为0)四、极坐标系中的弦长公式:()()2211,,,θρθρB A①若21θθ=,则21ρρ-=AB②若21θθ≠,则()21212221cos 2θθρρρρ--+=AB ,()2121sin 21θθρρ-=∆OAB S。
二次曲线的性质及应用

二次曲线的性质及应用----研究性学习报告山东省实验中学2008级23班刘谦益傅明睿陈霖指导教师:王学红摘要二次曲线与我们的生活密切相关,它们的性质在生产、生活中被广泛应用。
本小组成员在此次研究性学习活动中对二次曲线的性质进行了一系列探讨,从二次曲线的定义入手,就二次曲线的方程、光学性质及应用等方面展开说明。
AbstractConics are closely related to our living. Their characters have been widely applied in the producing and our living. The members of our team carried out a series of discussions with the characters of the conics at the research-based learning activities. Starting with the definition of conics, we illuminated with the equation, the optical properties and the application areas of the conics.二次曲线的性质及应用----研究性学习报告山东省实验中学2008级23班 刘谦益 傅明睿 陈霖指导教师:王学红一、绪论在我们的生活中,二次曲线无处不在。
车轮滚滚,留下一路红尘;烈日炎炎,照亮亘古乾坤。
这些都给我们留下圆的形象。
构筑了五彩世界的圆,就是最简单的二次曲线——x 2+y 2=r 2从椭圆方程说起当我们在纸上钉两个图钉,(它们的间距为2c ),将一根长为l 的绳子分别各系在一个图钉上,用笔绷紧绳子绕一圈,就画出了一个椭圆——因为椭圆上任意一点到两焦点的距离和相等,而且不难得出这个椭圆长轴a= ,短轴b=,我们把它放在直角坐标系中,设F 1(c,0),F 2(-c,0),可知椭圆上任意一点p(x,y)满足PF 1+PF 2=l=2a 。
高中数学圆锥曲线有好用的公式

高中数学圆锥曲线有什么好用的公式吗那些考试拿高分的,一定是简单的题目做得又快又对,这样他们才有时间去思考难题。
因此,适当地掌握一些教材中没有提到,但是可以加速解题过程的公式和定理,对提高解题速度,尤其是选择和填空题的解题速度极为有效。
下面就来简单总结一下与圆锥曲线有关的好用公式:1.利用椭圆的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。
我们先证明一下这个公式:通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。
【我们先不使用这个定理来解决这个问题】:【在知道公式的情况下】翻译的图像和条件不变:那我们比较这两种做法,显然第一种需要用数学三招去思考,去动点脑筋去想,但如果利用好这个公式,我们几乎不需要思考,只需要熟练的计算即可迅速解出答案!2.利用椭圆的切线方程快速解题只需记下这个简单的结论,在圆锥曲线中椭圆这一章中,遇到切线问题就可以思路更清晰,解题更迅速噢。
【直接记住结论解题】再盯住已经转化过的目标,要求上述式子的最小值,联想有关的定理和定义,我们想到了利用函数的性质或者不等式的方法求最值,所以要把x1•x2,y1•y2,x1+x2换成与m有关的代数式。
利用这个定理,有效的缩短了解题时间,让我们对这一类型的题目处理起来更得心应手。
不仅是椭圆,在圆上这个定理也是成立的:大家记住了吗?3.利用双曲线的焦点三角形快速求离心率通过这一简单的结论,我们可以把一些出现在选择和填空题中的求离心率类的题目迅速解决,只需要画出图,找出角度,代入公式,避免了a,b,c换来换去的繁琐运算,为我们后面的大题节约时间。
我们先证明一下这个公式:因为上次椭圆的已经进行简便性验证了,那么同学们多记这4个字——椭加双减,再加上本身这个公式就很好记,结合三角形对比一下,多记4个字又可以解决一类题,投资回报比是很高的!利用本质教育的第一招翻译,翻译出图形:再利用本质教育的第三招盯住目标立马联想我们背过的公式:椭加双减3.二次曲线弦长万能公式(另外一个类似,可以证明)这就是泽宇老师在录播课中提到的“韦达定理模式”,解大题的时候,把以上证明过程写出来即可。
椭圆双曲线弦长公式

椭圆双曲线弦长公式
椭圆和双曲线是常见的数学曲线,它们在物理学、工程学和其他领域中具有广泛的应用。
在研究椭圆和双曲线时,弦长是一个重要的概念。
弦是连接椭圆或双曲线上两个点的线段。
