湖北省荆州市沙市第五中学高考数学二轮复习 专题二 第1讲 三角函数的图象与性质(含解析)
2021届高考数学二轮复习核心热点突破-专题一第1讲 三角函数的图象与性质

专题一:三角函数与解三角形 第1讲 三角函数的图象与性质一:高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.二:真 题 感 悟1.(2020全国1理7)设函数f (x )=cos(ωx +π6)在[-π,π]的图象大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π22.(2020山东、海南10)(多选)下图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A .sin(x +π3)B .sin(π3-2x )C .cos(2x +π6)D .cos(5π6-2x )3.(2020全国3文5)已知sin θ+sin(θ+π3)=1,则sin(θ+π6)=( )A .12B .33C .23D .224.(2019·全国Ⅱ卷)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A.f (x )=|cos 2x |B.f (x )=|sin 2x |C.f (x )=cos|x |D.f (x )=sin|x |5.(2020·江苏卷)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________.6.(2020·北京卷)若函数f (x )=sin(x +φ)+cos x 的最大值为2,则常数φ的一个取值为__________.7.(2019·全国Ⅰ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.8.(2020全国3理9)已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .29.(2020全国3理16)关于函数f (x )=sin x +1sin x 有如下四个命题:①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =π2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.三:考 点 整 合1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心(k π,0)⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变 y =A sin(ωx +φ)(A >0,ω>0). 四:热点解析热点一 三角函数的定义与同角关系式1.已知512sin ,cos ,1313αα==-,则角α的终边与单位圆的交点坐标是( ) A .512(,)1313- B .512(,)1313- C .125(,)1313- D .125(,)1313-2.(2018全国1文11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=23,则|a -b |=( )A .15B .55C .255D .13.若sin α=-513,且α为第四象限角,则tan α的值等于_____________.4.已知tan α=2,则sin αcos α+cos 2α2sin αcos α+sin 2α=,sin 2α-2sin αcos α+2= .5.已知sin α+cos α=15,α∈(0,π),则cos α-sin α= ,tan α= .探究提高1.三角函数求值(1) 知一求其余三角函数值;(2)关于sin α与cos α的齐次式,同除cos α或cos 2α,如果不是齐次,借助1=sin 2α+cos 2α构造齐次.(3)sin α+cos α,sin α-cos α,sin αcos α间关系式注意 根据角的范围确定三角函数值正负.无法确定正负时可根据三角函数值的正负(或与特殊角的三角函数值)缩小角的范围.6.如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且(,)62ππα∈. 将角α的终边按逆时针方向旋转3π,交单位圆于点B ,记A (x 1,y 1),B (x 2,y 2).(1)若113x =,求2x ;(2)分别过A ,B 作x 轴的垂线,垂足依次为C ,D ,记△AOC 的面积为S 1,△BOD 的面积为S 2,若122S S =,求角α的值.7.如图,在平面直角坐标系xOy 中,312A ⎫⎪⎪⎝⎭为单位圆上一点,射线OA 绕点O 按逆时针方向旋转θ后交单位圆于点B ,点B 的纵坐标y 关于θ的函数为()y fθ=.(1)求函数()y f θ=的解析式,并求223f f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)若1()3f θ=,求s inα+s inα-s inαcosαinα和cosα tan αsin2α7cos sin 36ππθθ⎛⎫⎛⎫--+⎪ ⎪⎝⎭⎝⎭的值.热点二 三角函数的图象辨析(2019全国1理5)函数f (x )=sin x +xcos x +x 2在[-π,π]的图象大致为( )A .B .C .D .(2019全国1文5)函数f (x )=sin x +xcos x +x 2在[-π,π]的图象大致为( )A .B .C .D .3.(2017全国1文8)函数y =sin2x1-cos x的部分图象大致为( )A .B .C .D .12.(2020·天津和平区·高一期末)如图是函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象,则ω和ϕ的值分别为( )A .2,6πB .2,3π-C .1,6πD .1,3π-2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.2.(多选)已知函数()()()2sin 0,||f x x ωϕωϕπ=+><的部分图象如图所示,则( )A .2ω=B .3πϕ=C .若123x x π+=,则()()12f x f x =D .若123x x π+=,则()()120f x f x +=3.(多选)函数()sin(2)0,||2f x A x A πϕϕ⎛⎫=+><⎪⎝⎭部分图象如图所示,对不同x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)3=,则( )A .a +b =πB .2b a π-=C .3πϕ=D .()3f a b +=热点四 三角函数的性质1.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 .2.已知函数y =A sin(2x +φ)的对称轴为x =π6,则φ的值为 .3.已知函数y =cos(2x +φ)为奇函数,则φ的值为 .4.将函数()π()2sin 26f x x =+的图象至少向右平移 个单位,所得图象恰关于坐标原点对称.5.若函数()sin()(0,0)f x A x A ωϕω=+>>的图象与直线y m =的三个相邻交点的横坐标分别是6π,3π,23π,则实数ω的值为 .6.已知函数()sin()(030)f x x ωϕωϕ=+<<<<π,.若4x π=-为函数()f x 的一个零点,3x π=为函数()f x 图象的一条对称轴,则ω的值为 .探究提高:三角函数对称问题方法:对于函数y =A sin(ωx +φ)或y =A cos(ωx +φ) 若x =x 0为对称轴⇔f (x 0)=±A . 若(x 0,0)为中心对称点⇔f (x 0)=0.推论:对于函数y =A sin(ωx +φ)或y =A cos(ωx +φ)若函数y =f (x )为偶函数⇔f (0)=±A .若函数y =f (x )为奇函数⇔f (0)=0.7.将函数()π()sin 6f x x ω=-(0ω>)的图象向左平移π3个单位后,所得图象关于直线πx =对称,则ω的最小值为 . 8.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .49.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数y =是奇函数C .函数tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π D .函数cos(sin )y x =是奇函数10.设函数()()2sin 3f x x x R π⎛⎫=+∈ ⎪⎝⎭,下列结论中错误的是( ) A .()f x 的一个周期为2π吗 B .()f x 的最大值为2 C .()f x 在区间263ππ⎛⎫⎪⎝⎭,上单调递减 D .3f x π⎛⎫+ ⎪⎝⎭的一个零点为 6x π=热点四 三角函数性质与图象的综合应用1.若动直线x a =与函数())12f x x π=+与()cos()12g x x π=+的图象分别交于M 、N 两点,则||MN 的最大值为( )A B .1C .2D .32.设函数()()2sin 0,2f x x πωφφφ⎛⎫=+><⎪⎝⎭的部分图象如图.若对任意的()()2x R f x f t x ∈=-,恒成立,则实数t 的最小正值为____.3.(多选)已知函数,f (x )=2sin x -a cos x 的图象的一条对称轴为6x π=-,则( )A .点(,0)3π是函数,f (x )的一个对称中心B .函数f (x )在区间(,)2ππ上无最值C .函数f (x )的最大值一定是4D .函数f (x )在区间5(,)66ππ-上单调递增4.已知函数()sin cos f x x a x =+的图象关于直线6x π=对称,1x 是()f x 的一个极大值点,2x 是()f x 的一个极小值点,则12x x +的最小值为______.。
