中考数学圆的解题方法归纳总结与例题分析报告

合集下载

2012中考数学复习(47):圆与圆(二)

2012中考数学复习(47):圆与圆(二)

中考数学复习(47):圆与圆(二)知识考点:1、掌握两圆的内外公切线长的性质和求切线长的方法(转化为解直角三角形)。

2、掌握有关两圆的内、外公切线的基本图形,以及这类问题添加辅助线的方法,会结合圆的切线的性质解决有关两圆公切线的问题。

精典例题:【例1】如图,⊙O 1与⊙O 2外切于P ,AB 是两圆的外公切线,切点为A 、B ,我们称△PAB 为切点三角形,切点三角形具有许多性质,现总结如下:(1)△PAB 是直角三角形,并且∠APB =900; (2)△PAB 的外接圆与连心线O 1O 2相切;(3)以O 1O 2为直径的圆与Rt △PAB 的斜边AB 相切; (4)斜边AB 是两圆直径的比例中项;(5)若⊙O 1、⊙O 2的半径为1R 、2R ,则PA ∶PB ∶AB =1R ∶2R ∶21R R +; (6)内公切线PC 平分斜边AB ; (7)△CO 1O 2为直角三角形。

这些结论虽然在证题时仍需证明,但有了这些基本结论作基础,可帮助你迅速找到解题思路,可以提高解题速度,下面用一个具体的例子来说明。

例1图1例1图2F如图2,⊙A 和⊙B 外切于P ,CD 为两圆的外公切线,C 、D 分别为切点,PT 为内公切线,PT 与CD 相交于点T ,延长CP 、DP 分别与两圆相交于点E 、F ,又⊙A 的半径为9,⊙B 的半径为4。

(1)求PT 的长;(2)求证:PF PE PD PC ⋅=⋅;(3)试在图中找出是线段PA 和PB 比例中项的线段,并加以证明。

分析:图中的基本图形是切点三角形,易证T 为CD 的中点,∠CPD =900,PT 即为外公切线长的一半,CF 、DE 分别为两圆直径,且互相平行,问题就解决了。

略解:(1)作BG ⊥AC 于G ,则CD =BG =12)49()49(22=--+∴PT =CT =TD =21CD =6 证明:(2)PT =21CD ,∴∠CPD =900 ∴CF 、DE 分别是⊙A 和⊙B 的直径又∵CD 切两圆于C 、D ,∴FC ⊥CD ,ED ⊥CD∴CF ∥DE ,∴PDPFPE CP =,∴PF PE PD PC ⋅=⋅ (3)图中是PA 和PB 比例中项的线段有PT 、CT 、DT (证明略)【例2】如图,⊙O 和⊙O '内切于点B ,⊙O '经过O ,⊙O 的弦AE 切⊙O '于点C ,AB 交⊙O '于D 。