在椭圆上,弦始于一个焦点,结束于另一个焦点,通过椭圆的内部。
在双曲线上,弦同样连接两个点,但它通过双曲线的外部。
我们可以通过弦的长度来描述椭圆或双曲线的形状。
弦长公式是一个用于计算椭圆或双曲线弦长的公式。
下面我们将分别介绍椭圆和双曲线的弦长公式。
1. 椭圆弦长公式:
对于一个椭圆,其长轴长度为2a,短轴长度为2b。
如果我们选择椭圆上两个点,它们的坐标分别为(x, y)和(x, y),那么它们之间的弦长可以通过以下公式计算:
S = 2a * sin(θ/2)
其中,θ是两个点所在的角度。
注意,这里的角度是弧度制。
2. 双曲线弦长公式:
对于一个双曲线,其长轴长度为2a,短轴长度为2b。
同样地,我们
选择双曲线上两个点,它们的坐标为(x, y)和(x, y)。
双曲线上这两个点之间的弦长可以通过以下公式计算:
S = 2a * sinh(d/2)
其中,d是两个点之间的距离,sinh表示双曲正弦函数。
椭圆和双曲线的弦长公式可以帮助我们计算曲线上两个点之间的距离,从而更好地理解和分析这些曲线的性质。
它们在计算机图形学、天体力学、电磁学等领域中有重要的应用。
高中数学:四大类弦长公式

高中数学中的四大类弦长公式一、平面直角坐标中的全场通用弦长公式1、已知两点坐标:()11,y x A ,()22,y x B ,则()()221221y y x x AB -+-=2、已知直线上两点:若()11,y x A ,()22,y x B 两点在直线b kx y +=(直线的斜率存在并且不为0)上,则ak x x k AB ∆+=-+=221211(∆,,21x x 是02=++c bx ax 的两根和判别式) ak y y k AB ∆+=-+=22121111(∆,,21y y 是02=++c by ay 的两根和判别式)注:以上公式适用于直线与曲线相交,将直线与曲线联立但不易求出交点坐标 时,采用设而不求思想的解决弦长问题,以上公式的证明会用到韦达定理)二、平面直角坐标中特殊曲线(例如:圆,抛物线,椭圆)中的弦长公式1、直线0:=++C By Ax l 与圆()()222:r b y a x M =-+-相交于B A ,,则222d r AB -=(其中22BA C Bb Aa d +++=为圆心),(b a M 到直线l 的距离)注:此公式证明需用垂径定理2、抛物线中的焦点弦弦长公式,过抛物线交点F 直线l 与抛物线相交的弦长,BF AF AB += ①α221sin 2px x p AB =++=(其中抛物线开口向右,方程为px y 22=)②)(21x x p AB +-=(其中抛物线开口向左,方程为px y 22-=) ③21y y p AB ++=(其中抛物线开口向上,方程为py x 22=) ④)(21y y p AB +-=(其中抛物线开口向下,方程为py x 22-=) 注:此公式的证明需用到抛物线的定义和焦半径公式.3、椭圆中的焦点弦的弦长公式,BF AF AB +=①过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(1c F -的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB ++=.②过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB +-=.③过椭圆)0(12222>>=+b a b x a y 的左焦点)0(1c F -,的直线l 与椭圆相交于 ()11,y x A ,()22,y x B 两点,则()212y y e a AB ++=.④过椭圆)0(12222>>=+b a b y a x 的左焦点),0(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212y y e a AB +-=.注:此公式的证明需用到椭圆的第二定义和焦半径公式.三、直线标准参数方程下的弦长公式过定点),(00y x P ,倾斜角为α的直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 参数t 的几何意义为: t 为直线上任一点(,)x y 到定点00(,)x y 的数量;即:直线l 上的动点()()ααsin ,cos ,00t y t x M y x M ++=到点),(00y x P 的距离等于t .