高三数学第二轮专题讲座复习:灵活运用三角函数的图象和性质解题.doc

高三数学第二轮专题讲座复习:灵活运用三角函数的图象和性质解题高考要求三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来 本节主要帮助考生掌握图象和性质并会灵活运用 重难点归纳1 考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx2 三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强3 三角函数与实际问题的综合应用此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用典型题例示范讲解例1设z 1=m +(2-m 2)i , z 2=cos θ+(λ+sin θ)i , 其中m ,λ,θ∈R ,已知z 1=2z 2,求λ的取值范围错解分析 考生不易运用等价转化的思想方法来解决问题技巧与方法 对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题解法一 ∵z 1=2z 2,∴m +(2-m 2)i =2cos θ+(2λ+2sin θ)i ,∴⎩⎨⎧+=-=θλθsin 222cos 22m m∴λ=1-2cos 2θ-sin θ=2sin 2θ-si n θ-1=2(s in θ-41)2-89 当sin θ=41时λ取最小值-89,当sin θ=-1时,λ取最大值2 解法二 ∵z 1=2z 2 ∴⎩⎨⎧+=-=θλθsin 222cos 22m m ∴⎪⎪⎩⎪⎪⎨⎧--==222sin 2cos 2λθθm m , ∴4)22(4222λ--+m m =1 ∴m 4-(3-4λ)m 2+4λ2-8λ=0, 设t =m 2,则0≤t ≤4, 令f (t )=t 2-(3-4λ)t +4λ2-8λ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤-≤≥∆0)4(0)0(424300f f λ或f (0)·f (4)≤0 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥≤≤≤≤--≥0220434589λλλλλ或或 ∴-89≤λ≤0或0≤λ≤2 ∴λ的取值范围是[-89,2] 例2如右图,一滑雪运动员自h =50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v 0不为,并以倾角θ起跳,落至B 点,令OB =L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大? 错解分析 考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活技巧与方法 首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题解 由已知条件列出从O 点飞出后的运动方程020cos cos 1sin 4sin 2S L v t h L v gt αθαθ==⎧⎪⎨-=-=-⎪⎩ ① ② 由①②整理得 v 0cos θ=.21sin sin ,cos 0gt t L v t L +-=αθα ∴v 02+gL sin α=41g 2t 2+22tL ≥2222412t L t g ⋅=gL 运动员从A 点滑至O 点,机械守恒有:mgh =21mv 02, ∴v 02=2gh ,∴L ≤)sin 1(2)sin 1(20αα-=-g ghg v =200(m)即L max =200(m),又41g 2t 2=22222L t h S =+ αθv 0hO∴θααcos 22cos cos ,20⋅====gL gh t v L S g L t 得cos θ=cos α,∴θ=α=30°∴L 最大值为200米,当L 最大时,起跳仰角为30° 例3如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b(1)求这段时间的最大温差 (2)写出这段曲线的函数解析式错解分析 不易准确判断所给图象所属的三角函数式的各个特定系数和字母技巧与方法 数形结合的思想,以及运用待定系数法确定函数的解析式解 (1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象∴ωπ221⋅=14-6,解得ω=8π, 由图示A =21(30-10)=10,b =21(30+10)=20,这时y =10sin(8πx +φ)+20,将x =6,y =10代入上式可取φ=43π综上所求的解析式为y =10sin(8πx +43π)+20,x ∈[6,14]例4 已知α、β为锐角,且x (α+β-2π)>0,试证不等式f (x )=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立证明 若x >0,则α+β>2π∵α、β为锐角,∴0<2π-α<β<2π;0<2π-β<2π,∴0<sin(2π-α)<sin β 0<sin(2π-β)<sin α,∴0<cos α<sin β,0<cos β<sin α,∴0<cos sin αβ<1,0<αβsin cos <1,∴f (x )在(0,+∞)上单调递减,∴f (x )<f (0)=2若x <0,α+β<2π,∵α、β为锐角, 0<β<2π-α<2π,0<α<2π-β<2π, 0<sin β<sin(2π-α),∴sin β<cos α,0<sin α<sin(2π-β),∴sin α<cos β,∴cos sin αβ>1, αβsin cos >1,∵f (x )在(-∞,0)上单调递增,∴f (x )<f (0)=2,∴结论成立 学生巩固练习1 函数y =-x ·cos x 的部分图象是( )时间/h 温度/0C 30201014106o y xAoy xBoyxC oyxDo yx2 函数f (x )=cos2x +sin(2π+x )是( ) A 非奇非偶函数 B 仅有最小值的奇函数 C 仅有最大值的偶函数D 既有最大值又有最小值的偶函数3 函数f (x )=(31)|cos x |在[-π,π]上的单调减区间为_________ 4 设ω>0,若函数f (x )=2sin ωx 在[-4,3ππ,]上单调递增,则ω的取值范围是_________5 设二次函数f (x )=x 2+bx +c (b ,c ∈R ),已知不论α、β为何实数恒有f (sin α)≥0和f (2+cos β)≤0(1)求证 b +c =-1; (2)求证c ≥3; (3)若函数f (sin α)的最大值为8,求b ,c 的值 参考答案1 函数y =-x cos x 是奇函数,图象不可能是A 和C ,又当x ∈(0,2π)时,y <0答案 D 2 解析 f (x )=cos2x +sin(2π+x )=2cos 2x -1+cos x =2[(cos x +81)2212-]-1答案 D3 解 在[-π,π]上,y =|cos x |的单调递增区间是[-2π,0]及[2π,π] 而f (x )依|cos x |取值的递增而递减,故[-2π,0]及[2π,π]为f (x )的递减区间4 解 由-2π≤ωx ≤2π,得f (x )的递增区间为[-ωπ2,ωπ2],由题设得.230,23: 4232],2,2[]4,3[≤ω<∴≤ω⎪⎪⎩⎪⎪⎨⎧π≥ωππ-≤ωπ-∴ωπωπ-⊆ππ-解得 5 解 (1)∵-1≤sin α≤1且f (sin α)≥0恒成立,∴f (1)≥0 ∵1≤2+cos β≤3,且f (2+c os β)≤0恒成立 ∴f (1)≤0 从而知f (1)=0∴b +c +1=0(2)由f (2+cos β)≤0,知f (3)≤0,∴9+3b +c ≤0 又因为b +c =-1,∴c ≥3(3)∵f (sin α)=sin 2α+(-1-c )sin α+c =(sin α-21c +)2+c -()21(c +)2,当sin α=-1时,[f (sin α)]max =8,由⎩⎨⎧=++=+-0181c b c b 解得b =-4,c =3O B αy x。
高三数学第二轮复习三角函数的图像与性质课件ppt.ppt

则同时具有以下两个性质的函数是( A ) ①最小正周期是π ②图象关于点(π/6,0)对称.
2.已知f(x)=sin(x+π/2),g(x)=cos(x-π/2),则下列结论
中正确的是( D) (A)函数y=f(x)·g(x)的周期为2π (B)函数y=f(x)·g(x)的最大值为1 (C)将f(x)的图象向左平移π/2单位后得g(x)的图象 (D)将f(x)的图象向右平移π/2单位后得g(x)的图象
直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
](kZ)上单调递增, 在
6
是 (k ,k ],k z 使 g(x) 0 且递减的区间是
12
6
(k ,k 5 ],k z ,
6
12
∴当 0 a 1时,函数 f (x) 的递增的区间是
(k ,k 5 ],k z ,
6
12
当 a 1时,函数 f (x) 的递增的区间是 (k ,k ],k z .