中考数学知识总结之隐圆解题模型归纳总结

中考数学知识总结之隐圆解题模型归纳总结

中考数学知识总结之隐圆解题模型归纳总结一、引言隐圆模型是初中数学中的一个重要题型,它涉及到圆的性质、直线与圆的位置关系等多个知识点。

这类题目具有一定的难度,需要学生具备较强的逻辑思维能力和空间想象能力。

本文将对初中数学中的隐圆模型题型进行归纳总结,以帮助学生更好地掌握这一知识点。

二、隐圆模型的定义与性质隐圆模型是指在一个平面图形中,通过一些已知条件,可以推断出一个或多个圆的存在,但这些圆在题目中并未直接给出。

隐圆模型具有以下性质:1.圆的半径、圆心位置与已知条件有关;2.可以通过已知条件确定圆的方程;3.直线与圆的位置关系可以帮助判断隐圆的存在。

三、隐圆模型题型的分类与解题方法1.单隐圆模型题目中只涉及到一个隐圆的情况。

解题方法:首先根据已知条件推断出隐圆的存在,然后利用圆的性质确定圆的方程,最后结合题目要求求解。

1.多隐圆模型题目中涉及到多个隐圆的情况。

解题方法:首先分别推断出各个隐圆的存在,然后根据直线与圆的位置关系,确定各个隐圆之间的关系,最后联立方程求解。

四、典型例题解析1.单隐圆模型例题:已知三角形ABC中,AB=AC,且BC边上的中线AD垂直于BC。

求证:三角形ABC的外接圆半径等于AD的一半。

解析:首先根据已知条件推断出三角形ABC的外接圆存在,然后利用圆的性质和已知条件确定圆的方程,最后求解得出结论。

1.多隐圆模型例题:已知平面内两个不相交的圆O1和O2,以及两条直线L1和L2。

L1与O1相切,L2与O2相切,且L1与L2平行。

求证:在L1与L2之间存在一个与两圆都相切的隐圆。

解析:首先根据已知条件推断出隐圆的存在,然后利用直线与圆的位置关系确定各个圆的关系和隐圆的方程,最后结合题目要求证明隐圆的存在并求解相关参数。

五、总结与建议本文通过对初中数学隐圆模型题型的归纳总结,介绍了隐圆模型的定义、性质、分类以及解题方法。

希望学生在学习和练习过程中,能够充分理解隐圆模型的本质,掌握解题方法和技巧,不断提高自己的解题能力和思维水平。

“中考数学专题复习--圆来如此简单”经典几何模型之隐圆专题

“中考数学专题复习--圆来如此简单”经典几何模型之隐圆专题

“中考数学专题复习--圆来如此简单”经典几何模型之隐圆专题(含答案)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--经典几何模型之隐圆”“圆来如此简单”一.名称由来在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。

正所谓:有“圆”千里来相会,无“圆”对面不相逢。

“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。

一旦“圆”形毕露,则答案手到擒来!二.模型建立【模型一:定弦定角】【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】【模型三:直角所对的是直径】【模型四:四点共圆】三.模型基本类型图形解读【模型一:定弦定角的“前世今生”】【模型二:动点到定点定长】【模型三:直角所对的是直径】【模型四:四点共圆】四.“隐圆”破解策略牢记口诀:定点定长走圆周,定线定角跑双弧。

直角必有外接圆,对角互补也共圆。

五.“隐圆”题型知识储备3六.“隐圆”典型例题 【模型一:定弦定角】1.(2017 威海)如图 1,△ABC 为等边三角形,AB =2,若 P 为△ABC 内一动点,且满足 ∠PAB =∠ACP ,则线段 P B长度的最小值为_。

简答:因为∠PAB =∠PCA ,∠PAB +∠PAC =60°,所以∠PAC +∠PCA =60°,即∠APC =120°。

因为 A C 定长、∠APC =120°定角,故满足“定弦定角模型”,P 在圆上,圆周角∠APC =120°,通过简单推导可知圆心角∠AOC =60°,故以 AC 为边向下作等边△AOC ,以 O 为圆心,OA 为半径作⊙O ,P 在⊙O 上。

当 B 、P 、O 三点共线时,BP 最短(知识储备一:点圆距离),此时 BP =2 -22. 如图 1 所示,边长为 2 的等边△ABC 的原点 A 在 x 轴的正半轴上移动,∠BOD =30°,顶点 A 在射线 OD 上移动,则顶点 C 到原点 O 的最大距离为 。

圆中考常考题型

圆中考常考题型

圆中考常考题型摘要:1.圆的概述2.圆的性质3.常考题型及解题方法4.总结与建议正文:一、圆的概述圆是几何学中的一种基本图形,它是由一条闭合的曲线组成,其上所有点到某一固定点的距离相等。

