函数的基本性质知识点归纳与题型总结
高中函数基本性质知识点总结

高中函数基本性质知识点总结知识点概述关于函数的基本性质的知识点是一个系统的知识体系,需要重点掌握.知识点总结1.函数的有关概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)xA}叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.2.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)y=f(x),xA}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
高中数学函数知识点归纳及常考题型

高中数学函数知识点归纳及常考题型1.映射定义:对于非空集合A和B,若集合A中的每个元素a都与集合B中唯一的元素b对应,则称从A到B的对应为映射。
当集合A中有m个元素,集合B中有n个元素时,从A到B可以建立n个映射。
2.函数定义:函数是定义在非空数集A和B上的映射f。
此时,数集A是函数f(x)的定义域,集合C={f(x)|x∈A}是函数的值域,且C是B的子集。
3.函数的三个要素是定义域、对应法则和值域。
判断两个函数是否相同,需要同时考虑它们的定义域和值域以及对应法则。
4.求函数的定义域通常需要考虑以下因素:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题需要考虑实际意义;⑥正切函数角的终边不在y轴上。
5.求解函数解析式的方法包括:①配凑法;②换元法;③待定系数法;④赋值法;⑤消元法等。
6.求函数值域的方法包括:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。
7.函数单调性的证明方法:对于定义域内某个区间上的任意两个自变量的值x1和x2,当x1f(x2)),则称f(x)在该区间上是增函数(或减函数)。
8.求函数单调区间的方法包括:①定义法;②图象法;③同增异减原则。
9.函数的奇偶性:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x)(或f(-x)=-f(x)),则函数f(x)是偶函数(或奇函数)。
例如f(x)=x+2,f(x)=x-x等。
10.函数具有奇偶性的必要条件是其定义域关于原点对称。
因此,如果定义域不关于原点对称,则函数既不是奇函数也不是偶函数。
11.常用的判断函数奇偶性的形式包括:奇函数——f(-x)=-f(x),f(-x)+f(x)=0(对数函数);偶函数——f(-x)=f(x),f(-x)-f(x)=0,mf(-x)/f(x)=-1(指数函数)。
1.若函数f(x)为奇函数且在x=0处有定义,则f(0)=0.这个性质常用于待定系数的计算。
初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中的函数知识点主要包括函数的定义、函数的性质、函数的表示方法、函数之间的关系以及函数的应用等内容。
下面我将对这些知识点进行归纳总结。
一、函数的定义:1.自变量和因变量:函数是一种数与数之间的对应关系,其中自变量是输入的数值,因变量是输出的数值。
2.值域:函数的值域是所有可能输出的数值的集合,通常用符号D表示。
3.定义域:函数的定义域是所有可能输入的数值的集合,通常用符号R表示。
二、函数的性质:1.奇偶性:函数f(x)的性质与其自变量的奇偶性有关,如果f(-x)=f(x),则函数是偶函数;如果f(-x)=-f(x),则函数是奇函数。
2.单调性:函数在一些定义域上的增减性,可以分为递增和递减。
3.周期性:函数在一些定义域上的输出数值存在重复规律,称为函数的周期性。
三、函数的表示方法:1.函数表:通过给定自变量的数值,得出相应的因变量的数值。
2.函数图像:将函数的自变量和因变量分别作为x轴和y轴坐标,画出函数的图像。
3.函数公式:通过表示自变量与因变量之间关系的数学式子来表示函数。
四、函数之间的关系:1.复合函数:若函数f(x)的值域是另一个函数g(x)的定义域,则通过将f(x)的输出作为g(x)的输入,得到的新函数称为复合函数。
2.反函数:若函数f(x)的一些值对应唯一的自变量,且该自变量对应的值也能唯一地确定f(x)的值,则称函数f(x)具有反函数,记作f^(-1)(x)。
3.逆函数:若函数f(x)的自变量与因变量对换,得到新的函数g(x),则称g(x)为函数f(x)的逆函数,记作g(x)=f^(-1)(x)。
五、函数的应用:1.函数的模型:可以用函数来表示一些实际问题中的关系,如速度函数、利润函数等。
2.函数的最值:通过求函数的最大值和最小值,可以解决许多优化问题。
3.函数的图像在坐标系中的位置和形状:通过观察函数的图像,可以判断其基本形状、范围、特征点等。
六、常见的函数类型:1. 一次函数:f(x) = kx + b,其中k和b为常数,其图像为一条直线。
高中数学函数题型全归纳