且f (0) 3 , f ( ) 1 .
2 42
(1)求 f (x) 的最小正周期; (2)求 f (x) 的单调递减区间; (3)函数 f (x) 的图象经过怎样的平移才能 使所得图象对应的函数成为奇函数?
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
2018届高三理科数学二轮复习讲义:模块二 专题二 第一讲 三角函数的图象与性质 含解析 精品

专题二 三角函数、平面向量 第一讲 三角函数的图象与性质高考导航 三角函数的图象,主要涉及图象变换问题以及由图象确定函数解析式问题.2.三角函数的性质,通常是给出函数解析式,先进行三角变换,将其转化为y =A sin(ωx +φ)的形式再研究其性质(如单调性、值域、对称性),或知道某三角函数的图象或性质求其解析式,再研究其他性质.1.(2016·四川卷)为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin2x 的图象上所有的点( )A .向左平行移动π3个单位长度 B .向右平行移动π3个单位长度 C .向左平行移动π6个单位长度 D .向右平行移动π6个单位长度[解析] 因为y =sin ⎝⎛⎭⎪⎫2x -π3=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6,所以只需把函数y =sin2x 的图象上所有的点向右平行移动π6个单位长度即可,故选D.[答案] D2.(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称 C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎪⎫π2,π单调递减[解析] f (x )的最小正周期为2π,易知A 正确;f ⎝ ⎛⎭⎪⎫8π3=cos ⎝ ⎛⎭⎪⎫83π+π3=cos3π=-1,为f (x )的最小值,故B 正确;∵f (x +π)=cos ⎝ ⎛⎭⎪⎫x +π+π3=-cos ⎝ ⎛⎭⎪⎫x +π3,∴f ⎝ ⎛⎭⎪⎫π6+π=-cos ⎝ ⎛⎭⎪⎫π6+π3=-cos π2=0,故C 正确;由于f ⎝ ⎛⎭⎪⎫2π3=cos ⎝ ⎛⎭⎪⎫2π3+π3=cosπ=-1,为f (x )的最小值,故f (x )在⎝ ⎛⎭⎪⎫π2,π上不单调,故D 错误.[答案] D3.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.[解析] ∵f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,又∵0≤x ≤π2,∴0≤cos x ≤1.∴当cos x =32时,f (x )有最大值,最大值为1. [答案] 14.(2017·浙江卷)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).(1)求f ⎝⎛⎭⎪⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间. [解] (1)由sin 2π3=32,cos 2π3=-12,f ⎝ ⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫-122-23×32×⎝ ⎛⎭⎪⎫-12, 得f ⎝ ⎛⎭⎪⎫2π3=2.(2)由cos2x =cos 2x -sin 2x 与sin2x =2sin x cos x 得 f (x )=-cos2x -3sin2x =-2sin ⎝ ⎛⎭⎪⎫2x +π6. 所以f (x )的最小正周期是π. 由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 解得π6+k π≤x ≤2π3+k π,k ∈Z ,所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).考点一 三角函数的概念、诱导公式及基本关系式 1.三角函数的定义若角α的终边过点P (x ,y ),则sin α=y r ,cos α=x r ,tan α=yx (其中r =x 2+y 2).2.诱导公式(1)sin(2k π+α)=sin α(k ∈Z ),cos(2k π+α)=cos α(k ∈Z ),tan(2k π+α)=tan α(k ∈Z ).(2)sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)==tan α. (3)sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α. (4)sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.(5)sin ⎝⎛⎭⎪⎫π2-α=cos α,cos ⎝⎛⎭⎪⎫π2-α=sin α,sin ⎝ ⎛⎭⎪⎫π2+α=cos α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin α. 3.基本关系sin 2x +cos 2x =1,tan x =sin x cos x .[对点训练]1.已知sin ⎝ ⎛⎭⎪⎫-5π6+x =15,则cos ⎝ ⎛⎭⎪⎫x -π3=( ) A .-15 B.15 C.25 D .-25 [解析] cos ⎝ ⎛⎭⎪⎫x -π3=cos ⎝ ⎛⎭⎪⎫π3-x =sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-x =sin ⎝ ⎛⎭⎪⎫π6+x =-sin ⎝ ⎛⎭⎪⎫-π+π6+x =-sin ⎝ ⎛⎭⎪⎫-5π6+x =-15.[答案] A2.已知P (sin40°,-cos140°)为锐角α终边上的点,则α=( ) A .40° B .50° C .70° D .80°[解析] ∵P (sin40°,-cos140°)为角α终边上的点,因而tan α=-cos140°sin40°=-cos (90°+50°)sin (90°-50°)=sin50°cos50°=tan50°,又α为锐角,则α=50°,故选B.[答案] B3.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( ) A.355 B.377 C.31010 D.13[解析] 由已知可得-2tan α+3sin β+5=0,tan α-6sin β-1=0,可解得tan α=3,又α为锐角,故sin α=31010.[答案] C4.若θ∈⎝ ⎛⎭⎪⎫π2,π,则 1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=________. [解析] 因为1-2sin (π+θ)sin ⎝⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=(sin θ-cos θ)2=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎫π2,π,所以原式=sin θ-cos θ.[答案] sin θ-cos θ利用诱导公式进行化简求值的3步利用公式化任意角的三角函数为锐角三角函数,其三步骤记为:去负→脱周→化锐.特别注意函数名称和符号的确定.【易错提醒】 “奇变偶不变,符号看象限”,把角看作“k ·π2+α,k ∈Z ”的形式.考点二 三角函数的图象与解析式1.“五点法”作函数y =A sin(ωx +φ)的图象设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.2.两种图象变换[解] (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2, 所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx=3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx=3sin ⎝ ⎛⎭⎪⎫ωx -π3.由题设知f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z ,又0<ω<3,所以ω=2. (2)由(1)得f (x )=3sin ⎝⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.[探究追问] (1)在本例中将f ⎝ ⎛⎭⎪⎫π6=0改为f ⎝ ⎛⎭⎪⎫512π=3,其余条件不变,求ω的值.(2)本例中将f ⎝ ⎛⎭⎪⎫π6=0改为若函数图象上相邻两个对称中心之间的距离为π2,其余条件不变,求ω的值.(3)本例中将f ⎝ ⎛⎭⎪⎫π6=0改为若函数图象上最高点与最低点距离的最小值为π24+12,其余条件不变,求ω的值.(4)设函数g (x )=3sin ⎝ ⎛⎭⎪⎫x -π12,若x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,g (x )≥m 恒成立,求实数m 的取值范围. [解] (1)由题意得f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π3,则由f ⎝ ⎛⎭⎪⎫5π12=3可得,3sin ⎝ ⎛⎭⎪⎫5ωπ12-π3=3,即sin ⎝ ⎛⎭⎪⎫5ωπ12-π3=1,所以5ωπ12-π3=2k π+π2,k ∈Z ,解得ω=245k +2,k ∈Z . 因为0<ω<3,所以ω=2. (2)由题意得f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π3, 因为相邻两个对称中心之间的距离为π2, 所以函数的周期T =2×π2=π,所以ω=2πT =2.(3)由题意得f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π3, 所以函数f (x )的最大值为3,最小值为-3,不妨设最高点A (x 1,3),最低点B (x 2,-3),则|AB |=(x 1-x 2)2+(23)2=(x 1-x 2)2+12. 由题意知|AB |的最小值为π24+12,所以|x 1-x 2|≥π2,所以函数的周期T =2×π2=π,所以ω=2πT =2.(4)由[典例1]可知,g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值为-32,所以m ≤-32.(1)此类题目是三角函数问题中的典型题型,该题综合考查了三角函数的诱导公式、三角恒等变换、由三角函数值求参数、三角函数图象的变换、三角函数在指定区间上的最值等,考查运算求解能力、逻辑推理能力以及转化与化归思想、应用意识等。
高考数学二轮复习(考点梳理+热点突破)第一讲 三角函数的图象与性质课件

1.正确理解三角函数的定义,能利用三角函数的定义
确定三角函数的定义域及三角函数值在各个象限的符号.