这个固定点被称为圆心,距离被称为半径。

圆可以根据其半径和圆心的位置进行分类,如以圆心为中心,半径为R 的圆可以表示为(x-a)+(y-b)=R。

二、圆的性质圆具有许多重要的性质,如:1.圆的周长:C=2πR,其中R 为半径,π为圆周率。

2.圆的面积:S=πR。

3.圆的切线:与圆相切且与圆只有一个公共点的直线称为圆的切线。

4.圆的割线:过圆上一点且与圆相交的直线称为圆的割线。

5.圆的同心圆:与已知圆有共同圆心的圆称为同心圆。

6.圆的公切线:与两个圆都相切的直线称为公切线。

三、常考题型及解题方法在中考数学中,圆的题型丰富多样,主要包括以下几种:1.求圆的周长、面积及半径解法:根据圆的性质,直接套用公式进行计算。

2.求圆的切线、割线长度解法:利用切线、割线与半径的关系进行计算。

3.判断两圆的位置关系解法:根据两圆的半径大小和圆心距进行判断,如外离、外切、相交、内切、内含等。

4.求圆与直线的交点解法:利用解析几何中的公式,如点到直线距离公式、直线与圆的位置关系等。

5.圆与圆的位置关系及应用解法:根据两圆的位置关系,利用公式进行计算,如求公共弦、公共切线等。

四、总结与建议对于圆的题型,我们要熟练掌握圆的性质和公式,并能灵活运用到实际问题中。

在做题过程中,要注重分析题目,找到问题的关键点,运用相应的知识点进行解答。

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。

天津中考数学圆的题的解题技巧

天津中考数学圆的题的解题技巧

解题技巧一:掌握圆的基本概念1. 圆的定义:平面上与一个定点的距离等于r的全部点的集合,这个定点叫做圆心,距离r叫做半径。

2. 圆的元素:圆心、半径、直径、弧、弦、切线、切点等。

3. 圆的公式:圆的周长C=2πr,圆的面积S=πr²。

4. 圆的相关定理:相交弦定理、相交弧定理等。

解题技巧二:掌握圆的性质1. 圆的性质:相等弧对应的圆周角相等,相等弦对应的圆周角相等,等腰三角形的高与底的积等于弦的二倍等。

2. 圆的判定方法:判定两个角是否为圆周角的方法有:是否在同一个圆内;是否相等;是否有公共点。

判定两条线段是否是圆的切线的条件是:两条直线是否有公共点;是否存在一个等于半径长的线段。

3. 圆的位似性质:圆内接四边形的三对角顶点角之和为360°,圆外接四边形的对角之和为360°。

解题技巧三:掌握圆的作图方法1. 画圆的基本步骤:确定圆心、半径;用圆规或者圆规尺作出圆心;用圆规或者定长圆弧尺作出半径。

2. 圆的相关作图方法:圆的切线、圆的切点、平行于已知直线的直线上某点到圆的切点等。

解题技巧四:掌握圆的相关计算方法1. 计算圆的周长和面积2. 计算圆的相关角度3. 计算圆内接四边形或者外接四边形的顶点位置、角度等。

总结:天津中考数学中关于圆的题目难度适中,主要考核考生对圆的基本概念和性质的掌握程度,以及对圆的相关计算和作图方法的应用能力。

考生在备考过程中需加强对圆的定义、性质、公式的记忆和理解,掌握圆的相关计算和作图方法,并通过大量的练习题来提高解题能力。

通过巩固基础知识、强化实际应用能力,考生们一定能够在中考数学中圆的题目中取得好成绩。

解题技巧五:解题方法与实例分析在解答天津中考数学中关于圆的题目时,考生可以采用以下方法进行解题:1. 圆的基本概念题目当遇到关于圆的基本概念的题目时,首先需要理清题目中圆的定义、元素以及相关公式和定理,然后根据所给定的条件,应用数学知识进行分析和推理,得出结论。

中考数学常见问题汇总及解决方案整理

中考数学常见问题汇总及解决方案整理

中考数学常见问题汇总及解决方案整理自信,是成功的一半;平澹,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。

自信的你,定会在中考中摘取桂冠。

下面是小编给大家带来的中考数学常见问题汇总及解决方案,欢迎大家阅读参考,我们一起来看看吧!初中数学要学会解题套路老师一讲就明白,自己一做就不会我们先来说说“老师一讲马上就明白,自己一做就不会”的情况。

该怎么办呢?解题关键:要学会找题目的套路,一是从题眼抓做题点,二是总结题目类型。

这句话你应该也听过很多遍了吧,可你依旧不明白该怎么入手。

老师举个例子,你就一目了然了。

下面是关于圆的题目。

【例1】先不用看题,直接看图,当我们看到这个图的时候如果你总结过,你会发现①△ABC和△DBE相似;②∠ABC和∠DBE相等,代表着这两个角的三角函数值是相等的。

那么这就已经给我们两种思路了。

再看题目,求DE的长,无论是用①相似三角形的相似比来求,还是用②的三角函数值相等都可以。

再看第二问,问题是求一个三角形是等腰三角形,那么对于该问的考法有①腰底不定,分类讨论哪条线为底或腰,②三角形是等腰三角形,需要证角相等再证腰相等。

如果你做求等腰三角形的题目时分析过解题过程,这两个考法是你看一眼立马就闪现在脑子里的东西。

再看条件,题目告诉我们EF是圆O的切线,也就代表着OE垂直于EF,不管你有没有想法,都可以去考虑连接OE了。

题眼说了句是切线,就要想到连接圆心和切点了,不然告诉你这句话还有什么用呢!听题眼的话。

在这道题目里,我们分析了题眼和解题过程,总结了题眼的隐含条件,总结了问题的考法,这个过程就是我们题型总结的过程。

总结了一道题,当你看到类似的题目时,自然知道怎么做了。

再来看我们的第二题。

第一问,求相切,自然你知道是求DF⊥AB,怎么求呢?题目说了BD是平分线,对于平分线来说有两个特点:①角相等;②角平分线上点到角的两边距离相等;这两个条件都是题目中“BD平分∠ABC”告诉我们的。