设点B A 、对应的参数分别为,,21t t 则有: ①2121,,t t AB t PB t PA -=== ②AB 中点M 对应的参数为221t t +,则.221t t PM += 证明:∵A 对应的参数分别为1t ∴()ααsin ,cos 1010t y t x A ++, ∴ ()()()()1212120102010sin cos sin cos t t t y t y x t x PA =+=-++-+=αααα同理2t PB =,21t t AB -=还有一些可能会用到的公式,他们都可通过以上两个结论+绝对值的运算而得:例如:③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PB PA ;⎩⎨⎧<+>-=-=-0,,2121212121t t t t t t t t t t PB PA④ 若AB 的中点为P ,则021=+t t .(∵AB 中点对应的参数为221t t +,P 对应的参数为0)过定点),(00y x P 的直线l 的参数方程也可表示为:⎩⎨⎧+=+=bt y y atx x 00(b a ,是常数,t 为参数).设点N M 、对应的参数分别为21,t t ,即()()20201010,,,bt y at x N bt y at x M ++++则有:①122t b a PM +=,222t b a PN +=,()2122t t b a PN PM +=⋅②Aba t tb a MN ∆+=-+=222122(其中21,t t 是方程02=++C Bt At 的两根)③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PN PM ; ⎪⎩⎪⎨⎧<++>-+=-+=-0,0,2121222121222122t t t t b a t t t t b a t t b a PN PM④ 若MN 的中点为P ,则021=+t t .(∵MN 中点对应的参数为221t t +,P 对应的参数为0)四、极坐标系中的弦长公式:()()2211,,,θρθρB A①若21θθ=,则21ρρ-=AB②若21θθ≠,则()21212221cos 2θθρρρρ--+=AB ,()2121sin 21θθρρ-=∆OAB S。
二次曲线的切线与弦长

二次曲线的切线与弦长李嘉元(大理学院数学系,云南大理671000)【摘要1二次曲线是解析几何研究的重要对象之一,而它的切线与弦的长度是二次曲线的两个非常重要的问题,本文对这两个问题给出相应的计算公式。
【关键词】二次曲线;切线;弦长;计算公式中图分类号:0241.6文献标识码:A文章编号:cN53—1180(2002)04—0021一02l引言在解析几何的讨论和学习过程中,我们经常遇到讨论二次曲线的切线与弦长的问题,而这类问题探讨起来一般情况下计算量较大,比较复杂。
本文将给出相应的计算公式,使问题变得较为简单。
2二次曲线的切线二次曲线的一般方程为F(x,Y)=allf+瓠2xy+妞y2+砜3x+2劫y+曲,=0(1)点(‰,峋)是(1)上的一个点。
下面我们来求通过点(K,y0)且与(1)相切的切线的方程。
设过点()(。
,v0)的切线方程为(Ⅱll凳+2口12xY+毗2铲)亡+2{(q11‰+。
1d。
+Ⅱ】jjx+rm2勘+Ⅱ2m+蚴j列E+r嘞J蔚+瓦J删yo+q22菇+2啦撕+2毗批+锄3,-o(3)为计算方便,我们令nr%,∥=mm+8jm+nⅡ疋f勒,刊=口J2肋+啦啪+蚴,由(x.Y)=知凳+2啦2xY+啦譬则f引可写成西{X,Y)·亡+2、Fl(勒,如)·x+F2《渤.y0)【收稿日期】:2002—06一19【作者简介】:孛嘉元(1%5一),男(白族),云南洱源人讲师,主要从事数学教学研究·Y1‘+F{‰,如)=ot4j要使r2J成为二次曲线f"的切线的条件,当圣f盖,y)≠O时是△=[x—r知,仲j+lRr劫,KJ]2一中rx,¨F(‰.靳l=o{.51焦(靳,枷)在l1)上,‘F(‰,如)=o砒(5》为xFl《靳,№)+YF2《‰,扣)=oi6)当中r五列=D时,直线r2j成为二次曲线r,J的切线的条件除了Fr∞,抑J=0外,唯一的条件仍然是f酬如果nr%,如J与托r∞,肋J不全为零.那么由r6J得:x:Y=F2(‰,vo):(一F1{‰,如)),鼠此过f‰,恂)的切线方程为:fx=‰+Rr勘,川l或写成Iy;y一一f勘,yo)tlx一‰)Fl{%。
弦长公式知识讲解

弦长公式弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号证明方法如下:假设直线为:Y=kx+b圆的方程为:(x-a)^2+(y-u)^2=r^2假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2) 