栏 目
链
2.已知角终边上一点的坐标(zuòbiāo),可利用三角函
接
数的定义求三角函数值.如果点的坐标(zuòbiāo)中含有字母,
要注意分类讨论.
第二十八页,共29页。
G 高考
(ɡāo kǎo) 热点突 破
(1)sin2α+cos2α=1.
sin α
(2)tan α=__c_os__α___.
第五页,共29页。
Z主 干考点
(kǎo diǎn) 梳理
考点(kǎo diǎn)3 导数的应用
三角函数的基本(jīběn)性质列表如下:
函数
y=sin x
y=cos x
y=tan x
栏
目
图象
链
接
定义域 值域
___R____ [_-__1_,___1_]
从而56π+φ=π,即 φ=π6 .
又点(0,1)在函数图象上,
第二十二页,共29页。
G 高考
(ɡāo kǎo)
热点突 破
π 所以 Asin 6 =1,得 A=2,
故函数 f(x)的解析式为 f(x)=2sin2x+π6 .
(2)g(x)
=
2sin
2x-π12+π6
-
2sin[2
π x+12
+
链 接
来确定φ的值.
(2)将点的坐标代入解析式时,要注意选择的点属于 “五点法”中的哪一个点.“第一点”(即图象上升时与x 轴的交点)为ωx0+φ=0+2kπ,其他依次类推即可.
第二十五页,共29页。
G 高考
(ɡāo kǎo)
2021届高考二轮数学人教版课件:第2部分 专题1 第1讲 三角函数的图象与性质

返回导航
考查角度 三角函数的图象与诱导公式的应用
三角函数的极值、最值和周期 三角函数的零点
三角函数的周期和最值 三角函数的单调性的应用
正切函数图象和性质
分值 10 5 5 5 5 5
第二部分 专题一 三角函数、三角恒等变换与解三角形
返回导航
02 考点分类 • 析重点
高考二轮总复习 • 数学
考点一 三角函数的定义、诱导公式及基本关系
2 5、13
考查角度 三角函数图象和性质;二倍角、同角 三角函数关系式的应用
三角函数的符号 三角函数求值
返回导航
分值 10 5 10
第二部分 专题一 三角函数、三角恒等变换与解三角形
高考二轮总复习 • 数学
年份 2019 2018
卷别 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷 Ⅲ卷
题号 5、7
8 5 8 10 8
高考二轮总复习 • 数学
返回导航
(2)(2020·吉林省重点高中第二次月考)已知某扇形的面积为 2.5 cm2,
若该扇形的半径 r,弧长 l 满足 2r+l=7 cm,则该扇形圆心角大小的弧度
数是
( D)
A.45
B.5
C.12
D.45或 5
(3)(2020·江苏省八校联考)已知 α 是第二象限角,其终边上一点 P(x,
2020 Ⅱ卷 Ⅲ卷
题号 7 2 16
返回导航
考查角度 三角函Байду номын сангаас的图象和性质
三角函数的符号 三角函数的图象和性质
分值 5 5 5
第二部分 专题一 三角函数、三角恒等变换与解三角形
高考二轮总复习 • 数学
年份 2019 2018
卷别 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷 Ⅲ卷
湖北省荆州市沙市第五中学高考数学二轮复习 专题一 第2讲 函数、基本初等函数的图象与性质(含解析)

第2讲 函数、基本初等函数的图象与性质【高考考情解读】 1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.2.函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以选择题的形式出现在最后一题,且常与新定义问题相结合,难度较大.1. 函数的概念及其表示两个函数只有当它们的三要素完全相同时才表示同一函数,定义域和对应关系相同的两个函数是同一函数. 2. 函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.3. 指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质.(2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况. 4. 熟记对数式的五个运算公式log a (MN )=log a M +log a N ;log a M N =log a M -log a N ;log a M n=n log a M ;a log a N =N ;log a N =log b N log b a(a >0且a ≠1,b >0且b ≠1,M >0,N >0). 提醒:log a M -log a N ≠log a (M -N ), log a M +log a N ≠log a (M +N ). 5. 与周期函数有关的结论(1)若f (x +a )=f (x +b )(a ≠b ),则f (x )是周期函数,其中一个周期是T =|a -b |.(2)若f (x +a )=-f (x ),则f (x )是周期函数,其中一个周期是T =2a . (3)若f (x +a )=1f x或f (x +a )=-1f x,则f (x )是周期函数,其中一个周期是T=2a .提醒:若f (x +a )=f (-x +b )(a ≠b ),则函数f (x )关于直线x =a +b2对称.考点一 函数及其表示例1 (1)若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2xln x的定义域是( ) A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)答案 D解析 由函数y =f (x )的定义域是[0,2]得,函数g (x )有意义的条件为0≤2x ≤2且x >0,x ≠1,故x ∈(0,1).(2)已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >02x,x ≤0,则f (f (19))等于( ) A .4 B.14 C .-4D .-14答案 B解析 因为19>0,所以f (19)=log 319=-2,故f (-2)=2-2=14.(1)求函数定义域的类型和相应方法①若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可,函数f (g (x ))的定义域应由不等式a ≤g (x )≤b 解出. ②实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义. (2)求函数值时应注意形如f (g (x ))的函数求值时,应遵循先内后外的原则;而对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利用哪一段求解.(1)若函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f x +3,x <4,则f (log 23)等于( ) A .3B .4C .16D .24(2)已知函数f (x )=2+log 3x (1≤x ≤9),则函数y =[f (x )]2+f (x 2)的最大值为( ) A .33B .22C .13D .6答案 (1)D (2)C解析 (1)f (log 23)=f (log 23+3) =f (log 224)=2log 224=24.(2)依题意得,y =(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6=(log 3x +3)2-3, 因为1≤x ≤9,且1≤x 2≤9,所以1≤x ≤3, 所以0≤log 3x ≤1,作出图象知, 当log 3x =1时,函数y 取得最大值13. 考点二 函数的性质例2 (1)(2012·福建)设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数答案 C解析 利用函数的单调性、奇偶性、周期性定义判断可得. 由已知条件可知,D (x )的值域是{0,1},选项A 正确; 当x 是有理数时,-x 也是有理数, 且D (-x )=1,D (x )=1,故D (-x )=D (x ), 当x 是无理数时,-x 也是无理数, 且D (-x )=0,D (x )=0,即D (-x )=D (x ), 故D (x )是偶函数,选项B 正确;当x 是有理数时,对于任一非零有理数a ,x +a 是有理数,且D (x +a )=D (x )=1, 当x 是无理数时,对于任一非零有理数b ,x +b 是无理数,所以D (x +b )=D (x )=0,故D (x )是周期函数,但不存在最小正周期,选项C 不正确; 由实数的连续性易知,不存在区间I ,使D (x )在区间I 上是增函数或减函数,故D (x )不是单调函数,选项D 正确.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.答案 -14解析 根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32的值是0+⎝ ⎛⎭⎪⎫-14=-14.函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A .[1,2]B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2D .(0,2](2)已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=e x+a ,若f (x )在R 上是单调函数,则实数a 的最小值是________. 答案 (1)C (2)-1解析 (1)由题意知a >0,又log 12a =log 2a -1=-log 2a .∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ).∵f (log 2a )+f (log 12a )≤2f (1),∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1). 又因f (x )在[0,+∞)上递增. ∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎢⎡⎦⎥⎤12,2,选C. (2)依题意得f (0)=0.