圆的解题技巧与方法总结及练习

合集下载

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、题型归纳
1、求圆的半径和面积:
有时会给出圆的弦或者其他部分的参数,通过这些参数可以求出圆的半径和面积;有时可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的半径和面积;有时候还可以使用极坐标系来求解;
2、求圆的直径和周长:
一般来说周长=直径×π,可以利用这个公式求圆的周长;有时可以利用圆的性质,如圆的内接三角形、外接三角形等,来求圆的直径;也可以利用极坐标系来求解;
3、求圆心角:
有时给出的是圆的扇形的面积或者弧长,可以通过求出这个面积或者弧长对应的角度来求出圆心角;有时也给出的是圆弧上一点与圆心的连线,可以利用此线段及其他线段的角度来求出圆心角;
4、求圆的外接矩形或者其他图形:
有时给出的是圆的面积和某种图形的面积,可以计算出圆外接图形的面积,从而求出圆的外接矩形;有时也可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的外接矩形或者其他图形。

二、解题技巧
1、多用圆的性质:
圆的性质是圆的重要组成部分,其中有很多性质都可以用来帮助
解答圆的问题,如圆的内接三角形、外接三角形等;
2、注意圆的关键参数:
在回答圆的问题时,要特别注意特殊参数,如半径、直径等,它们可以使用其他参数来求出;
3、利用极坐标系:
极坐标系是求解圆的一种重要方法,它可以帮助我们简化复杂的问题,使得计算更简单、更快捷;
4、利用其他图形的特殊参数:
有些圆的题目可以利用其他图形的特殊参数来求解,例如外接矩形的长和宽,或者外接三角形的边长等。

圆的最值问题解题技巧

圆的最值问题解题技巧

圆的最值问题在数学中是一个非常重要且常见的问题。

解决这类问题需要掌握一些技巧和方法。

本文将介绍一些解决圆的最值问题的技巧,并提供一些实例以便更好地理解这些技巧。

一、理解圆的基本概念在解决圆的最值问题之前,我们首先要对圆的基本概念有一个清晰的理解。

圆是由平面上距离一个固定点距离相等的所有点组成的集合。

圆心是这个固定点,半径是连接圆心与圆上任意一点的线段的长度。

二、圆的最值问题的分类圆的最值问题可以分为两类:圆的周长最值问题和圆的面积最值问题。

1. 圆的周长最值问题圆的周长是围绕圆的边界走一圈所经过的路径长度。

当半径给定时,圆的周长最大值出现在圆的直径上,最小值出现在圆的半径为零的点上。

2. 圆的面积最值问题圆的面积是圆内部的区域的大小。

当圆的半径给定时,圆的面积最大值出现在半径最大的圆上,最小值出现在半径为零的点上。

三、解决圆的最值问题的技巧解决圆的最值问题需要使用一些数学工具和技巧。

下面列举一些常用的技巧:1. 构造函数对于圆的最值问题,可以通过构造一个函数来描述圆的特性。

例如,对于圆的周长最值问题,可以构造一个函数表示周长与半径之间的关系。

通过求导或者应用相关的数学方法,可以找到函数的最值点。

2. 应用不等式在解决圆的最值问题时,可以应用一些不等式来限制变量的取值范围。

例如,当半径为正数时,圆的面积大于等于零。

通过应用这个不等式,可以得到一些限制条件,帮助解决最值问题。

3. 应用几何性质圆的最值问题可以利用圆的几何性质进行求解。

例如,圆的周长与直径之间有一个定理,即周长等于直径乘以π。

通过应用这个几何性质,可以得到一些等式或者关系,帮助求解最值问题。

四、实例分析为了更好地理解解决圆的最值问题的技巧,以下提供两个实例进行分析。

实例1:求半径为r的圆的面积的最大值。

解析:根据圆的面积公式,可以得到圆的面积A等于π乘以半径的平方。

因此,问题可以转化为求函数A=πr^2的最大值。

通过求导,可以得到函数A'=2πr。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、关于圆形的题型归纳
1. 圆的概念:一种特殊的平面图形,具有圆心、半径和圆周的性质,由起点和终点构成的曲线,其形状和位置完全由圆心和半径控制。

2. 圆的性质:圆的面积等于圆的半径的平方乘以π,即S=πr2;圆的周长等于圆的半径乘以2π,即C=2πr。

3. 圆的分类:根据圆的形状可分为完全圆形,半圆形,四分圆形,椭圆形等。

4. 关于圆的极角:圆的极角为起点和终点之间的夹角;对任意一点在圆上,该点到圆心的距离称为该点的弦长,而连接该点和圆心的射线称为该点的极角,极角单位为度(°)。

5. 关于圆的直径、弦、弧、圆心角:直径是圆的最长的一条线段,其中任意两点到圆心的距离相等;弦是圆的一部分,由圆的两个端点和圆心连接而成的线段;弧是圆的一部分,由圆的两个端点和圆周连接而成的曲线;圆心角是两个弦的夹角,其角度值等于圆周长除以圆的直径所得到的结果。