则有AB=√(x1-x2)^2+(y1-y2)^把y1=kx1+b.y2=kx2+b分别带入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2=√(x1-x2)^2+k^2(x1-x2)^2=√1+k^2*│x1-x2│证明ABy1-y2│√[(1/k^2)+1]的方法也是一样的证明方法二d=√(x1-x2}^2+(y1-y2)^2这是两点间距离公式因为直线y=kx+b所以y1-y2=kx1+b-(kx2+b)=k(x1-x2)将其带入d=√(x1-x2)^2+(y1-y2)^2得到d=√(x1-x2)^2+[k(x1-x2)]^2=√(1+k^2)(x1-x2)^2=√(1+k^2)*√(x1-x2)^2=√(1+k^2)*√(x1+x2)^2-4x1x2公式二抛物线y2=2px,过焦点直线交抛物抛物线线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2 y2=-2px,过焦点直线交抛物线于A ﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚x2=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2 x2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚公式三d = √(1+k^2)|x1-x2| = √(1+k^2)[(x1+x2)^2 - 4x1x2] = √(1+1/k^2)|y1-y2| =√(1+1/k^2)[(y1+y2)^2 - 4y1y2]关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+k^2)[(x1+x2)^2 - 4x1x2]求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
高中数学:四大类弦长公式

高中数学中的四大类弦长公式一、平面直角坐标中的全场通用弦长公式1、已知两点坐标:()11,y x A ,()22,y x B ,则()()221221y y x x AB -+-=2、已知直线上两点:若()11,y x A ,()22,y x B 两点在直线b kx y +=(直线的斜率存在并且不为0)上,则ak x x k AB ∆+=-+=221211(∆,,21x x 是02=++c bx ax 的两根和判别式) ak y y k AB ∆+=-+=22121111(∆,,21y y 是02=++c by ay 的两根和判别式)注:以上公式适用于直线与曲线相交,将直线与曲线联立但不易求出交点坐标 时,采用设而不求思想的解决弦长问题,以上公式的证明会用到韦达定理)二、平面直角坐标中特殊曲线(例如:圆,抛物线,椭圆)中的弦长公式1、直线0:=++C By Ax l 与圆()()222:r b y a x M =-+-相交于B A ,,则222d r AB -=(其中22BA C Bb Aa d +++=为圆心),(b a M 到直线l 的距离)注:此公式证明需用垂径定理2、抛物线中的焦点弦弦长公式,过抛物线交点F 直线l 与抛物线相交的弦长,BF AF AB += ①α221sin 2px x p AB =++=(其中抛物线开口向右,方程为px y 22=)②)(21x x p AB +-=(其中抛物线开口向左,方程为px y 22-=) ③21y y p AB ++=(其中抛物线开口向上,方程为py x 22=) ④)(21y y p AB +-=(其中抛物线开口向下,方程为py x 22-=) 注:此公式的证明需用到抛物线的定义和焦半径公式.3、椭圆中的焦点弦的弦长公式,BF AF AB +=①过椭圆)0(12222>>=+b a by a x 的左焦点)0,(1c F -的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB ++=.②过椭圆)0(12222>>=+b a by a x 的左焦点)0,(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212x x e a AB +-=.③过椭圆)0(12222>>=+b a bx a y 的左焦点)0(1c F -,的直线l 与椭圆相交于 ()11,y x A ,()22,y x B 两点,则()212y y e a AB ++=.④过椭圆)0(12222>>=+b a by a x 的左焦点),0(2c F 的直线l 与椭圆相交于()11,y x A ,()22,y x B 两点,则()212y y e a AB +-=.注:此公式的证明需用到椭圆的第二定义和焦半径公式.三、直线标准参数方程下的弦长公式过定点),(00y x P ,倾斜角为α的直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 参数t 的几何意义为: t 为直线上任一点(,)x y 到定点00(,)x y 的数量;即:直线l 上的动点()()ααsin ,cos ,00t y t x M y x M ++=到点),(00y x P 的距离等于t .