当x >0时,f (x )>e 0+a =a +1. 若函数f (x )在R 上是单调函数,则有a +1≥0,a ≥-1, 因此实数a 的最小值是-1. 考点三 函数的图象例3 (1)(2013·北京)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )等于( )A .e x +1B .e x -1C .e-x +1D .e-x -1(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg|x |图象的交点个数为n ,则n =________. 答案 (1)D (2)4解析 (1)与y =e x 图象关于y 轴对称的函数为y =e -x.依题意,f (x )图象向右平移一个单位,得y =e -x的图象.∴f (x )的图象由y =e -x的图象向左平移一个单位得到. ∴f (x )=e-(x +1)=e-x -1.(2)由题意知,当a =1,b =1时,y =1|x |-1=⎩⎪⎨⎪⎧1x -1x ≥0且x ≠1,-1x +1x <0且x ≠-1,在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.(1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)函数y =x ln(-x )与y =x ln x 的图象关于( )A .直线y =x 对称B .x 轴对称C .y 轴对称D .原点对称(2)函数y =log 2|x |x的大致图象是( )(3)(2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 (1)D (2)C (3)D解析 (1)若点(m ,n )在函数y =x ln x 的图象上, 则n =m ln m ,所以-n =-m ln[-(-m )], 可知点(-m ,-n )在函数y =x ln(-x )的图象上, 而点(m ,n )与点(-m ,-n )关于原点对称,所以函数y =x ln x 与y =x ln(-x )的图象关于原点对称. (2)方法一 由于log 2|-x |-x =-log 2|x |x,所以函数y =log 2|x |x是奇函数,其图象关于原点对称.当x >0时,对函数求导可知,函数图象先增后减,结合选项知选C. 方法二 0<x <1时,y <0;x >1时,根据y =log 2x 与y =x 的变化快慢知x →+∞时,y >0且y →0.故选C.(3)函数y =|f (x )|的图象如图. ①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,∴a ≥-2. 综上所述:-2≤a ≤0.故选D. 考点四 基本初等函数的图象及性质例4 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)(2)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则有( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b答案 (1)C (2)C解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ).故选C. 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0,故选C.(2)∵a =5log 23.4,b =5log 43.6,c =(15)log 30.3=5log 3313,根据y =a x且a =5,知y 是增函数.又∵log 23.4>log 3313>1,0<log 43.6<1,∴5log 23.4>(15)log 30.3>5log 43.6,即a >c >b .(1)指数函数、对数函数、幂函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力.(2)比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较.(1)已知f (x )=a x,g (x )=log a x (a >0且a ≠1),若f (3)·g (3)<0,则f (x )与g (x )在同一坐标系内的图象可能是( )(2)(2012·天津)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为 ( ) A .c <b <a B .c <a <b C .b <a <cD .b <c <a答案 (1)C (2)A解析 (1)因为a >0且a ≠1,所以f (3)=a 3>0. 因为f (3)g (3)<0,所以g (3)<0即log a 3<0,所以0<a <1,则指数函数f (x )=a x单调递减,对数函数单调递减,所以答案选C. (2)利用中间值判断大小.b =⎝ ⎛⎭⎪⎫12-0.8=20.8<21.2=a ,c =2log 52=log 522<log 55=1<20.8=b ,故c <b <a ,答案选A.1. 判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2. 函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3. 函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a .(2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称. 4. 二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中.5. 指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较.6. 解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.1. 已知函数f (x )=e|ln x |-⎪⎪⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为( )答案 A解析 据已知关系式可得f (x )=⎩⎪⎨⎪⎧e -ln x+⎝⎛⎭⎪⎫x -1x =x 0<x ≤1,eln x-⎝⎛⎭⎪⎫x -1x =1xx >1,作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2. 定义在R 上的奇函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),有f x 2-f x 1x 2-x 1>0.则有( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 答案 A解析 由已知可知f (x )在(-∞,0)上递增, 又f (x )为奇函数,故f (x )在(0,+∞)上递增, ∵0.32<20.3<log 25.∴f (0.32)<f (20.3)<f (log 25).3. 已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,那么在区间[-1,3]内关于x 的方程y =kx +k +1(k ∈R ,k ≠-1)的根的个数为( )A .不可能有3个B .最少有1个,最多有4个C .最少有1个,最多有3个D .最少有2个,最多有4个答案 B解析 函数f (x )的图象如图所示:函数g (x )=kx +k +1=k (x +1)+1恒过定点(-1,1), 故选B.(推荐时间:40分钟)一、选择题1. 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos 2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈RD .y =x 3+1,x ∈R 答案 B解析 由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选B.2. 已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1100的值等于( ) A.1lg 2B .-1lg 2C .lg 2D .-lg 2答案 D解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎪⎫1100=lg 1100=-2,f ⎝ ⎛⎭⎪⎫f ⎝⎛⎭⎪⎫1100=f (-2)=-lg 2. 3. 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 当c =-1时,易知f (x )在R 上递增;反之,若f (x )在R 上递增,则需有1+c ≤0,即c ≤-1. 所以“c =-1”是“函数f (x )在R 上递增”的充分不必要条件.4. (2013·课标全国Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >bD .a >b >c答案 D解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c .5. 若函数f (x )=x 2+|x -a |+b 在区间(-∞,0]上为减函数,则实数a 的取值范围是( )A .a ≥0B .a ≤0C .a ≥1D .a ≤1答案 A解析 当a =0或者a =1时,显然,在区间(-∞,0]上为减函数,从而选A. 6. 设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是( )A .[-1,12)B .(-∞,-1]∪(12,+∞)C .(-1,12)D .(-∞,-1)∪(12,+∞)答案 A解析 ∵f (x )是偶函数,∴f (-x )=f (x )=f (|x |), ∴不等式f (1-m )<f (m )⇔f (|1-m |)<f (|m |), 又∵当x ∈[0,2]时,f (x )是减函数,∴⎩⎪⎨⎪⎧|1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12.7. (2013·四川)函数y =x 33x-1的图象大致是( )答案 C解析 由3x-1≠0得x ≠0, ∴函数y =x 33x-1的定义域为{x |x ≠0},可排除选项A ; 当x =-1时,y =-1313-1=32>0,可排除选项B ;当x =2时,y =1,当x =4时,y =45,但从选项D 的函数图象可以看出函数在(0,+∞)上是单调递增函数,两者矛盾,可排除选项D.