二、解题技巧
1. 关于圆的题目一般都是关于坐标图形的,因此,解题的步骤就应当是确定坐标,然后根据坐标去求圆的性质,比如求圆心、半径、圆周等。

2. 在求解圆的性质时,可以利用两点定理、勾股定理等几何知
识,先求出圆上的点与点之间的距离,然后求出圆的半径,再根据圆的性质求其他的信息。

3. 在处理相关问题时,要掌握好圆的各项性质,不要忘记极角、直径、弦以及圆心角的概念,以免出现误解圆的基本性质,从而出现差错。

4. 针对求圆面积或圆周长的题目,要熟悉圆的性质,圆面积为πr2,圆周长为2πr,因此,只要计算出圆的半径,就可以得出答案。

利用圆的数学知识解决问题

利用圆的数学知识解决问题

利用圆的数学知识解决问题利用圆的数学知识可以解决许多与圆相关的问题,包括几何问题、三角学问题和应用问题等。

以下是一些常见的圆相关问题的解决方法示例:1.圆的周长和面积计算:圆的周长可以通过直径或半径来计算,使用周长公式C = 2πr 或C = πd,其中 r 为半径,d 为直径。

圆的面积可以使用面积公式A = πr² 计算。

2.弧长和扇形面积计算:如果知道圆的半径和弧度,则可以计算出弧长和相应的扇形面积。

弧长公式为S = rθ,其中 r 为半径,θ 为弧度。

扇形面积公式为A = 0.5r²θ,其中 r 为半径,θ 为弧度。

3.利用圆的相似性解决几何问题:当两个或多个圆几何相似时,可以利用相似三角形的属性来解决问题。

例如,通过比较相似几何形状的半径、弦长、弧长等,可以求解未知量。

4.角与弧的关系和计算:圆上的弦与其所对应的圆心角有一定的关系。

通过圆心角的角度计算,可以得到弦的长度、弧长和扇形面积等信息。

5.圆的内切和外接问题:圆内接于一个正多边形,可以通过正多边形的边长计算圆的半径。

圆外接于一个正多边形,可以通过正多边形的边长计算圆的直径。

6.圆与直线的交点和切线问题:根据圆的性质,可以计算圆与直线的交点数量和位置。

对于切线问题,可以利用切线与半径的垂直性和割线定理来求解。

7.圆与三角函数的关系:圆的单位圆定义是一个半径为1的圆,与三角函数的正弦、余弦和正切等有紧密的关联。

通过单位圆的角度,可以计算三角函数的值。

这些是一些利用圆的数学知识解决问题的示例,但并不限于此。

圆在数学中广泛应用,而解决特定问题可能需要应用多个圆相关概念和定理。

因此,理解圆的性质和运用适当的数学工具,结合实际问题,可以更好地解决与圆相关的数学问题。

圆的解题技巧总结

圆的解题技巧总结

圆的解题技巧总结一、垂径定理的应用给出的圆形纸片如图所示,如果在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,我们很容易发现A B两点重合,即有结论AP=BP弧AC= 弧BC.其实这个结论就是“垂径定理”,准确地叙述为:垂直于弦的直径平分这条弦,并且平分弦所对的弧.垂径定理是“圆”这一章最早出现的重要定理,它说明的是圆的直径与弦及弦所对的弧之间的垂直或平分的对应关系,是解决圆内线段、弧、角的相等关系及直线间垂直关系的重要依据,同时,也为我们进行圆的有关计算与作图提供了方法与依据.例1某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm水面最深地方的高度为4cm,求这个圆形截面的半径.例2如图,PQ=3以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,贝U AB=?例3 如图,已知OO 中,直径MN=10正方形ABCD的四个顶点分别在半径OM 0P以及00上,并且/ POM=4°,贝U AB的长为多少?例4图为小自行车内胎的一部分,如何将它平均分给两个小朋发做玩具?二、与圆有关的多解题几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解.1.忽视点的可能位置.例5 △ ABC是半径为2的圆的内接三角形,若BC=2/3cm,贝卩/A的度数为 __________________2.忽视点与圆的位置关系.例6 点P到O0的最短距离为2 cm,最长距离为6 cm,则O 0的半径是__________________3•忽视平行弦与圆心的不同位置关系.例7 已知四边形ABCD是O0的内接梯形,AB// CD AB=8 cm, CD=6 cm O0的半径是5 cm ,则梯形的面积是_________ .4.忽略两圆相切的不同位置关系例8 点P在O0外,0P=13 cm PA切O 0于点A, PA=12 cm ,以P为圆心作O P与O0 相切,贝UOP 的半径是______________________ .例9 若O O与O0 2相交,公共弦长为24 cm, O O与O0 2的半径分别为13 cm和15 cm, 则圆心距0102的长为_________________ .三、巧证切线切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点. 判断直线是否是圆的切线,主要有两条途径:1•圆心到直线的距离等于半径当题中没有明确直线与圆是否相交时, 可先过圆心作直线的垂线,然后证明圆心到直线的距离等于半径.例10 如图,P是/AOB的角平分线0C上一点,PDLOA于点D,以点P为圆心,PD为半径画O P,试说明0B是OP的切线.A2•证明直线经过圆的半径的外端,并且垂直于这条半径当已知直线与圆有交点时,连结交点和圆心(即半径),然后证明这条半径与直线垂直即可.例11 如图,已知AB为OO的直径,直线BC与O0相切于点B,过A作AD// 0C交O0 于点D,连结CD.⑴求证:CD是O0的切线;⑵若AD=2直径AB=6,求线段BC的长.四、结论巧用,妙解题例12 已知:如图,OO 为Rt△ ABC的内切圆,D E、F分别为AB AC BC边上的切点,求证:s ABC = AD BD .该结论可叙述为:“直角三角形的面积等于其内切圆与斜边相切的切点分斜边所成两条线段的乘积.”运用它,可较简便地解决一些与直角三角形内切圆有关的问题,举例如下:例13如图,O0为Rt△ ABC的内切圆,切点D分斜边AB为两段,其中AD= 10, BD= 3,求AC和BC的长.例14 如图,△ ABC 中/A 与/B 互余,且它们的角平分线相交于点 0,又0吐AC OFL BQ垂足分别为 E 、F , AC=10 BC = 13.求AE- BF 的值.五、点击圆锥的侧面展开图圆锥的侧面展开图是中考中的热点内容:解决此类问题的关键是明确圆锥的侧面展开图中各元素与圆锥各元素之间的关系:圆锥的侧面展开图是扇形,而扇形的半径是圆锥的母线,弧长是圆锥的底面周长. 例15若一个圆锥的母线长是它的底面半径长的展开图的圆心角是()A . 180° B . 90° C例16圆锥的侧面展开图是一个半圆面,则这个圆锥的母线长与底面半径长的比是()A.2:1 B.2 n :1 C . 、2 : 1 D . .. 3 : 1 例17如图,小红要制作一个高 4 cm,底面直径是若不计接缝,不计损耗,则她所需纸板的面积是 ()A. 15 n cm? B . 6 JT3兀 cm i C . 12 cm 例18下图是小芳学习时使用的圆锥形台灯罩的示意图,则围成这个灯罩的铁皮的面 积为__________ cmf .(不考虑接缝等因素,计算结果用 n 表示)BIn6 cm 的圆锥形小漏斗, 2 D . 30 cm六、例谈三角形内切圆问题三角形的内切圆是与三角形都相切的圆, 它的圆心是三角形三条角平分线的交点, 它到 三角形三边的距离相等, 它与顶点的连线平分内角•应用内心的性质,结合切线的性质、切线长的性质可以解决很多问题,现举例说明, 评注:圆锥的侧面积,需要熟练掌握其计算公式,理解圆锥的侧面积等于其剪开后扇形的面积. 例19 如图,有一块四边形形状的铁皮 ABCD BC=CD,AB= 2AD,/ ABC =Z ADB=90 .⑴求/C 的度数;(2)以C 为圆心,CB 为半径作圆弧 BD 得一扇形CBD 剪下该扇形并 用它围成一圆锥的侧面,若已知 BC = a ,求该圆锥的底面半径; ⑶ 在剩下的材料中,能否剪下一块整圆做该圆锥的底面?并说明理由.a例20 如图,△ ABC中,内切圆O I和边BC CA AB分别相切于点D E、F. 求证:(1) . FDE =90 —丄• A -2 ,A⑵BIC M例21如果△ ABC的三边长分别为a、b、c,它的内切圆O I半径为r,那么△ ABC勺面积为().A. (a b c)r B 12( a b C)rC. 2 (a b c) r D3 丄(a b - c) r 4七、阴影部分面积的求值技巧求阴影部分面积,通常是根据图形的特点,将其分解、转化为规则图形求解•但在转化过程中又有许多方法•本文精选几个题,介绍几种常用方法.1.直接法当已知图形为熟知的基本图形时,先求出适合该图形的面积计算公式中某些线段、角的大小,然后直接代入公式进行计算.例22 如图,在矩形ABCD中, AB=1, AD= 3,以BC的中点E为圆心的与AD相切于点P,则图中阴影部分的面积为()A. - B . 3-. C . D .—3 4 4 32.和差法当图形比较复杂时,我们可以把阴影部分的面积转化为若干个熟悉的图形的面积的和或差来计算.例23 如图,AB和AC是O0的切线,B C为切点,/ BAC=60 ,O0的半径为1,则阴影部分的面积是()A.出一2二B . C . 2 3飞D.厶3-二3.割补法把不规则的图形割补成规则图形,然后求面积.例24 如图,正方形ABCD勺顶点A是正方形EFGH勺中心,EF=6 cm则图中的阴影部分的面积为_________________ .4.等积变形法把所求阴影部分的图形进行适当的等积变形,即可找出与它面积相等的特殊图形,从而求出阴影部分面积.例25如图,C D两点是半圆周上的三等分点,圆的半径为R,求阴影部分的面积.A O B5.平移法把图形做适当的平移,然后再计算面积.例26 如图,CD是半圆0的直径,半圆0的弦AB与半圆0相切,点0在CD上,且AB//CD AB= 4,则阴影部分的面积是(结果保留n ).6. 整体法 例27如图,正方形的边长为 a ,分别以对角顶点为圆心, 边长为半径画弧, 则图中阴&聚零为整法例29如图所示,将半径为2 cm 的O0分割成十个区域,其中弦AB CD 关于点0对称, EF 、GH 关于点0对称,连结PM 则图中阴影部分的面积是 ______________________________ (结果用n 表示).H八、圆中辅助线大集合圆是初中重点内容, 是中考必考内容•关于圆的大部分题目常需作辅助线来求解•现对圆中辅助线的作法归纳总结如下: 1、有关弦的问题,常做其弦心距,构造直角三角形例30 如图,矩形 ABCD 与圆心在 AB 上的OO 交于点 G B F 、E , GB=8cm, AG= 1 cm,DE= 2 cm ,贝U EF= _____ cm.2、有关直径问题,常做直径所对的圆周角例31 如图,在△ ABC 中,/ C=90,以 BC 上一点0为圆心,以 OB 为半径的圆交 AB 于点M 交BC 于点N.⑴求证:AB BM =BC BN(2)如果CM 是O0的切线,N 为OC 的中点,当 AC = 3时,求 AB 的值.AB3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等 角关系 影部分的面积是 ()A. -la 2 —ra 2 B .2(a 2 -1 二 a 2) 24 4 C. 「a 21 2 .a D 2 .a - 1 2 a 2 27. 折叠法如图,半圆A 和半圆B 均与y 轴相切于点0,其直径CD EF 均和x 轴垂直,以0为顶点的两条抛物线分别经过点 C E 和点D F ,则图中阴影部分的面积是 ______________例28 E例32如图,AB AC分别是O0的直径和弦,点D为劣弧AC上一点,弦ED分别交O0 于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于P.⑴若PC= PF,求证:AB丄ED⑵点D在劣弧的什么位置时,才能使A D= DE- DF,为什么?4、两圆相切,常做过切点的公切线或连心线,充分利用连心线必过切点等定理例33 如图,O0 2与半圆O内切于点C,与半圆的直径AB切于D,若AB=6 O0 2的半径为1,则/ ABC 的度数为__________________________ .C、数学思想方法与中考能力要求数学思想和方法是数学的血液和精髓,是解决数学问题的有力武器,是数学的灵魂.因此,我们领悟和掌握以数学知识为载体的数学思想方法,是提高数学思维水平,提高数学能力,运用数学知识解决实际问题的有力保证,因此,我们在学习中必须重视数学思想在解题中的应用.一、数形结合思想.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合.通过对图形的认识,数形结合的转化,可培养同学们思维的灵活性、形象性,使问题化难为易,化抽象为具体.例1 MN是半圆直径,点A是的一个三等分点,点B是的中点,P是直径MN上的一动点,O0的半径是1,求AP+BP的最小值.二、转化思想转化思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换,使之转化,进而得到解决的一种方程,转化思想,能化繁为简,化难为易,化未知为已知.例2 如图,以00的直径BC为一边作等边△ ABC AB AC交O0于D E两点,试说明BD=DE=EC在同圆或等圆中,经常利用圆心角、圆周角、弧、弦等量的转化,说明其他量.所谓分类思想,就是当被研究的问题包含多种可能情况,不能一概而论时,必须按可能出现的所有情况来分别讨论,得出各种情况下相应的结论•分类必须遵循一定的原则:(1)每一次分类要按照同一标准进行;(2)不重、不漏、最简.例3 O0的直径AB=2 cm,过点A的两条弦AC= 2 cm, AD= 3 cm,求/ CAD所夹的圆内部分的面积.在圆中有许多分类讨论的题目希望同学们做题时,要全面、缜密,杜绝“会而不对, 对而不全”的现象.四、方程思想通过对问题的观察、分析、判断,将问题化归为方程问题,利用方程的性质和实际问题与方程的互相转化达到解决问题的目的.例4 如图,AB是O0的直径,点P在BA的延长线上,弦CDLAB垂足为E,且PC是OO 的切线,若OE:EA=1:2, PA= 6,求O0的半径.五、函数思想例5 (2005 •梅州市)如图,Rt△ ABC 中,/ ACB=90 , AC=4, BA=5,点P是AC上的动点(P不与A、C重合),设PC= x,点P到AB的距离为y.(1)求y与x的函数关系式;(2)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.例6 (2006 •烟台)如图,从O 0外一点A作O0的切线AB AC,切点分别为B、C,且O0直径BD= 6,连结CD AO.(1)求证:CD// AO(2)设CD=x AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+C B 11,求AB 的长.。

天津中考数学圆的题的解题技巧

天津中考数学圆的题的解题技巧

解题技巧一:掌握圆的基本概念1. 圆的定义:平面上与一个定点的距离等于r的全部点的集合,这个定点叫做圆心,距离r叫做半径。

2. 圆的元素:圆心、半径、直径、弧、弦、切线、切点等。

3. 圆的公式:圆的周长C=2πr,圆的面积S=πr²。

4. 圆的相关定理:相交弦定理、相交弧定理等。

解题技巧二:掌握圆的性质1. 圆的性质:相等弧对应的圆周角相等,相等弦对应的圆周角相等,等腰三角形的高与底的积等于弦的二倍等。

2. 圆的判定方法:判定两个角是否为圆周角的方法有:是否在同一个圆内;是否相等;是否有公共点。

判定两条线段是否是圆的切线的条件是:两条直线是否有公共点;是否存在一个等于半径长的线段。

3. 圆的位似性质:圆内接四边形的三对角顶点角之和为360°,圆外接四边形的对角之和为360°。

解题技巧三:掌握圆的作图方法1. 画圆的基本步骤:确定圆心、半径;用圆规或者圆规尺作出圆心;用圆规或者定长圆弧尺作出半径。

2. 圆的相关作图方法:圆的切线、圆的切点、平行于已知直线的直线上某点到圆的切点等。

解题技巧四:掌握圆的相关计算方法1. 计算圆的周长和面积2. 计算圆的相关角度3. 计算圆内接四边形或者外接四边形的顶点位置、角度等。

总结:天津中考数学中关于圆的题目难度适中,主要考核考生对圆的基本概念和性质的掌握程度,以及对圆的相关计算和作图方法的应用能力。

考生在备考过程中需加强对圆的定义、性质、公式的记忆和理解,掌握圆的相关计算和作图方法,并通过大量的练习题来提高解题能力。

通过巩固基础知识、强化实际应用能力,考生们一定能够在中考数学中圆的题目中取得好成绩。

解题技巧五:解题方法与实例分析在解答天津中考数学中关于圆的题目时,考生可以采用以下方法进行解题:1. 圆的基本概念题目当遇到关于圆的基本概念的题目时,首先需要理清题目中圆的定义、元素以及相关公式和定理,然后根据所给定的条件,应用数学知识进行分析和推理,得出结论。

初三数学圆的解题技巧

初三数学圆的解题技巧

初三数学圆的解题技巧圆,这个看似简单的图形,其实在数学的世界里,能让人乐此不疲。

初三的数学里,圆的题目总是充满了各种各样的考验,但只要掌握了几个关键技巧,你会发现解题其实没那么难。

今天咱们就来聊聊这些技巧,让你轻松应对圆的难题!1. 圆的基本概念1.1 圆的定义首先,咱们得知道什么是圆。

圆是由一个点(圆心)到圆上所有点的距离都相等的图形。

这个距离就是半径。

听起来简单吧?但这可是解圆题的基础哦。

1.2 圆的元素圆的基本元素有圆心、半径、直径、弦、切线。

圆心就是圆的中心点,半径是圆心到圆上任何一点的距离,直径则是穿过圆心的最长的线段,弦是圆内任意两点之间的线段,而切线则是与圆相切的直线。

这些概念都得熟记于心哦!2. 圆的常见问题与技巧2.1 弦的性质圆里的弦有个很重要的性质:在圆内,两条弦的长度如果相等,它们到圆心的距离也相等。

这就像两个“好朋友”,总是保持一样的距离。

利用这一点,可以帮助你解决很多涉及弦的题目。

2.2 圆心角与弦的关系圆心角就是圆心到圆上两点的夹角。

圆心角的一半就是弧所对的弦所夹的角,也就是所说的“圆周角”。

换句话说,圆心角越大,对应的弦也越长。

掌握这一点,你就能轻松搞定那些需要计算角度的题目。

2.3 切线与圆的关系切线和圆的关系特别简单:切线与圆在切点处垂直。

就是说,切线的斜率和圆的半径在切点处正好是“直的”。

这个性质常常用来求解与切线相关的题目,比如找切点或者切线的长度。

3. 解题策略3.1 画图“纸上得来终觉浅,绝知此事要躬行。

”解题时,画图是非常重要的一步。

画图不仅能帮助你理清思路,还能让你更好地理解题目中的条件和要求。

别怕麻烦,拿起铅笔动手画吧!3.2 应用公式圆的题目中,有几个公式是必备的,比如圆的周长公式(C = 2pi r)和圆的面积公式(A = pi r^2)。

这些公式的运用可以帮你快速解答涉及周长和面积的问题。

3.3 综合运用有些题目需要综合运用多个知识点,比如既要用到弦的性质,又要考虑圆心角和弧的关系。

九年级数学圆解题技巧

九年级数学圆解题技巧

九年级数学圆解题技巧
九年级数学圆部分是初中数学的一个重要内容,掌握解题技巧对于提高解题速度和正确率非常重要。

以下是一些常见的圆解题技巧:
1. 确定圆的性质:首先需要了解圆的基本性质,如圆周角定理、垂径定理等。

这些性质是解决圆问题的关键。

2. 利用半径、直径和弦之间的关系:在解题过程中,要善于利用半径、直径和弦之间的关系,如弦心距定理、切割线定理等。

3. 作辅助线:在解题过程中,有时需要作辅助线来帮助解决问题。

作辅助线的方法有很多,需要根据具体问题进行分析。

4. 利用相似三角形:在解决与圆有关的问题时,有时需要利用相似三角形来解决问题。

这时需要找到相似三角形,并利用相似比来求解。

5. 数形结合:在解决与圆有关的问题时,数形结合是一种常用的方法。

通过将问题转化为图形,可以更直观地理解问题,从而更快地找到解决方案。

6. 多做练习:要提高解决圆问题的能力,多做练习是必不可少的。

通过不断的练习,可以加深对圆的理解,掌握更多的解题技巧。

总之,解决圆问题需要掌握一定的技巧和方法,同时还需要多做练习,加深对圆的理解。

只有这样,才能更好地解决与圆有关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的解题技巧总结一、垂径定理的应用1、求半径例1.高速公路的隧道和桥梁最多.图1是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( )(A )5 (B )7 (C )375(D )3772、求弦长例2.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图2所示,则这个小孔的直径AB ____mm .3、求弦心距例3.如图4,圆O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 .4、求拱高(弓形高)例4.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图5所示,已知AB =16m ,半径 OA =10m ,高度CD 为_____m .5、求角度例5.如图6,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC =60º,则∠B = . 6、探究线段的最小值图3BA8mm图2图1B 图6 A 图5例6.如图,⊙O 的半径OA =10cm ,弦AB =16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm .二、与圆有关的多解题在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解. 1、点与圆的位置关系不唯一例1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为( )。

2、弦与弦的位置关系不唯一例2.⊙O 的半径为5cm ,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 与CD 之间的距离是( )。

(A )7cm (B )8cm (C )7cm 或1cm (D1cm 例3.如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,AB=2,AC=,在图中画出弦AD ,使AD 等于1,并求出∠CAD 的度数。

3、点在直径上的位置不唯一例4.已知⊙O 的直径AB=10cm ,弦CD ⊥AB 于点M 。

若OM :OA=3:5,则弦AC 的长为多少?4、弦所对圆周角的不唯一例5.圆的一条弦长等于它的半径,那么这条弦所对的圆周角为( )。

(A )30°或60°(B )60°(C )150°(D )30°或150° 5、圆与圆的位置关系不唯一例6.如果两圆相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( )。

(A )5cm (B )11cm (C )3cm (D )11cm 或5cm 6、相交圆圆心与公共弦的位置关系不唯一图7例7.已知相交两圆的半径分别为5cm和4cm,公共弦长6cm,则这两个圆的圆心距为。

分析:两圆圆心可能在公共弦的同侧,也可能在公共弦的异侧。

三、巧证切线判断直线是否是圆的切线,主要有两条途径:1.圆心到直线的距离等于半径当题中没有明确直线与圆是否相交时,可先过圆心作直线的垂线,再证明圆心到直线的距离等于半径.例1如图,P是∠AOB的角平分线OC上一点,PD⊥OA于点D,以点P为圆心,PD为半径画⊙P,试说明OB是⊙P的切线.2.证明直线经过圆的半径的外端,并且垂直于这条半径当已知直线与圆有交点时,连结交点和圆心(即半径),然后证明这条半径与直线垂直即可.例2 如图,已知AB为⊙O的直径,直线BC与⊙0相切于点B,过A作AD∥OC交⊙0于点D,连结CD.(1)求证:CD是⊙0的切线;(2)若AD=2,直径AB=6,求线段BC的长.四、“圆中辅助线”作法探究弦与弦心距,密切相连系.直径对直角,圆心作半径.已知有两圆,常画连心线. 遇到相交圆,连接公共弦.遇到相切圆,作条公切线.“有点连圆心,无点作垂线.”切线证明法,规律记心间.1、根据垂径定理及其推论,过圆心作弦的垂线(作弦心距).例1 半径为5的圆中,求两条长为8和6的平行弦之间的距离.2、连结圆上的有关点,根据同圆(或等圆)中,圆周角、圆心角、弦、弧之间的转换关系,解决问题.例2 已知:在△ABC中,AB=AC,BD平分∠ABC,△ABD的外接圆交BC于E.求证:AD=EC.3、当题目中有直径这一条件时,常利用“直径所对的圆周角是直角”添加辅助线.例3 已知:在Rt△ABC中∠ABC=90º,以AB为直径作☉O交AC于D,DE切☉O于D且交BC于E. 求证:BE=EC.4、作过切点的半径(或直径).当题中有切线时,常连结过切点的半径或直径,利用切线与它垂直的特点.有时也作过切点的弦,沟通弦切角与圆心角、圆周角之间的联系.例4 已知:在Rt△ABC中,∠C=90º,BC是☉O的直径,AB交☉O于D,DE切☉O于D,交AC于E. 求证:OE∥BA.5、当题中有两圆相切时,首先考虑的是过切点作两圆的公切线,由此沟通弦切角与圆周角之间的联系.有时也作两圆的连心线,利用切点在连心线上沟通圆心距与两圆半径之间的联系.例5 已知:两圆外切于点P,一条割线分别交两圆于A、B、C、D四点.求证:∠APD+∠BPC=180º.例6 已知:两圆内切于点P,大圆的弦AD 交小圆于B 、C 两点. 求证:∠APB=∠CPD.6、两圆相交时,作两圆的公共弦,以两圆的公共弦作为“桥梁”沟通两圆的圆周角和其他角之间的联系. 例7 已知:☉O 1与☉O 2相交于A 、B 两点,E 为☉O 1上的一点,EF 切☉O 1于点E,EA 、EB 的延长线交☉O 2于C 、D 两点. 求证:EF ∥CD.7、代数、几何的综合题型.例8 如图,在Rt △AOC 中,直角边OA 在X 轴负半轴上,OC 在Y 轴正半轴上,点F 在AO 上,以点F 为圆心的圆与Y 轴、AC 边相切,切点分别为O 、D,☉F 与X 轴的另一个交点为E.若tanA=34 ,☉F 的半径为32 .(1)、求过A 、C 两点的一次函数解析式;(2)、求过E 、D 、O 三点的二次函数解析式; (3)、证明(2)中抛物线的顶点在直线AC 上.[练习]1.已知:P 是⊙O 外一点,PB ,PD 分别交⊙O 于A 、B 和C 、D ,且AB=CD.求证:PO 平分∠BPD .2.如图,ΔABC 中,∠C=90°,圆O 分别与AC 、BC 相切于M 、N ,点O 在AB 上,如果AO=15㎝,BO=20㎝,求圆O 的半径.3.已知:□ABCD 的对角线AC 、BD 交于O 点,BC 切⊙O 于E 点.求证:AD 也和⊙O 相切.ABCDOE4.如图,A 是半径为1的圆O 外的一点,OA=2,AB 是圆O 的切线,B 是切点,弦BC ∥OA ,连结AC ,求阴影部分的面积.A5.如图,已知AB 是⊙O 的直径,CD 是弦,AE ⊥CD ,垂足为E,BF ⊥CD ,垂足为F.求证:DE=CF.6.如图,O 2是⊙O 1 上的一点,以O 2为圆心,O 1O 2为半径作一个圆交⊙O 1 于C ,D .直线O 1O 2分别交⊙O 1 于延长线和⊙O 1 ,⊙O 2于点A 与点B .连结AC ,BC .⑴求证:AC=BC ;⑵设⊙O 1 的半径为r ,求AC 的长.⑶连AD ,BD ,求证:四边形ADBC 是菱形;⑷当r=2时,求菱形ADBC 的面积.A CDO 1 O 2B . ....N7.已知:如图,AB 是⊙O 的直径,BC 是⊙O 的切线,连AC 交⊙O 于D ,过D 作⊙O 的切线EF ,交BC 于E 点.求证:OE //AC.8.已知:图a ,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,OC 平行于弦AD .求证:(1)DC 是⊙O 的切线,(2)过D 点作DE ⊥AB ,图b 所示,交AC 于P 点,请考察P 点在DE 的什么位置?并说明理由.B图aB图b五、与圆有关的计算 ◆考点链接1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n°的圆心角所对的弧长为 .2. 圆的面积为 ,扇形面积公式:1°的圆心角所在的扇形面积为 ,(1)n°的圆心角所在的扇形面积为S= 2R π⨯;(2)弧长为L 的扇形面积是S 扇形=12RL .3. 圆柱的侧面积公式:S=2rl π.(其中r 为 的半径,l 为 的高)4. 圆锥的侧面积公式:S=rl π.(其中r 为 的半径,l 为 的长) 明确圆锥的侧面展开图是扇形,而扇形的半径是圆锥的母线,弧长是圆锥的底面周长. 圆锥的侧面积等于其剪开后扇形的面积. ◆典例解析例1(黑龙江哈尔滨)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ). A .36π B .48π C .72π D .144π例2(新疆)如图,已知菱形ABCD 的边长为1.5cm ,B C ,两点在扇形AEF 的上,求的长度及扇形ABC 的面积.BCD AE F例3(湖北襄樊)如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC .BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)◆中考演练 一、选择题1.(东营)将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( ) A .10cm B .30cm C .40cm D .300cm2.(陕西)若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( )A .1.5 B .2 C .3 D .63.(广州)已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sinθ的值为( )A.125B.135C.1310D.13124.(济南)在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( )A .230cm B .230cm π C .260cm π D .2120cm 二、填空题1.450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA 上,点D .E 在OB 上,点F 在弧AB 上,则阴影部分的面积为(结果保留π) .2.(长春)如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留π).3.(浙江台州)如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC .三角板绕直角顶点C 逆时针旋转,当点A 的对应点'A 落在AB 边的起始位置上时即停止转动,则B 点转过的路径长为 .B 'A 'C AB 第3题第2题图C AB4. (湖北黄冈) 矩形ABCD 的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置1111A B C D 时(如图所示),则顶点A所经过的路线长是_________. 三、解答题(湖南衡阳)如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD . (1)求证:AC=BD ;(2)若图中阴影部分的面积是243cm π,OA=2cm ,求OC 的长.六、阴影部分面积的求值技巧 求阴影部分面积,通常是根据图形的特点,将其分解、转化为规则图形求解.但在转化过程中又有许多方法.1.直接法当已知图形为熟知的基本图形时,先求出适合该图形的面积计算公式中某些线段、角的大小,然后直接代入公式进行计算.例1 如图,在矩形ABCD 中,AB=1,AD=3,以BC 的中点E 为圆心的与AD 相切于点P ,则图中阴影部分的面积为( )A .π32B .π43C .π43D .3π 2.和差法当图形比较复杂时,我们可以把阴影部分的面积转化为若干个熟悉的图形的面积的和或差来计算. 例2 如图,AB 和AC 是⊙0的切线,B 、C 为切点,∠BAC=60°,⊙0的半径为1,则阴影部分的面积是( )A .π323-B .33π-C .332π- D .π-32例3 如图,正方形的边长为a ,分别以对角顶点为圆心,边长为半径画弧,则图中阴影部分的面积是( ) A .224121a a π+-B .)41(222a a π-C .22.21a a π+-D .2221a a π-3.割补法把不规则的图形割补成规则图形,然后求面积.例4如图所示,将半径为2 cm的⊙0分割成十个区域,其中弦AB、CD关于点0对称,EF、GH关于点0对称,连结PM,则图中阴影部分的面积是______(结果用π表示).4.等积变形法把所求阴影部分的图形进行适当的等积变形,即可找出与它面积相等的特殊图形,从而求出阴影部分面积.例5如图,C、D两点是半圆周上的三等分点,圆的半径为R,求阴影部分的面积.5.平移法把图形做适当的平移,然后再计算面积.例6 如图,CD是半圆0的直径,半圆0的弦AB与半圆O' 相切,点O' 在CD上,且AB∥CD,AB=4,则阴影部分的面积是(结果保留π).6.折叠法例7如图,半圆A和半圆B均与y轴相切于点0,其直径CD,EF均和x轴垂直,以0为顶点的两条抛物线分别经过点C、E和点D、F,则图中阴影部分的面积是______.七、数学思想方法与中考能力要求1、数形结合思想.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合.通过对图形的认识,数形结合的转化,可使问题化难为易,化抽象为具体.例1 MN是半圆直径,点A是的一个三等分点,点B是的中点,P是直径MN上的一动点,⊙0的半径是1,求AP+BP的最小值.2、转化思想转化思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换,使之转化,进而得到解决的一种方程,转化思想,能化繁为简,化难为易,化未知为已知.例2 如图,以0⊙的直径BC为一边作等边△ABC,AB、AC交⊙0于D、E两点,试说明BD=DE=EC.在同圆或等圆中,经常利用圆心角、圆周角、弧、弦等量的转化,说明其他量.3、分类思想所谓分类思想,就是当被研究的问题包含多种可能情况时,不能一概而论,必须按可能出现的所有情况来分别讨论,得出各种情况下相应的结论.分类必须遵循一定的原则:(1)每一次分类要按照同一标准进行;(2)不重、不漏、最简.例3 ⊙0的直径AB=2 cm,过点A的两条弦AC=2cm,AD=3cm,求∠CAD所夹的圆内部分的面积.4、方程思想通过对问题的观察、分析、判断,将问题转化为方程问题予以解决.例4如图,AB是⊙0的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC是⊙O的切线,若OE:EA=1:2,PA=6,求⊙0的半径.5、函数思想例5如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合),设PC =x,点P到AB的距离为y.(1)求y与x的函数关系式;(2)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围.例6(烟台)如图,从⊙0外一点A作⊙0的切线AB、AC,切点分别为B、C,且⊙0直径BD=6,连结CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.八、圆的基本解题思路:1、角度问题: a.通过弧来找角 b.等腰、全等、直角c.弦切角等于弦所对圆周角2、证明两弧相等或两弦相等:a、圆周角或圆心角相等b、两弦相等/两弧相等c、垂径定理,即弦心距相等3、求弦长:a.垂径定理 b.弦与直径构成的直角三角形c.弦与两半径构成的特殊三角形4、证明一条直线是圆的切线的方法: a.切点确定时,证明直线垂直于半径 b.切点不确定,证明圆心到直线的距离等于半径5、两圆相交: a.连接圆心与交点,利用弧的度数求解。

相关文档
最新文档