中考圆的七大解题模型

中考圆的七大解题模型

中考圆的七大解题模型中考圆的七大解题模型是指在中考数学中与圆相关的常见问题的解题方法。

这其中包括以下七种解题模型:一、圆的性质运用模型:在解题过程中,我们可以利用圆的性质进行分析和计算。

例如,圆的周长计算公式2πr、面积计算公式πr²等,可以帮助我们解决与周长、面积相关的问题。

二、切线与弦模型:切线与弦是圆中常见的线段,可以利用它们之间的关系进行问题的解答。

比如,利用切线与半径垂直的性质,可以解决与切线长度、切点的位置等问题。

三、正多边形内接圆模型:正多边形内接圆是指一个正多边形内切于一个圆。

利用正多边形内接圆的一些性质,我们可以解决一些和正多边形和圆有关的问题,如多边形的边长、圆的半径等。

四、弦长定理模型:弦长定理是指在一个圆上,两条弦的乘积等于它们分别对应的弦分割的弧段的乘积。

通过运用弦长定理,我们可以解决与圆弧长、圆心角度、弦长等问题。

五、割线模型:割线是指一条直线穿过圆内部,并且与圆的边界有两个交点。

利用割线与弦之间的关系,我们可以解决与割线长、弦长、切点位置等问题。

六、相切与相交模型:当两个圆相切或相交时,它们之间会存在一些特殊的关系。

利用这些关系,我们可以解决与两个圆的半径、圆心、切点、相交弦等问题。

七、轨迹模型:轨迹是指在一定条件下,一个点、一条线或一个图形所组成的曲线或曲面。

利用轨迹的特点,我们可以解决与圆的半径、圆心位置、点的位置等问题。

通过掌握这七大解题模型,我们可以更加方便地解决中考数学中与圆相关的各种问题,提高解题的效率和准确性。

同时,也能够培养我们对于几何形体的认识和推理能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学圆的解题方法归纳总结及例题分析
1.遇到弦时(解决有关弦的问题时)
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

作用:①利用垂径定理;
②利用圆心角及其所对的弧、弦和弦心距之间的关系;
③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

例1:
例2:
2.遇到有直径时
常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形。

3.遇到90°的圆周角时
常常连结两条弦没有公共点的另一端点。

作用:利用圆周角的性质,可得到直径。

例题:如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D;求证:BC是过A,D,C三点的圆的切线
解:(1)作出圆心O,
以点O为圆心,OA长为半径作圆
(2)证明:∵CD⊥AC,∴∠ACD=90°∴AD是⊙O的直径
连结OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A =30°
∴∠BCO=∠ACB-∠ACO =120°-30°=90°∴BC⊥OC,∴BC是⊙O的切线. 4.遇到弦时
常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:①可得等腰三角形;
②据圆周角的性质可得相等的圆周角。

如图,△ABC是⊙O的接三角形,AD是⊙O 的直径,若∠ABC=50°,求∠CAD的度数。

解:连接CD,∠ADC=∠ABC=50°,∵AD是⊙O 的直径,∴∠ACD=90°∴∠CAD+∠ADC=90°∴∠CAD=90°-∠ADC=90°-50°= 40°
5.遇到有切线时
(1)常常添加过切点的半径(连结圆心和切点)
作用:利用切线的性质定理可得到直角或直角三角形。

(2)常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。

例题:如图,AB是⊙O的直径,弦AC与AB成30°角,CP与⊙O切于C,交AB•的延长线于D,(1)求证:AC=CP.(2)若CP=6,求图中阴影部分的面积(结果精确到0.1)。

解:(1)连结OC,∵AO=OC,∴∠ACO=∠A=30°,∴∠COP=2∠ACO=60°
∵PC切⊙O于点C,∴OC⊥PC,∴∠P=30°,∴∠A=∠P,∴AC=PC。

6.遇到证明某一直线是圆的切线时
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。

(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

7.遇到两相交切线时(切线长)
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。

作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;
③全等、相似三角形。

例题:如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为______________
答案∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即
PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.
8.遇到三角形的切圆时
连结心到各三角形顶点,或过心作三角形各边的垂线段。

作用:利用心的性质,可得:
①心到三角形三个顶点的连线是三角形的角平分线;
②心到三角形三条边的距离相等。

例题:△ABC的切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.
根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.
根据题意,得
x+y=9
y+z=14
x+z=13
解得
x=4
y=5
z=9
即AF=4cm、BD=5cm、CE=9cm.
9.遇到三角形的外接圆时
如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边.
如果三角形不是直角三角形
例1:已知:在△ABC中,AB=13,BC=12,AC=5,求△ABC的外接圆的半径.
解:∵AB=13,BC=12,AC=5,∴AB²=BC²+AC²,
∴∠C=90°,
∴AB为△ABC的外接圆的直径,
∴△ABC的外接圆的半径为6.5. 例2:
10.遇到三角形的外接圆和切圆时例题:。

相关文档
最新文档