故选C.8. 已知直线y =mx 与函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2+1,x >0的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A .(3,4)B .(2,+∞)C .(2,5)D .(3,22)答案 B解析 作出函数f (x )=⎩⎪⎨⎪⎧2-⎝ ⎛⎭⎪⎫13x,x ≤0,12x 2+1,x >0的图象,如图所示.直线y =mx 的图象是绕坐标原点旋转的动直线.当斜率m ≤0时,直线y=mx 与函数f (x )的图象只有一个公共点;当m >0时,直线y =mx 始终与函数y =2-⎝ ⎛⎭⎪⎫13x(x ≤0)的图象有一个公共点,故要使直线y =mx 与函数f (x )的图象有三个公共点,必须使直线y =mx 与函数y =12x 2+1 (x >0)的图象有两个公共点,即方程mx =12x 2+1在x >0时有两个不相等的实数根,即方程x 2-2mx +2=0的判别式Δ=4m 2-4×2>0,解得m > 2.故所求实数m 的取值范围是(2,+∞). 二、填空题9. 设函数f (x )=x (e x +a e -x)(x ∈R )是偶函数,则实数a 的值为________.答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x+a e x )=x (e x +a e -x),化简得x (e -x+e x)(a +1)=0.因为上式对任意实数x 都成立,所以a =-1. 10.(2012·安徽)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.答案 -6解析 利用函数图象确定单调区间.f (x )=|2x +a |=⎩⎪⎨⎪⎧2x +a ,x ≥-a2,-2x -a ,x <-a2.作出函数图象,由图象知:函数的单调递增区间为⎣⎢⎡⎭⎪⎫-a2,+∞,∴-a2=3,∴a =-6.11.已知函数f (x )=a sin x +bx 3+5,且f (1)=3,则f (-1)=________.答案 7解析 因为f (1)=3,所以f (1)=a sin 1+b +5=3, 即a sin 1+b =-2.所以f (-1)=-a sin 1-b +5=-(-2)+5=7.12.已知奇函数f (x )=⎩⎪⎨⎪⎧x 2-2xx ≥0,ax 2+bx x <0,给出下列结论:①f (f (1))=1;②函数y =f (x )有三个零点; ③f (x )的递增区间是[1,+∞);④直线x =1是函数y =f (x )图象的一条对称轴; ⑤函数y =f (x +1)+2图象的对称中心是点(1,2).其中,正确结论的序号是________.(写出所有正确结论的序号). 答案 ①②解析 因为f (x )是奇函数, 所以x <0时,f (-x )=x 2+2x , 即f (x )=-x 2-2x . 可求得a =-1,b =-2.即f (x )=⎩⎪⎨⎪⎧x 2-2x , x ≥0,-x 2-2x , x <0.①f (f (1))=f (-1)=-f (1)=1,①正确;②易知f (x )的三个零点是-2,0,2,②正确;③当x ∈(-∞,-1]时,f (x )也单调递增,③错误;④由奇函数图象的特点知,题中的函数f (x )无对称轴,④错误;⑤奇函数f (x )图象关于原点对称,故函数y =f (x +1)+2图象的对称中心应是点(-1,2),⑤错误.故填①②. 13.给出下列四个函数:①y =2x;②y =log 2x ;③y =x 2;④y =x . 当0<x 1<x 2<1时,使f ⎝ ⎛⎭⎪⎫x 1+x 22>f x 1+f x 22恒成立的函数的序号是________.答案 ②④解析 由题意知满足条件的图象形状为:故符合图象形状的函数为y =log 2x ,y =x .14.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题: ①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2), 又函数f (x )是偶函数,故f (2)=0;根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴;根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8.故正确命题的序号为①②④.。
高考数学二轮复习 专题二第一讲三角函数的图象与性质 理

第一讲 三角函数的图象与性质1.(2013·高考浙江卷)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( )A .π,1B .π,2C .2π,1D .2π,22.(2013·高考浙江卷)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2013·荆州市质量检测)将函数y =sin ⎝⎛⎭⎪⎫2x +π4的图象向左平移π4个单位,再向上平移2个单位,则所得图象的一个对称中心是( )A .(π4,2)B .(π3,2)C .(π8,2)D .(π2,2)4.已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a5.(2013·浙江省名校联考)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.若函数y =f (x )在区间[m ,n ]上的值域为[-2,2],则n -m 的最小值是( )A .1B .2C .3D .46.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上的一点,且sin θ=-255,则y =______.7.(2013·高考江西卷)设f (x )=3sin 3x +cos 3x ,若对任意实数x 都有|f (x )|≤a ,则实数a 的取值范围是________.8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与直线y =b (0<b <A )的三个相邻交点的横坐标分别是2,4,8,则f (x )的单调递增区间是________.9.已知函数f (x )=2cos x sin(x +π3)-32.(1)求函数f (x )的最小正周期;(2)在平面直角坐标系内,用“五点作图法”画出函数f (x )在一个周期内的图象.10.(2013·高考山东卷)设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间[π,3π2]上的最大值和最小值.11.(2013·山西省诊断考试)已知向量a =(sin x ,1),b =(1,cos x ),且函数f (x )=a ·b ,f ′(x )是f (x )的导函数.(1)求函数F (x )=f (x )f ′(x )+f 2(x )的最大值和最小正周期;(2)将f (x )横坐标缩短为原来的一半,再向右平移π4个单位得到g (x ),设方程g (x )-1=0在(0,π)上的两个零点为x 1,x 2,求x 1+x 2的值.答案:1.【解析】选A.f (x )=12sin 2x +32cos 2x =sin(2x +π3),所以最小正周期为T =2π2=π,振幅A =1.2.【解析】选B.若f (x )是奇函数,则f (0)=0,所以cos φ=0,所以φ=π2+k π(k ∈Z ),故φ=π2不成立;若φ=π2,则f (x )=A cos(ωx +π2)=-A sin ωx ,f (x )是奇函数.所以f (x )是奇函数是φ=π2的必要不充分条件.3.【解析】选C.将y =sin(2x +π4)的图象向左平移π4个单位,再向上平移2个单位得y =sin(2x +3π4)+2的图象,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,则x =π8,故选C.4.【解析】选B.f (x )=sin x +3cos x =2sin(x +π3),因为函数f (x )在[0,π6]上单调递增,所以f (π7)<f (π6),而c =f (π3)=2sin 2π3=2sin π3=f (0)<f (π7),所以c <a <b .5.【解析】选C.根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m取最小值,又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3,故选C.6.【解析】先计算r =x 2+y 2=16+y 2,且sin θ=-255,所以sin θ=y r=y16+y2=-255,∴θ为第四象限角,则y =-8.【答案】-87.【解析】由于f (x )=3sin 3x +cos 3x =2sin ⎝ ⎛⎭⎪⎫3x +π6,则|f (x )|=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫3x +π6≤2,要使|f (x )|≤a 恒成立,则a ≥2.【答案】[2,+∞) 8.【解析】如图,x =3,x =6是 y =A sin(ωx +φ)的对称轴, ∴周期T =6,∴单调递增区间为[6k ,6k +3],k ∈Z . 【答案】[6k ,6k +3],k ∈Z9.【解】(1)∵f (x )=2cos x sin(x +π3)-32=2cos x (12sin x +32cos x )-32=sin x cos x +3cos 2x -32=12sin 2x +32(1+cos 2x )-32=12sin 2x +32cos 2x =sin(2x +π3),∴f (x )的最小正周期为π.(2)设t =2x +π3,列表如下:则f (x )10.【解】(1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin(2ωx -π3).