(完整版)湖南省2012-2018年对口升学考试数学试题
2018年湖南省一轮联考数学(对口)试题

2018年湖南省跨地区普通高等学校对口招生一轮联考数学本试卷包括选择题、填空题和解答题三部分,共4页.时量120分钟.满分120分.一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知集合,,则=()A.{2} B.{2,3} C.{2,3,4,5} D.{1,2,3,4,5}2.函数,的值域是()A.[1,2] B.[0,4] C.[2,3] D.[0,3]3.已知,,则()A.B.C.D.4. 已知两条直线和互相平行,则m= ( )A、B、C、D、或5、“指数函数在上为减函数”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件6.下列函数为偶函数的是()A.y=B.y=C. y=D.y=x27.不等式|3-2x|>4的解集是()A.或B.C.或D.8.已知三条不同的直线和平面且,,则下列命题正确的是()A.若,则B.,则C.,则D.,,则9.现有6个人站在一排照相,其中甲和已必须相邻的不同站法有()A.600种B.480种C.288种D.240种10.已知圆柱的高为2,它的两个底面所在的圆在直径为4的同一个的球的球面上,则圆柱体的体积是()A.6πB.4πC.3πD.2π二、填空题(本大题共5小题,每小题4分,共20分)11.已知一组样本数据5,8,7,9,x的均值为7,则x=_________.12.已知直线将圆平分,则实数.13.函数的最大值是_______.14.已知关于x的不等式的解集为R,则实数的取值范围是_________.15.已知双曲线:的一条渐近线方程为,且双曲线C与椭圆:有公共焦点,则双曲线的标准方程为__________.三、解答题(本小题共7小题,其中21,22小题为选做题.满分60分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知函数(1)求函数的定义域.(2)若,求实数的值.17.(本小题满分10分)在等差数列中,(1)求数列的通项公式.(2)若,为数列的前项和,求18.(本小题满分10分)在一个袋子里放着9个均匀的小球,其中红球2个,黄球3个,蓝球4个,从中任意摸出两个球.(1)求两个求同色的概率.(2)用表示摸出两个球中红球的个数,求随机变量的分布列和数学期望.19.(本小题满分10分)已知向量,,(,).(1)若,求()的值.(2)若向量与的夹角为,求实数的值20. (本小题满分10分)已知抛物线经过点A(1,-2),直线:与抛物线交于点M和N.(1)求抛物线的方程,并求其焦点坐标和准线方程.(2)若| MN |=,求直线L的方程选做题:请考生在第21、22题中选一题作答.如果两题都做,则按所做的第21小题计分,作答时,请写清题号.21.(本小题满分10分)在△ABC中,内角A,B,C的对边分别是,且,(1)若角A=90°,求△ABC的面积.(2)若,求和的值22. (本小题满分10分)某工厂生产甲、乙两种产品,已知生产1万件甲种产品需要A种原料1 t,B种原料1 t,;生产1万件乙种产品需要A种原料2 t,B种原料1 t,目前库存A种原料8 t,B种原料5 t. 若每生产甲种产品1万件的利润为3万元,每生产乙种产品1万件的利润为4万元. 那么该工厂在充分利用库存原料的前提下分别生产甲、乙两种产品各多少万件,可使产生的利润最大?并求出最大利润.。
中职对口升学-2018年高考数学考试卷-修改版

第二部分 数学班级: 学号: 姓名: 一、单项选择:(每小题5分,共40分)1.下列关系正确的是( ).A.}{{0}φ≥B.{2,3}1∉C.0}4- x {x 22=∉ D.0}x 3∣{x 0>∈ 2.不等式42)(f -=x x 定义域是( ).A.),2[+∞B. ),2-[+∞C.]2,∞-( D. ]2-,∞-( 3.下列函数中,在),1[+∞是减函数是( ).A.)1(log )(2-=x x fB.1)(2+=x x fC. xx f 1)(= D.x x f 2)(= 4.已知向量),(3-4=→a ,)34-(,=→b ,则向量a 与向量b 的关系是( ). A.平行向量 B.相反向量 C.垂直向量 D.无法确定5.)13sin(2y 函数+=x 的周期可能是( ). A. 2πB. π2C. 25π D.π3 6.圆36)-()(22=++=b y a x y 的圆心坐标是( ).A. )(b a ,B. )(b a -,-C.)(b a -,D.)(b a ,-7.下列说法不正确的是( ).A.不在同一条直线上的三点一定能确定一个平面。
B.若两条直线同时垂直于同一条直线,那么这两条直线可能是异面直线。
C.两条直线一定能够确定一个平面。
D.一条直线与一个平面垂直,则这条直线垂直该平面内任意一条直线。
8.在一个不透明的袋子中,有10个黑球,8个红球,2个蓝球,某人从中任意取出一个球,那么取中蓝球的概率是( ). A.21 B.101 C.52 D.61 二、 填空题:(每题6分,共30分)9.)(67-cos 的值是 。
10. 直线x+y+2=0与2x-y-2=0的交点为(a ,b ),那么a-b 的值为 。
11. 某班有男生30人,女生20人,如果选男、女各1人作为学生代表参加梧州技能比赛,共有 种方法。
12.如右下图的一块正方体木料,若边长为a ,平面BCC ’B ’内的一点P 是B ’C 和BC ’的交点,则四棱锥P-ABCD 的体积为 。
2012年湖南省对口招生考试数学模拟试卷(新考纲6).pdf

P( AB).
20、已知中心在坐标原点,对称轴是坐标轴的等轴双曲线 ( 1)求等轴双曲线 C 的标准方程及其渐近线方程;
C 经过点 P 4, 2 2 .
( 2)已知双曲线 C 的两焦点分别为 F1, F 2 , M (位于第一象限)是双曲线 C 上的一点,
且点 M 在以线段 F1F2 为直径的圆上,求点 M 的坐标。
的 100 根中,有 _ ___根在棉花纤维的长度小于
20mm。
12 、 已 知 数 列 { an } 的 通 项 公 式 是 an 2n 49 , 那 么 Sn 达 到 最 小 值 时 ,
n =__________。
13、已知 f ( x)
x 1 ,则 f ( x)
f
(
1 )
的表达式为
__________。
题号 1
2
3
4
5
6
7
8
9
10
答案
二、填空题(本题共 5 小题,每小题 4 分,共 20 分)
11.Βιβλιοθήκη 12.13.14.
15.
三、解答题(本大题共 6 小题,共 60 分,解答写出必要的文字说明,注明过
程及演算步骤)
16、解不等式组:
2x2 6x 0 3x 1 2
17、如图,在棱长为 a 的正方体 ABCD—A1B1C1D1 中, P、Q分别是 AD1、BD的中点 . (Ⅰ)求证: PQ// 平面 DCC1D1; (Ⅱ)求 PQ的长;
x1
x
14、圆柱的侧面展开图是一个正方形,则它的侧面积是它的两底面积和的
__________倍。
15、点 ( a 1, 2a 1) 在直线 x 2 y 0 ,则 a 的值为 _____________.
年对口高考试卷数学

湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页。
时量120分钟。
满分120分一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2.“的A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.函数的单调增区间是A.(B.[1,+C.(D.[0,+4.已知,且为第三象限角,则A. B. C. D.5.不等式的解集是A.{x|x}B.{x|x}C.{x|0}D.{x|x}6.点M在直线3x+4y-12=0上,O为坐标原点,则线段OM长度的最小值是A.3B.4C. D.7.已知向量a,b满足=7,A.30°B.60°C.120°D.150°8.下列命题中,错误的是A.平行于同一个平面的两个平面平行B.平行于同一条直线的两个平面平行C.一个平面与两个平行平面相交,交线平行D.一条直线与两个平行平面中的一个相交,则必与另一个相交9.已知A.a b cB.a c bC.cD.c10.过点(1,1)的直线与圆相交于A,B两点,O为坐标原点,则△OAB面积的最大值为A.2B.4C.D.二、填空题(本大题共5小题,每小题4分,共20分)11.某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为______。
12.函数(b为常数)的部分图像如图所示,则b=______。
13.的展开式中的系数为______(用数字作答)。
14.已知向量a=(1,2),b=(3,4),c=(11,16),且c=xa+yb,则x+y=______。
15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形,则第10个正方形的面积为______。
最新湖南省高考对口招生考试数学真题及参考答案

湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( ) A.充分必要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=∙b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c << 10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( )A. 2B. 4C. 3D. 23二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .6)1(+x 13.的展开式中5x 的系数为 (用数字作答) 14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x +b y,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a }为等差数列,1a =1,3a =5, (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S . 若n S =100,求n .17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ 表示取出饮料中不合格的瓶数.求 (Ⅰ)随机变量ξ的分布列; (Ⅱ)检测出有不合格饮料的概率. 18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域; (Ⅱ)若1)(<m f ,求m 的取值范围 19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A(0,1)在椭圆C 上. (I) 求椭圆C 的方程;AF垂直,l与椭圆C相交于M,N两点, (II)(Ⅱ)直线l过点1F且与1求MN的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD中,=CD∠BCD120°,BC,4=6=AB,=∠ABC75°,求四边形ABCD的面积.=22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8. B9. D 10. A 二、填空题:11. 25 12. 2 13. 6 14. 5 15. 321 三、解答题16.解: (Ⅰ)数列{n a }为等差数列,1a =1,3a =5⇒公差d=21315=-- 故12)1(21-=-+=n n a n(Ⅱ)∵等差数列{n a }的前n 项和为n S ,n S =100)(21n n a a nS +=∴100)121(2=-+n n∴10=n17. 解:(Ⅰ)ξ的可能取值有0,1,2P (0=ξ)=5226224=⋅C C C P (1=ξ)=158261214=⋅C C CP (2=ξ)=151262204=⋅C C C故随机变量ξ的分布列是:(Ⅱ)设事件A 表示检测出的全是合格饮料,则A 表示有不合格饮料检测出的全是全格饮料的概率=)(A P 52260224=⋅C C C故检测出有不合格饮料的概率53521)(=-=A P18. 解:(Ⅰ)∵函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) ∴12log =a ∴2=a)3(log )(2-=x x f 有意义,则03>-x∴ 3>x函数)3(log )(2-=x x f 的定义域是),3(+∞(Ⅱ)∵)3(log )(2-=x x f ,1)(<m f∴2log 1)3(log 22=<-m∴23<-m ∴5<m又)3(log )(2-=x x f 的定义域是),3(+∞,即3>m∴53<<mm 的取值范围是(3,5)19. (Ⅰ)证明:∵在三棱柱111C B A ABC -中,1AA ⊥底面ABC ∴1AA ⊥BD又BC AB =,=∠ABC 90°,D 为AC 的中点. ∴BD ⊥AC 而A AC AA = 1 ∴ BD ⊥平面C C AA 11(Ⅱ)由(Ⅰ)可知:BD ⊥平面C C AA 11 连结D A 1,则D BA 1∠是直线1BA 与平面C C AA 11所成的角在BD A Rt 1∆中,AB AC BD 2221==,AB B A 21=∴21sin 11==∠B A BD D BA∴301=∠D BA即直线1BA与平面C C AA 11所成的角是30. 20. 解:(Ⅰ)∵椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0)∴1=c又点A (0,1)在椭圆C 上 ∴12=b∴211222=+=+=c b a ∴椭圆C 的方程是1222=+y x(Ⅱ)直线1AF 的斜率11=AF k而直线l 过点1F 且与1AF 垂直∴直线l 的斜率是1-=k直线l 的方程是1--=x y由⎪⎩⎪⎨⎧=+--=12122y x x y 消去y 得:0432=+x x设),(11y x M ,),(22y x N ,则3421-=+x x ,021=⋅x x 344)(2122121=-+=-x x x x x x2343421212=⨯=-+=x x k MN即MN 的长是23421. 解:如图,连结BD在BCD ∆中,6==CD BC ,=∠BCD 120°,由余弦定理得:BCD CD BC CD BC BD ∠⋅⋅-+=cos 2222)21(6626622-⨯⨯⨯-+=362⨯= 36=BD四边形ABCD 的面积ABCD S 四边形=ABD S ∆∆+BCD S =ABD BD BA BCD CD BC ∠⋅⋅+∠⋅⋅sin 21sin 21 =45sin 36421120sin 6621⨯⨯+⨯⨯⨯ =2236421236621⨯⨯⨯+⨯⨯⨯ =6639+22.解:设公司每天生产甲产品x 吨,乙产品y 吨,才能使公司获得的利润z 最大,则y x z 54+=,x 、y 满足下列约束条件:⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥12238200y x y x y x作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC 作直线x y 54-=及其平行线l :554z x y +-=,直线l表示斜率为54-,纵截距为5z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,由⎩⎨⎧=+=+122382y x y x 得)3,2(A ∴ 233524max =⨯+⨯=z 万元即当公司每天生产甲产品2吨,乙产品3吨时,公司获得的利润最大,最大利润为23万元.。
最新湖南2018年高考对口招生考试数学真题资料

精品文档湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A∩B=()A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}23x?9x?)”的( 2. “”是“必要不充分条件A.充分必要条件 B. 既不充分也不必要条件C.充分不必要条件D.2xx2?y?函数3.)的单调增区间是(∞∞,2] D.[0,+)) C.(-A.(-∞,1] B. [1,+∞3??cos???)4.已知=( , 且,为第三象限角则tan54433?? C. A. B. D.44331??2x1的解集是(不等式)5.1|?x|x0xx?} A.{} B.{1xx|??x0或1?0x|x?}} D.{C.{精品文档.精品文档0?y?123x?4OMO M长度的在直线为坐标原点,上,则线段点6. )最小值是(1212 A. 3 B. 4 C. D. 525????????12b?7a?b?42ba?b?aa的夹,,,7.已知向量则向量,满足, )角为(?30 D. 150°° C. 120A. ° B. 60 )错误下列命题中,的是( 8...平行于同一个平面的两个平面平行A. 平行于同一条直线的两个平面平行B.交线平行C. 一个平面与两个平行平面相交, 则必与另一个相交D. 一条直线与两个平行平面中的一个相交,c,b,a?200c?sinsina?sin15?b?100?的大小关系为,,则,9.已知)(b?ac?abca?c?c?b?ba?? A. B. D. C. 224?y?xO BA为坐标原,10.过点(1,1)的直线与圆相交于,两点OAB?)面积的最大值为(点,则33A. 2 B. 4 C. D. 2二、填空题(本大题共5小题,每小题4分,共20分)精品文档.精品文档11.某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .f(x)?cosx?bbb= .则12.函)的部分图像如图所示(,为常数6)?1(x13.展开式的5x的系中数为用数()字作答??????bybacaxc则,且=14.已知向量=(1,2),+=(3,4),=(11,16),??yx .再将这个正方形各边的中点相连,画一个边长为4的正方形,15.如图个则第.10个正方形这样一共画了依次类推个正方形得到第2,,10 .正方形的面积为精品文档.精品文档60满分22,小题为选做题.本大题共7小题,其中第21(三、解答题解答应写出文字说明、证明过程或演算步骤)分,)分16.(本小题满分10aaa,}为等差数列,=5=1,已知数列{31n a }的通项公式;(Ⅰ)求数列{n SaS nn. 若{}的前=100项和为,求 . (Ⅱ)设数列nnn分)17.(本小题满分10 .用,从中随机抽取2瓶检测瓶不合格6某种饮料共瓶,其中有2?求表示取出饮料中不合格的瓶数. 随机变量)的分布列;(Ⅰ?. 检测出有不合格饮料的概率(Ⅱ))分本小题满分18.(10精品文档.精品文档f(x)?log(x?3)(a?0,且a?1)的图像过点(5,1) 已知函数a f(x)f(x)的定义域;的解析式,并写出Ⅰ)求 (f(m)?1m的取值范围若,求(Ⅱ)19.(本小题满分10分)ABC?ABCAAAA?AB?BCABC,,在三棱柱中,,⊥底面如图11111?ABC?AC D的中点,.为90°AACC BD;(I)证明: ⊥平面11BAAACC所成的角. (Ⅱ)求直线与平面111精品文档.精品文档20.(本小题满分10分)22yx?1?FF0?a?b:C(1,0),(已知椭圆(-1,0))的焦点为、2122ba A(0,1)在椭圆C点上.C的方程; (I)求椭圆FAFCll M,且与与椭圆垂直,(II)(Ⅱ)直线过点相交于11NMN的长求.两点,选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)ABCDBC?CD?6?BCD?4AB?120°,,,如图在四边形中,,?ABC?ABCD的面积.,75°求四边形精品文档.精品文档22.)10分(本小题满分23.BA吨已知生产1两种原料某公司生产甲、乙两种产品均需用.,吨1每种产品所需原料及每天原料的可用限额如表所示.如果生产该公问:.生产1吨乙产品可获利润5万元4甲产品可获利润万元,?,才能使公司每天获得的利润最大司如何规划生产精品文档.。
2012年湖南省对口招生考试数学模拟试卷(新考纲5)

湖南省2012年普通高等学校对口招生考试数学模拟训练试卷(5)班级 姓名 计分一、选择题(本题共10个小题,每小题4分,共40分)1.i 是虚数单位,=+ii 33 A .12341- B .i 12341- C .i 6321+ D .i 6321- 2.若集合}21log |{21≥=x x A ,则=A C RA .⎪⎪⎭⎫⎝⎛+∞⋃-∞,22]0,( B .⎪⎪⎭⎫⎝⎛+∞,22 C .⎪⎪⎭⎫⎢⎣⎡+∞⋃-∞,22]0,( D .⎪⎪⎭⎫⎢⎣⎡+∞,22 3.设向量)21,21(),0,1(==b a ,则下列结论中正确的是A .||||b a =B .22=⋅b a C .b b a 与-垂直 D .b a //4.若)(x f 是R 上周期为5的奇函数,且满足,2)2(,1)1(==f f 则)4()3(f f -=A .-1B .1C .-2D .25.双曲线方程为1222=-y x ,则它的右焦点坐标为A .)0,22(B .)0,25(C .)0,26(D .)0,3(6.设0>abc ,二次函数c bx ax x f ++=2)(的图象可能是7.若=∈=+x x x x tan ),,0(,51cos sin 则πA .53-B .43C .2512-D .34-8.五项不同的工程由3个工程队承包,每队至少承包一项,则不同的承包方案A .420B .240C .150D .909.已知随机变量ξ~B (n, p ),且E (ξ)=1.6, D (ξ)=1.28,则n, p 分别是A .n=10, p=0.6B .n=8, p=0.2C .n=2, p=0.8D .n=8, p=0.410.某程序框图如图所示,则该程序运行后输出的B 等于A .15B .29C .31D .63二、填空题:(每小题4分,共20分)11.十进制1101化为二进制数为 . 12.若n xx x )1(3+的展开式中第七项为常数项,则n=___________13.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
湖南省历年对口升学数学试卷(2011-2023)

湖南省历年对口升学数学试卷(2011-2023)本文档收集了湖南省历年对口升学数学试卷的内容,范围为2011年至2023年。
以下是每年试卷的简要介绍:- 2011年:试卷内容包括数学基础知识、代数、几何、概率和统计等方面。
涵盖了中学数学的核心概念和考点。
- 2012年:试卷难度适中,重点考察了几何和代数的应用能力。
题目形式多样,涉及到填空、选择和解答等不同类型。
- 2013年:试卷难度相对较高,涉及到应用题的比例较多。
考察了学生对于数学概念的理解和运用能力。
- 2014年:试卷整体难度适中,注重对基本概念的考察。
试题内容丰富,包括了数列、函数、几何等多个知识点。
- 2015年:试卷难度适中偏易,注重运算和推理能力的考察。
题型形式多样,包括选择、解答和填空等。
- 2016年:试卷涵盖了数学各个领域的知识点,难度适中。
注重对学生思维方法和解题思路的考察。
- 2017年:试卷整体难度较大,涉及到一些较为复杂的数学题目。
对学生的推理能力和逻辑思维提出了较高要求。
- 2018年:试卷难度中等偏难,注重对学生综合运用数学知识解决实际问题的考察。
题目形式多样,包括了选择、解答和填空等。
- 2019年:试卷整体难度适中,注重对学生数学思维和解题能力的培养。
题型灵活多样,包括选择、填空和解答等。
- 2020年:试卷难度较大,注重对学生分析、推理和创新能力的考察。
试题形式多样,包括选择、填空和解答等。
- 2021年:试卷整体难度偏易,注重对学生数学基本知识和运算能力的考察。
题目形式多样,包括选择、填空和解答等。
- 2022年:试卷整体难度适中,覆盖了数学各个领域的知识点。
强调对学生分析和解决实际问题的能力培养。
- 2023年:试卷难度适中偏难,注重对学生运算和推理能力的考察。
试题形式多样,包括选择、填空和解答等。
以上是湖南省历年对口升学数学试卷的简要介绍,希望可以对您的学习和备考有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题 第1页 (共29页) 机密 ★ 启用前 湖南省2012年普通高等学校对口招生考试 数学试题
时量120分钟 总分:120分 一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A={x|x>1},B={x|0A.{ x|x>0} B.{ x|x≠1} C.{ x|x>0或x≠1} D.{ x|x>0且x≠1}
2.“3x”是” 29x”的 ···················· ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.不等式|2x-3|>1的解集为 ···················· ( ) A.(1,2) B.(−∞,1)∪(2,+∞) C.(−∞,1) D.(2,+∞)
4.已知tana=−2,则aa2cos)2sin(= ·················· ( ) A. 4 B. 2 C. -2 D. -4 5. 抛掷一枚骰子,朝上的一面的点数大于3的概率为 ········· ( )
A. 61 B. 31 C. 21 D. 32
6. 若直线0xyk过加圆222470xyxy的圆心,则实数k的值为 ······························· ( ) A. -1 B. -2 C. 1 D. 2 7. 已知函数f(x) =sinx,若em=2,则f(m)的值为 ··········· ( ) A. sin2 B. sine C. sin(ln2) D. ln(sin2) 8. 设a,b,c为三条直线,α,β为两个平面,则下列结论中正确的是 ··· ( ) A. 若a⊥b,b⊥c,则a∥c B. 若a⊂α,b⊂β, a∥b,则α∥β C. 若a∥b,b⊂α,则a∥α D. 若a⊥α, b∥a,则b⊥α 9. 将5个培训指标全部分配给三所学校,每所学校至少有一个指标,则不同的分配方案有( ) A. 5种 B. 6种 C. 10种 D. 12种
10. 双曲线116922yx的一个焦点到其渐近线的距离为 ········ ( ) A, 16 B. 9 C. 4 D. 3 二、填空题(本大题共5个小题,每小题4分,共20分.将答案填在答题卡中对应题号后的横线上) 数学试题 第2页 (共29页)
11. 已知向量a=(1,−1), b=(2,y).若a∥b, 则y= . 12. 某校高一年级有男生480人,女生360人,若用分层抽样的方法从中抽取一个容量为21的样本,则抽取的男生人数应为 .
13. 已知球的体积为34,则其表面积为 .
14. (x+21x)9的二项式展开式中的常数项为 .(用数字作答) 15. 函数f(x)=4x−2x+1的值域为 . 三、解答题(本大题共7小题,其中第21,22小题为选做题,共60分.解答应写出文字说明或演算步骤)) 16. (本小题满分8分) 已知函数f(x)=lg(1−x2). (1) 求函数f(x)的定义域;(2) 判断f(x)的奇偶性,并说明理由.
17. (本小题满分10分) 已知a,b是不共线的两个向量.设AB=2a+b,BC=-a-2b.
(1)用a,b表示AC;(2)若|a|=|b|=1,< a,b>=60,求AB BC. 数学试题 第3页 (共29页)
18. (本小题满分10分) 设{na}是首项1a=2,公差不为0的等差数列,且1a,3a,11a成等比数列,
(1) 求数列{na}的通项公式; (2) 若数列{nb}为等比数列,且1b=1a,2a=3b,求数列{nb}的前n项和ns.
19. (本小题满分10分) 某射手每次射击命中目标的概率为23,且各次射击的结果互不影响.假设该射手射击3次,每次命中目标得2分,未命中目标得-1分.记X为该射手射击3次的总得分数.求 (1) X的分布列; (2) 该射手射击3次的总得分数大于0的概率. 数学试题 第4页 (共29页)
20. (本小题满分10分) 2222642,0:1(0),(.55xy
ACabBCab已知点是椭圆的一个顶点点,)在上
(1) 求C的方程; (2) 设直线l与AB平行,且l与C相交于P,Q两点.若AP垂直AQ,求直线l的方程.
四、选做题(注意:第21题(工科类),22题(财经,商贸与服务类)为选做题,请考生选择其中一题作答.) 21. (本小题满分12分)
已知函数()sin3cosfxxx
(1) 将函数()(03)yfx图象上所有点向右平移6个单位长度,得到函数g(x)的图象,若g(x)的图象经过坐标原点,求ω的值. (2) 在△ABC中,角A,B,C所对的边分别为a,b,c,若()3fA,a=2, b+c=3,求△ABC的面积. 数学试题 第5页 (共29页)
湖南省2013年普通高等学校对口招生考试 数学试卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的) 1.已知集合A={3,4,5},B={4,5,6},则AB等于 A.{3,4,5,6} B.{4,5} C.{3,6} D.
2.函数y=x2在其定义域内是 A.增函数 B.减函数 C.奇函数 D.偶函数 3. “x=2”是“(x-1)(x-2)=0”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 4.已知点A(m,-1)关于y轴的对称点为B(3,n),则m,n的值分别为 A.m=3,n=-1 B.m=3,n=1 C.m=-3,n=-1 D.m=-3,n=1
5. 圆(x+2)2+(y-1)2=9的圆心到直线3x+4y-5=0的距离为 A.57 B.53 C.3 D.1 6.已知sin=54,且是第二象限的角,则tan的值为 A. 43 B.34 C.34 D.43 7.不等式x2-2x-3>0的解集为 A.(-3,1) B.(-,-3)∪(1,+) C.(-1,3) D.(-,-1)∪(3,+) 8.在100件产品中有3件次品,其余的为正品。若从中任取5件进行检测,则下列事件是随机事件的为 A.5件产品中至少有2件正品 B.5件产品中至多有3件次品 C.5件产品都是正品 D.5件产品都是次品
9. 如图,在正方体ABCD-A1B1C1D1中,直线BD1与平面A1ADD1所成角的正切值为
A. 33 了 B.22 C.1 D.2 数学试题 第6页 (共29页)
10、已知椭圆)0(14222mmyx的离心率为21,则m = A.3或5 B.3 C.334 D.3或334 二、填空题(本大题共5小题,每小题4分,共20分) 11、为了解某校高三学生的身高,现从600名高三学生中抽取32名男生和28名女生测量身高,则样本容量为 .
12、已知向量)2,1(a,)1,2(b则|2|ba . 13、函数f(x)=4+3sinx的最大值为 . 14、(2x+21x)6的二项展开式中,x2项的系数为 .(用数字作答) 15、在三棱锥P-ABC中,底面ABC是边长为3的正三角形,PC平面ABC,PA=5,则该三棱锥的体积为 . 三、解答题(本大题共7小题,其中第21、22小题为选做题,共60分.解答应写出文字说明或演算步骤) 16、(本小题满分8分)
已知函数f(x)=loga (2x-1)(a>0且a1). (1)求f(x)的定义域. (2)若f(x)的图象经过点(2,-1),求a的值.
17、(本小题满分10分) 从编号分别为1,2,3,4的四张卡片中任取两张,将它们的编号之和记为X。 (1) 求“X为奇数”的概率; (2)写出X的分布列,并求P(X4)。 数学试题 第7页 (共29页)
18、(本小题满分10分) 已知向量)1,2(a,),1(mb不共线。
(1) 若ab,求m的值;(2)若m<2,试判断是锐角还是钝角明理由.
19、(本小题满分10分) 已知数列{an}为等差数列,a2=5,a3=8.
(1)求数列{an}的通项公式. (2)设bn=21n,cn= an+ bn,*Nn,求数列{cn}的前n项和Sn. 数学试题 第8页 (共29页)
20、(本小题满分10分) 已知双曲线C:12222byax(a>0,b>0)的一条渐近线方程为xy22,且焦距为32.
(1)求双曲线C的方程. (2)设点A的坐标为(3,0),点P是双曲线C上的动点,当|PA|取最小值时,求点P的坐标.
注意:第21题(工科类),22题(财经、商贸与服务类)为选做题,请考生选择其中一题作答. 21、(本小题满分12分)
在ABC中,角A、B所对的边长分别为a、b,且a=6,b=2,060A.
(1)求B. (2)设复数z=a+(bsinB)i(i为虚数单位),求4z的值.