高中数学函数题型全归纳
一、函数定义与性质
函数的基本定义:函数的定义域、值域、对应法则。
函数的性质:奇偶性、对称性、周期性、连续性等。
二、一次函数与反比例函数
一次函数的表达式及性质。
反比例函数的表达式及性质。
一次函数与反比例函数的图像及性质。
三、二次函数
二次函数的表达式及性质。
二次函数的图像及性质。
二次函数的极值问题。
四、分式函数与根式函数
分式函数的表达式及性质。
根式函数的表达式及性质。
分式函数与根式函数的图像及性质。
五、三角函数
正弦、余弦、正切的定义及性质。
三角函数的图像及性质。
三角函数的变换公式。
三角函数的值域及最值问题。
六、指数函数与对数函数
指数函数的表达式及性质。
对数函数的表达式及性质。
指数函数与对数函数的图像及性质。
指数函数与对数函数的运算性质。
七、幂函数与反函数
幂函数的表达式及性质。
反函数的定义及性质。
幂函数与反函数的图像及性质。
八、复合函数
复合函数的定义及性质。
复合函数的分解与化简。
复合函数的值域及最值问题。
复合函数的单调性及极值问题。
九、函数的单调性与极值
函数的单调性的判断方法。
函数的极值的定义及求法。
高中数学最全必修一函数性质详细讲解与知识点总结与题型详细讲解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。
构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x x f x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
函数的基本性质知识点及习题(附答案)

函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数的基本性质知识点总结

函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常以符号表示,例如f(x)。
2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。
它是函数能够有效进行计算的自变量的范围。
通常用符号表示为D(f)。
3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。
它是因变量的取值范围。
通常用符号表示为R(f)。
4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。
可以通过将自变量的取值代入函数的表达式来确定函数的图像。
5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。
一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。
一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。
6.单调性:函数的单调性指函数在定义域上的增减趋势。
一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。
一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。
7.周期性:函数的周期性指函数在定义域上以一定的周期重复。
一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。
8.连续性:函数的连续性指函数在定义域上的无间断性。
一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。
一个函数在整个定义域上连续,如果它在每个点都连续。
9.可导性:函数的可导性指函数在一些点上的导数是否存在。
函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。
10.极值:函数的极值指函数在定义域上的最大值和最小值。
一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。
一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。
函数的基本性质知识点总结

函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的基本性质知识点归纳与题型总结
一、知识归纳
1.函数的奇偶性
2.函数的周期性
(1)周期函数
对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期
如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
解题提醒:
①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.
②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)
=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).
③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.
题型一 函数奇偶性的判断
典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1)
1-x
1+x
; (2)f (x )=⎩
⎪⎨⎪⎧
-x 2+2x +1,x >0,
x 2+2x -1,x <0;
(3)f (x )=4-x 2
x 2;
(4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x
1+x ≥0,
所以-1<x ≤1,
所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法)
当x >0时,f (x )=-x 2+2x +1,
-x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1,
-x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).
所以f (x )为奇函数. 法二:(图象法)
作出函数f (x )的图象,由奇函数的图象关于原点对称的特征知函数f (x )为奇函数.
(3)因为⎩⎨
⎧
4-x 2≥0,
x 2≠0,
所以-2≤x ≤2且x ≠0,
所以定义域关于原点对称. 又f (-x )=
4-(-x )2(-x )
2
=
4-x 2x 2,
所以f (-x )=f (x ).故函数f (x )为偶函数. (4)函数的定义域为R , 因为f (-x )+f (x ) =log a [-x +
(-x )2+1]+log a (x +
x 2+1)
=log a (x 2+1-x )+log a (x 2+1+x )
=log a [(x 2+1-x )(
x 2+1+x )]
=log a (x 2+1-x 2)=log a 1=0, 即f (-x )=-f (x ),所以f (x )为奇函数.
通性通法:
判定函数奇偶性的3种常用方法 (1)定义法
(2)图象法
(3)性质法
①设f (x ),g (x )的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.
②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.
[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.
(2)判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.
题型二 函数的周期性
典型例题(1)已知函数f (x )=⎩
⎪⎨⎪⎧
2(1-x ),0≤x ≤1,x -1,1<x ≤2,若对任意的n ∈N *,
定义f n (x )=f {f [f …n 个
f (x )]},则f 2 019(2)的值为( )
A.0B.1
C.2 D.3
(2)设定义在R上的函数f(x)满足f(x+2)=f(x),且当x∈[0,2)时,f(x)=2x-x2,则f(0)+f(1)+f(2)+…+f(2 019)=________.
解析:(1)∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,
∴f n(2)的值具有周期性,且周期为3,
∴f2 019(2)=f3×673(2)=f3(2)=2,故选C.
(2)∵f(x+2)=f(x),
∴函数f(x)的周期T=2,
∵当x∈[0,2)时,f(x)=2x-x2,
∴f(0)=0,f(1)=1,
∴f(0)=f(2)=f(4)=…=f(2 018)=0,
f(1)=f(3)=f(5)=…=f(2 019)=1.
故f(0)+f(1)+f(2)+…+f(2 019)=1 010.
答案:(1)C(2)1 010
通性通法:
1.判断函数周期性的2个方法
(1)定义法.
(2)图象法.
2.周期性3个常用结论
(1)若f(x+a)=-f(x),则T=2a.
(2)若f(x+a)=1
f(x)
,则T=2a.
(3)若f(x+a)=-1
f(x)
,则T=2a(a>0).
题型三函数性质的综合应用
函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以选择题、填空题形式出现.
角度一:奇偶性的应用
1.函数y=f(x)是R上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=()
A.-2x B.2-x
C.-2-x D.2x
解析:选C x>0时,-x<0,∵x<0时,f(x)=2x,∴当x>0时,f(-x)=2-x.∵f(x)是R上的奇函数,∴当x>0时,f(x)=-f(-x)=-2-x.故选C.
角度二:单调性与奇偶性结合
2.已知f(x)为奇函数,且当x>0时,f(x)单调递增,f(1)=0,若f(x-1)>0,则x的取值范围为()
A.{x|0<x<1或x>2}B.{x|x<0或x>2}
C.{x|x<0或x>3} D.{x|x<-1或x>1}
解析:选A因为函数f(x)为奇函数,所以f(-1)=-
f(1)=0,又函数f(x)在(0,+∞)上单调递增,所以可作出函
数f(x)的示意图,如图,则不等式f(x-1)>0可转化为-1<x-1<0或x-1>1,解得0<x<1或x>2.
角度三:周期性与奇偶性结合
3.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为()
A.(-∞,-3) B.(3,+∞)
C.(-∞,-1) D.(1,+∞)
解析:选D∵f(x+3)=f(x),
∴f(x)是定义在R上的以3为周期的函数,
∴f(7)=f(7-9)=f(-2).
又∵函数f(x)是偶函数,
∴f(-2)=f(2),∴f(7)=f(2)>1,
∴a>1,即a∈(1,+∞).
角度四:单调性、奇偶性与周期性结合
4.定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,2)上单调递减,则下列结论正确的是()
A.0<f(1)<f(3) B.f(3)<0<f(1)
C.f(1)<0<f(3) D.f(3)<f(1)<0
解析:选C由函数f(x)是定义在R上的奇函数,得f(0)=0.
由f(x+2)=-f(x),
得f(x+4)=-f(x+2)=f(x),
故函数f(x)是以4为周期的周期函数,
所以f(3)=f(-1).
又f(x)在[0,2)上单调递减,
所以函数f(x)在(-2,2)上单调递减,
所以f(-1)>f(0)>f(1),
即f(1)<0<f(3).故选C.
通性通法:
函数性质综合应用问题的常见类型及解题策略
(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.
(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.
(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.。