因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin(2x -π3).当π≤x ≤3π2时,5π3≤2x -π3≤8π3.所以-32≤sin(2x -π3)≤1. 因此-1≤f (x )≤32. 故f (x )在区间[π,3π2]上的最大值和最小值分别为32,-1.11.【解】(1)由题意知f (x )=sin x +cos x , ∴f ′(x )=cos x -sin x ,∴F (x )=f (x )f ′(x )+f 2(x )=cos 2x -sin 2x +1+2sin x cos x=1+sin 2x +cos 2x =1+2sin(2x +π4),∴当2x +π4=2k π+π2,即x =k π+π8(k ∈Z )时,F (x )max =1+2,最小正周期为T =2π2=π.(2)由题设得f (x )=2sin(x +π4),∴g (x )=2sin[2(x -π4)+π4]=-2cos(2x +π4).∵g (x )-1=0,∴2cos(2x +π4)=-1,∴cos(2x +π4)=-22,由2x +π4=2k π+34π或2x +π4=2k π+5π4,得x =k π+π4或x =k π+π2,k ∈Z .∵x ∈(0,π),∴x 1=π4,x 2=π2,∴x 1+x 2=34π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 三角函数的图象与性质【高考考情解读】 1.对三角函数的图象和性质的考查中,以图象的变换,函数的单调性、奇偶性、周期性、对称性、最值等作为热点内容,并且往往与三角变换公式相互联系,有时也与平面向量,解三角形或不等式内容相互交汇.2.题型多以小而活的选择题、填空题来呈现,如果设置解答题一般与三角变换、解三角形、平面向量等知识进行综合考查,题目难度为中、低档.1. 三角函数定义、同角关系与诱导公式(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cosα=x ,tan α=y x.各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦.(2)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(3)诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.2. 三角函数的图象及常用性质 函数 y =sin x y =cos x y =tan x图象单调性在[-π2+2k π,π2+2k π](k ∈Z )上单调递增;在[π2+2k π,3π2+2k π](k ∈Z )上单调递减在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在(-π2+k π,π2+k π)(k ∈Z )上单调递增对称性 对称中心:(k π,对称中心:(π2+k π,0)(k ∈Z );对称中心:(k π2,0)(k∈Z);对称轴:x=π2+kπ(k∈Z)对称轴:x=kπ(k∈Z) 0)(k∈Z)3.三角函数的两种常见变换考点一三角函数的概念、诱导公式及同角三角函数的基本关系问题例1(1)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P(x,y).若初始位置为P0⎝⎛⎭⎪⎫32,12,当秒针从P0(此时t=0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为( ) A.y=sin⎝⎛⎭⎪⎫π30t+π6B.y=sin⎝⎛⎭⎪⎫-π60t-π6C.y=sin⎝⎛⎭⎪⎫-π30t+π6D.y=sin⎝⎛⎭⎪⎫-π30t-π3(2)已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4B.3π4C.5π4D.7π4弄清三角函数的概念是解答本题的关键.答案 (1)C (2)D解析 (1)由三角函数的定义可知,初始位置点P 0的弧度为π6,由于秒针每秒转过的弧度为-π30,针尖位置P 到坐标原点的距离为1,故点P 的纵坐标y 与时间t 的函数关系可能为y =sin ⎝ ⎛⎭⎪⎫-π30t +π6.(2)tan θ=cos 34πsin 34π=-cosπ4sinπ4=-1,又sin 3π4>0,cos 3π4<0,所以θ为第四象限角且θ∈[0,2π),所以θ=7π4.(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关.(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.(1)已知α∈(-π,0),tan(3π+α)=13,则cos ⎝ ⎛⎭⎪⎫32π+α的值为( ) A.1010B .-1010C.31010D .-31010答案 B解析 由tan(3π+α)=13,得tan α=13,cos ⎝ ⎛⎭⎪⎫32π+α=cos ⎝ ⎛⎭⎪⎫π2-α=sin α.∵α∈(-π,0),∴sin α=-1010. (2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45. 求sin 2α+cos 2α+11+tan α的值.解 由三角函数定义, 得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825.考点二 三角函数y =A sin(ωx +φ)的图象及解析式例2 函数f (x )=sin(ωx +φ)(其中|φ|<π2)的图象如图所示,为了得到g (x )=sin ωx 的图象,则只要将f (x )的图象( )A .向右平移π6个单位B .向右平移π12个单位C .向左平移π6个单位D .向左平移π12个单位答案 A解析 由图象可知,T 4=7π12-π3=π4,∴T =π,∴ω=2ππ=2,再由2×π3+φ=π,得φ=π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x +π3.故只需将f (x )=sin 2⎝⎛⎭⎪⎫x +π6向右平移π6个单位,就可得到g (x )=sin 2x .(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.(1)(2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 ∵34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,又2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A.(2)(2012·浙江)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )答案 A解析 利用三角函数的图象与变换求解.y =cos 2x +1――→横坐标伸长2倍纵坐标不变 y =cos x +1――→向左平移1个单位长度y =cos(x +1)+1――→向下平移1个单位长度y =cos(x +1).结合选项可知应选A.(3)已知函数f (x )=3sin 2x -2sin 2x +2,x ∈R . ①求函数f (x )的最大值及对应的x 的取值集合; ②画出函数y =f (x )在[0,π]上的图象.解 ①f (x )=3sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π6+1,当2x +π6=2k π+π2 (k ∈Z )时,f (x )取最大值3,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.②列表如下:x0 π6 5π12 2π3 11π12 π 2x +π6π6 π2 π 3π2 2π 13π6 y231-112考点三 三角函数的性质例3 (2012·北京)已知函数f (x )=sin x -cos x sin 2xsin x.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.先化简函数解析式,再求函数的性质.解 (1)由sin x ≠0得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=sin x -cos x sin 2xsin x=2cos x (sin x -cos x ) =sin 2x -cos 2x -1 =2sin ⎝ ⎛⎭⎪⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ),得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝⎛⎦⎥⎤k π,k π+3π8(k ∈Z ).函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.(1)已知函数f (x )=sin x +cos x ,g (x )=sin x -cos x ,有下列四个命题:①将f (x )的图象向右平移π2个单位可得到g (x )的图象;②y =f (x )g (x )是偶函数;③f (x )与g (x )均在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增;④y =f xg x的最小正周期为2π. 其中真命题的个数是( )A .1B .2C .3D .4答案 C解析 f (x )=2sin(x +π4),g (x )=sin x -cos x =2sin(x -π4),显然①正确;函数y =f (x )g (x )=sin 2x -cos 2x =-cos 2x , 其为偶函数,故②正确;由0≤x +π4≤π2及-π2≤x -π4≤0都可得-π4≤x ≤π4,所以由图象可判断函数f (x )=2sin(x +π4)和函数g (x )=2sin(x -π4)在[-π4,π4]上都为增函数,故③正确; 函数y =f xg x =sin x +cos x sin x -cos x =1+tan x tan x -1=-tan(x +π4),由周期性定义可判断其周期为π,故④不正确.(2)(2013·安徽)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π.