设点B A 、对应的参数分别为,,21t t 则有: ①2121,,t t AB t PB t PA -=== ②AB 中点M 对应的参数为221t t +,则.221t t PM +=证明:∵A 对应的参数分别为1t ∴()ααsin ,cos 1010t y t x A ++, ∴ ()()()()1212120102010sin cos sin cos t t t y t y x t x PA =+=-++-+=αααα同理2t PB =,21t t AB -=还有一些可能会用到的公式,他们都可通过以上两个结论+绝对值的运算而得:例如:③⎩⎨⎧<->+=+=+0,,2121212121t t t t t t t t t t PB PA ;⎩⎨⎧<+>-=-=-0,,2121212121t t t t t t t t t t PB PA④ 若AB 的中点为P ,则021=+t t .(∵AB 中点对应的参数为221t t +,P 对应的参数为0)过定点),(00y x P 的直线l 的参数方程也可表示为:⎩⎨⎧+=+=bt y y atx x 00(b a ,是常数,t 为参数).设点N M 、对应的参数分别为21,t t ,即()()20201010,,,bt y at x N bt y at x M ++++则有:①122t b a PM +=,222t b a PN +=,()2122t t b a PN PM +=⋅②Aba t tb a MN ∆+=-+=222122(其中21,t t 是方程02=++C Bt At 的两根)③⎩⎨⎧<->+=+=+0,,2121212121tt t t t t t t t t PN PM ; ⎪⎩⎪⎨⎧<++>-+=-+=-0,0,2121222121222122t t t t b a t t t t b a t t b a PN PM④ 若MN 的中点为P ,则021=+t t .(∵MN 中点对应的参数为221t t +,P 对应的参数为0)四、极坐标系中的弦长公式:()()2211,,,θρθρB A①若21θθ=,则21ρρ-=AB②若21θθ≠,则()21212221cos 2θθρρρρ--+=AB ,()2121sin 21θθρρ-=∆OAB S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次曲线中的万能弦长公式
王忠全
我们把圆、椭圆、双曲线、抛物线称为二次曲线,用设而不求的方法,可得到其弦长公式。
设直线方程为:y=kx+b (特殊情况要讨论k 的存在性),二次曲线为f (x ,y )=0,把直线方程代入二次曲线方程,可化为ax 2+by 2+c=0,(或ay 2+by+c=0),设直线和二次曲线的两交点为A (x 1,y
),B (x ,y )
那么:x 1,x 2是方程ax +by +c=0的两个解,有
x 1+x 2=-a b ,x 1x 2=a
c , ()()||k 1x x 4)(k 1))(k (1)()(||2
21221222122212212
21221a x x x x b kx b kx x x y y x x AB ∆
+=-+⋅+=-+=--++-=-+-= 同理:若化为关于y 的方程ay 2+by+c=0,则|AB|= |
|112a k ∆+. 例、已知过点M (-3,-3)的直线m 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线m 的方程。
解析:设直线方程m:y+3=k(x+3),
即y=kx+3k-3,代入x 2+y 2+4y-21=0,得x 2+k 2x 2+9k 2+9+6k 2x-6kx-18k-21+4kx+12k-12=0, 即(1+k 2)x 2+(6k 2-2k)x+9k 2-6k-24=0,那么
032,092,2,210
232016162416808096246454196246454|1|96246024364243612122222222342342=+-=++=-==--=--+=+-=++-=++-++-+-+y x y x k k k k ,k k ,k k k ,,k
k k k k k k k k k k k
或所求直线方程为得两边平方即
当k 不存在时,直线m 为x=-3,代入x 2+y 2+4y-21=0,得交点为(-3,2),(-3,-6) |AB|=548≠(不合题意)
综上所述: 032,092=+-=++y x y x 或所求直线方程为.
变式: 已知过点M (-3,-3)的直线m 被椭圆14
162
2=+y x 所截得的弦长为2,求直线m 的方程。
评析:用公式解决弦长问题,计算量大,容易出错,这正是高考考查学生计算能力的一个重要方面,这种“设而不求”的思想,在处理圆锥曲线相关问题中占有重要地位。