①求ω的值;②讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性.解 ①f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0. 从而有2π2ω=π,故ω=1.②由①知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4. 当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎢⎡⎦⎥⎤0,π8上单调递增,在区间⎣⎢⎡⎦⎥⎤π8,π2上单调递减.1.求函数y =A sin(ωx +φ)(或y =A cos(ωx +φ),或y =A tan(ωx +φ))的单调区间(1)将ω化为正.(2)将ωx +φ看成一个整体,由三角函数的单调性求解. 2. 已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式(1)A =y max -y min2,B =y max +y min2.(2)由函数的周期T 求ω,ω=2πT.(3)利用与“五点法”中相对应的特殊点求φ.3. 函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点. 4. 求三角函数式最值的方法(1)将三角函数式化为y =A sin(ωx +φ)+B 的形式,进而结合三角函数的性质求解. (2)将三角函数式化为关于sin x ,cos x 的二次函数的形式,进而借助二次函数的性质求解. 5. 特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身.1. 假设若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”.给出下列函数:①f (x )=sin x -cos x ;②f (x )=2(sin x +cos x ); ③f (x )=2sin x +2;④f (x )=sin x . 则其中属于“互为生成函数”的是 ( )A .①②B .①③C .③④D .②④答案 B2. 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=12sin 2ωx +3×1+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin(2ωx +π3), 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, ∴f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后, 得到y =sin(4x -π6)的图象,再将所得图象所有点的横坐标伸长到原来的2倍, 纵坐标不变,得到y =sin(2x -π6)的图象.所以g (x )=sin(2x -π6).令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数g (t )=sin t 与y =-k 在区间[-π6,5π6]上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.∴-12<k ≤12或k =-1.(推荐时间:60分钟)一、选择题1. 点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 A解析 记α=∠POQ ,由三角函数的定义可知,Q 点的坐标(x ,y )满足x =cos α=cos 2π3=-12, y =sin α=sin2π3=32. 2. 已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53B .-59C.59D.53答案 A解析 因为sin α+cos α=33, 两边平方得1+2sin αcos α=13,所以sin 2α=-23.由于sin α+cos α=2sin ⎝ ⎛⎭⎪⎫α+π4=33>0, 且α为第二象限角,所以2k π+π2<α<2k π+3π4,k ∈Z ,所以4k π+π<2α<4k π+3π2,k ∈Z , 所以cos 2α=-1-sin 22α=-1-49=-53. 3. 将函数y =cos ⎝⎛⎭⎪⎫x -π3的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴是( )A .x =π4B .x =π6C .x =π D.x =π2答案 D解析 y =cos ⎝⎛⎭⎪⎫x -π3―――――――――→横坐标伸长到原来的2倍纵坐标不变 y =cos ⎝ ⎛⎭⎪⎫12x -π3 y =cos ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π6-π3,即y =cos ⎝⎛⎭⎪⎫12x -π4.因为当x =π2时,y =cos ⎝ ⎛⎭⎪⎫12×π2-π4=1,所以对称轴可以是x =π2.4. 若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点与最低点,且OM →·ON →=0,则A ·ω 等于( )A.π6 B.7π12C.7π6D.7π3答案 C解析 由题中图象知T 4=π3-π12,所以T =π,所以ω=2.则M ⎝ ⎛⎭⎪⎫π12,A ,N ⎝ ⎛⎭⎪⎫7π12,-A 由OM →·ON →=0,得7π2122=A 2,所以A =7π12,所以A ·ω=7π6. 5. 已知函数f (x )=2sin(ωx +φ) (ω>0)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( )A .2B .4C .6D .8答案 A解析 由f ⎝ ⎛⎭⎪⎫π12=0知⎝ ⎛⎭⎪⎫π12,0是f (x )图象的一个对称中心,又x =π3是一条对称轴,所以应有⎩⎪⎨⎪⎧ω>02πω≤4⎝ ⎛⎭⎪⎫π3-π12,解得ω≥2,即ω的最小值为2,故选A.6. (2013·江西)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 在t=0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )答案 B解析 方法一 (排除法)当t =0时,y =cos 0=1,否定A 、D. 当t =12时,l 2上方弧长为23π.y =cos 23π=-12.∴否定C ,只能选B. 方法二 (直接法)由题意知∠AOB =x ,OH =1-t , cos∠AOH =cos x 2=OH OA =1-t ,∴y =cos x =2cos 2x2-1=2(1-t )2-1(0≤t ≤1). ∴选B. 二、填空题7. 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.答案 -8解析 因为sin θ=y42+y2=-255,所以y <0,且y 2=64,所以y =-8.8. 函数f (x )=sin πx +cos πx +|sin πx -cos πx |对任意的x ∈R 都有f (x 1)≤f (x )≤f (x 2)成立,则|x 2-x 1|的最小值为________.答案 34解析 依题意得,当sin πx -cos πx ≥0, 即sin πx ≥cos πx 时,f (x )=2sin πx ; 当sin πx -cos πx <0,即sin πx <cos πx 时,f (x )=2cos πx .令f (x 1)、f (x 2)分别是函数f (x )的最小值与最大值, 结合函数y =f (x )的图象可知,|x 2-x 1|的最小值是34.9. 已知f (x )=2sin ⎝⎛⎭⎪⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围为________. 答案 [1,2)解析 函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,等价于方程m =2sin ⎝ ⎛⎭⎪⎫2x -π6在区间[0,π2]上有两解. 作出如图的图象,由于右端点的坐标是⎝⎛⎭⎪⎫π2,1,由图可知,m ∈[1,2).10.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错;f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4,故④错.故填①③. 三、解答题11.(2013·山东)设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3×1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎪⎫2ωx -π3.依题意知2π2ω=4×π4,ω>0,所以ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3.所以-32≤sin ⎝⎛⎭⎪⎫2x -π3≤1.所以-1≤f (x )≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1. 12.(2012·湖南)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,0<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f ⎝ ⎛⎭⎪⎫x +π12的单调递增区间. 解 (1)由题设图象知,周期T =2⎝ ⎛⎭⎪⎫11π12-5π12=π,所以ω=2πT=2.因为点⎝⎛⎭⎪⎫5π12,0在函数图象上,所以A sin ⎝ ⎛⎭⎪⎫2×5π12+φ=0,即sin ⎝⎛⎭⎪⎫5π6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3.从而5π6+φ=π,即φ=π6.又点(0,1)在函数图象上,所以A sin π6=1,解得A =2.故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6=2sin 2x -2sin ⎝ ⎛⎭⎪⎫2x +π3=2sin 2x -2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .。