风力发电机及风力发电控制技术综述 姜礼龙
风力发电机及风力发电控制技术综述 姜礼龙

风力发电机及风力发电控制技术综述姜礼龙发表时间:2019-06-11T17:39:57.053Z 来源:《电力设备》2019年第1期作者:姜礼龙[导读] 摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。
(我是国华(科左中旗)风电有限公司内蒙古通辽 028000)摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。
由于风能的能量密度低,具有不稳定性和随机性,控制技术是大型风力发电机组安全高效运行的关键。
本文就风力发电的现状及风力发电机工作原理进行分析,着重探讨风力发电控制技术,提升风力发电经济效益。
关键词:风力发电;控制技术随着我国经济发展有中低端迈向中高端的转型升级发展,更加各种清洁能源在经济社会发展中的作用、环保价值与开发前景。
作为清洁可再生能源,风能的应用正在我国逐步推进。
但是我国风能研究理论与应用技术落后于欧美国家。
1 风力发电的现状及原理1.风力发电在能源开发企业中属于重点开发的项目。
历经多年的发展,风力发电获得了较好的成绩。
现阶段风力发电技术发展的现状较为良好。
风力发电技术的单机容量近年一直在增加,能满足更多场合的发电需求。
同时,风力发电技术需要投入较高的成本,日常运营过程中风力发电的运营费用却较少。
另外,随着能源公司规模的不断发展与扩大,整个发电行业中风能发电的占有比例也随之增大。
从技术发展的层面进行分析我们不难发现,我国现有的市场经济环境中,风电企业从最开始的单存引进阶段到将国外的技术经过革新本土化后应用,最后到自主创新的阶段,当前已经有了基本的技术积累。
尤其是兆瓦级机组在国内市场中的普及,更是标志着我国自主研发能力,已经进入了全新的阶段。
2.风力发电机的工作原理。
风力发电机是将风能转换为机械能,机械能转换为电能的电力设备。
它是一种以太阳为热源,以大气为工作介质的热能利用发动机。
风力发电及其控制技术分析

风力发电及其控制技术分析1. 引言1.1 背景介绍风力发电是指利用风能驱动风机转动发电机产生电能的一种可再生能源发电方式。
随着全球环境污染问题日益严重,清洁能源逐渐成为人们关注的焦点。
风力发电具有资源丰富、环保无污染、成本低廉等优势,逐渐成为主要的清洁能源之一。
中国是世界上风力发电装机容量最大的国家,风力发电技术也在不断创新和发展。
风力发电技术的发展,控制技术的精进是其中至关重要的一环。
风力发电的控制技术涉及到风机的启停控制、输出功率控制、安全保护等多个方面,对于提高风力发电系统的效率和可靠性起着至关重要的作用。
在当前清洁能源发展的大背景下,深入研究风力发电及其控制技术,分析其现状及发展趋势,对于促进清洁能源的发展具有重要意义。
本文旨在通过对风力发电及其控制技术的分析,探讨风力发电系统的优化方向,为我国清洁能源的发展提供参考,促进风力发电技术的进步和应用。
1.2 研究意义风力发电作为清洁能源的重要形式,具有环保、可再生、经济等优点,对于减少人类对传统化石能源的依赖,减少温室气体排放,推动可持续发展具有重要意义。
风力发电不仅可以提高能源利用率,还可以减轻对环境造成的污染和破坏,对保护地球生态环境具有重要的意义。
风力发电技术的研究意义不仅在于推动清洁能源产业的发展,也在于提高我国能源供给结构的合理性和健康性,促进可再生能源的广泛利用。
风力发电技术的研究还可以促进我国科技进步,提高我国在清洁能源领域的国际竞争力,为我国经济社会可持续发展作出更大的贡献。
深入研究风力发电技术,提高风力发电系统的效率和可靠性,探索风力发电系统的优化方案,对于实现我国能源转型,推动清洁能源产业发展,具有重要意义。
【2000字】1.3 研究目的研究目的是为了深入探讨风力发电及其控制技术在能源领域中的应用,分析当前风力发电系统存在的问题和挑战,探索解决方案和优化策略。
通过研究目的,我们可以更好地了解风力发电原理和技术现状,为提高风力发电系统的效率和稳定性提供理论支持和技术指导。
风力发电及其控制技术分析

风力发电及其控制技术分析
风力发电是一种利用风能来产生电力的可再生能源技术。
它是一种环保、清洁、低污
染的能源生产方式,可以有效地减少非可再生能源的消耗,同时也可以降低二氧化碳等污
染气体的排放,对环境保护具有极大的意义。
风力发电技术包括风机、变流器、控制系统等多个组成部分。
风机一般由叶片、风轮、主轴、变速器、发电机、塔架等部分组成。
变流器主要用来将风机产生的交流电转换成直
流电。
控制系统则是整个系统的核心部分,它通过对风机的控制实现了对风力发电系统整
体的运行控制和风机转速的调节,从而实现了发电效率的最大化。
在风力发电系统中,控制系统的设计对于系统的性能和安全运行具有至关重要的作用。
在设计控制系统时,需要考虑风机的转速控制、风机负荷分配、电网连接与功率平衡、系
统的故障诊断等多个方面。
其中,风机转速控制是控制系统设计的重点和难点之一,可以
通过控制电机转矩、检测风速变化等多种方式来实现。
除了风力发电控制系统之外,还有一些与之相关的控制技术,例如风力发电场的无人
机巡航控制、风机桨叶的变形控制等,都是为了提高风力发电系统的效率和可靠性而不断
发展完善的。
《2024年海上风电场运行控制维护关键技术综述》范文

《海上风电场运行控制维护关键技术综述》篇一一、引言随着全球能源结构调整与环境保护意识的日益增强,海上风电作为清洁、可再生的能源,得到了迅速的发展与推广。
海上风电场作为未来风电发展的重点方向,其运行控制与维护技术的关键性不言而喻。
本文将针对海上风电场的运行控制维护的关键技术进行概述与评价,为进一步的技术研究与工程应用提供参考。
二、海上风电场概述海上风电场具有广阔的资源储备和稳定的发电环境,对于解决沿海地区电力需求具有重要价值。
但同时,海上风电场面临着海洋环境复杂、运行条件恶劣等挑战,其运行控制与维护技术的要求也远高于陆地风电场。
三、运行控制关键技术(一)风电机组控制技术风电机组是海上风电场的核心设备,其控制技术直接关系到风电场的运行效率与安全性。
现代风电机组控制技术采用了先进的控制系统和算法,能够根据风速、风向等环境因素实时调整风机的运行状态,实现最大风能捕获和安全运行。
(二)电网接入与调度控制技术海上风电场的电网接入与调度控制是实现大规模电力输送与利用的关键技术。
该技术包括优化接入方式、保障电力稳定输送和实施电网调度管理等多个环节,以确保电力资源的有效利用和电网的稳定运行。
四、维护技术及其要点(一)日常监测与预警系统为实现对海上风电场的远程管理与故障预警,需要建立日常监测与预警系统。
该系统能够实时监测风电机组的运行状态、海洋环境等因素,对潜在的运行风险进行预警,以便及时采取维护措施。
(二)故障诊断与修复技术针对海上风电设备的复杂性和多样性,需要采用先进的故障诊断与修复技术。
这些技术包括基于传感器的实时监测、基于数据分析的故障诊断和远程修复指导等,能够快速定位故障、减少停机时间并提高维护效率。
(三)远程维护与管理技术由于海上风电场地理位置的特殊性,远程维护与管理技术在确保风电场稳定运行中起着重要作用。
通过远程监控系统,管理人员能够实时掌握风电场的运行情况,及时采取维护措施。
同时,通过建立完善的管理制度和技术标准,能够确保维护工作的有序进行和设备的安全运行。
风力发电系统运行控制技术综述

Z HOU n h i L a — e g Ya — u IXio f.  ̄ ,
(.ime o e upyC m ayD sac n o m nct nC n rJ m n4 80 , u e Poic, hn; . 1Jn nP w r p l o p n i t a dC m u i i e t , i e 0 1 H bi rvne C ia 2 S p h ao e n
械 能转 化 为 电能;变 流设 备将 发 电机发 出 的频率 幅 值 随风 速波 动 的交流 电转 化为 与 电网 电压 同频 同幅
Ab t a tW i d e e g s a k n f ce r n w e e g ,S h t d f h w o u e t t r vd l crc p w r h s s r c : n n r y i id o l a e n r y O t e su y o o t s i o p i e e e t o e a o i r ma k b e s n f a c .T e o e ai n c n r l s a e y o h i d p we y t m k s g e t s n e t h y tm' e r a l i i c n e h p r t o to t t g f t e w n o r s se ma e r a e s o te s se s g i o r e i in y s c r y a d t e q a i ft e ee t c p w r d l e e o t e e e t c p we f ce c , e u t n h u l y o lc r o e e i r d t h l cr o r i t h i v i d I h s p p r wo k n s o . n t i a e ,t id f
《2024年海上风电场运行控制维护关键技术综述》范文

《海上风电场运行控制维护关键技术综述》篇一一、引言随着全球对可再生能源的日益关注和需求增长,海上风电作为清洁、可持续的能源供应方式,正逐渐成为世界各国能源战略的重要组成部分。
海上风电场的建设与运行不仅需要强大的风力资源作为支撑,更需要先进的技术手段来确保其稳定、高效的运行。
本文将重点对海上风电场运行控制维护的关键技术进行综述,探讨其发展现状与未来趋势。
二、海上风电场概述海上风电场是指将多个风力发电机组安装在海上的大面积区域,通过风力发电来满足电力需求。
与陆地风电相比,海上风电具有风速高、风力稳定、环境干扰小等优势,但同时也面临着海洋环境复杂、维护困难等挑战。
因此,对海上风电场的运行控制维护技术要求较高。
三、海上风电场运行控制关键技术1. 远程监控与数据传输技术远程监控与数据传输技术是实现海上风电场高效运行的基础。
通过安装传感器和监控系统,实时监测风电机组的运行状态、环境参数等数据,并将这些数据传输至岸上监控中心进行分析和处理。
此外,利用卫星通信、无线通信等技术手段,实现远程控制和故障诊断,提高风电场的运行效率。
2. 智能控制技术智能控制技术是提高海上风电场运行稳定性的关键。
通过引入人工智能、机器学习等技术手段,对风电机组的运行状态进行预测和优化,实现自动调节风电机组的运行参数,以适应不同的风速和环境条件。
此外,智能控制技术还可以实现多台风电机组的协同控制,提高风电场的整体运行效率。
四、海上风电场维护关键技术1. 定期检查与维护技术定期检查与维护是确保海上风电场正常运行的重要措施。
通过对风电机组进行定期检查,发现潜在的安全隐患和故障,及时进行维修和更换部件,确保风电机组的正常运行。
此外,还需要对海上风电场的电缆、基础结构等进行定期检查和维护,确保其结构安全和电气性能稳定。
2. 故障诊断与修复技术故障诊断与修复技术是提高海上风电场维护效率的关键。
通过引入先进的故障诊断技术和算法,快速准确地判断出故障的原因和位置,为修复工作提供依据。
风力发电技术综述

网络高等教育本科生毕业论文(设计)题目:风力发电技术综述学习中心:层次:专科起点本科专业:电气工程及其自动化年级: 2012 年秋季学号:学生:指导教师:完成日期: 2012 年月 1日内容摘要风能是一种清洁、实用、经济和环境友好的可再生能源,与其它可再生能源一道,可以为人类发展提供可持续的能源基础。
在未来能源系统中,风电具有重要的战略地位。
人类利用风能已经有数千年历史,现代风电研究与开发也有30多年的历史。
许多国家投入了大量人力、物力对风力发电进行长期研究,这些研究成果使风力发电技术不断得到提高。
风电开发多年来一直保持很高的增长速度,近几年中国的风电装机容量几乎以每年翻一番的速度迅猛发展。
由于风力发电使用的一次能源——风能具有能量密度低、波动性大、不能直接储存等特点,风力发电领域仍然有许多问题需要进一步深入研究。
本论文从全球视角出发,介绍了风能的作用及优缺点,世界风力发电应用现状与前景,世界各国风力发电应用进展、风力发电设备,中国风力发电的特点及发电状况,风力发电应用进展和展望等内容。
关键词:风能;再生能源;风力发电目录内容摘要 (I)1 绪论 (1)1.1 课题的背景及意义 (1)1.2 国内外发展现状 (2)1.2.1 国外风力发电发展现状 (2)1.2.2 我国风力发电发展现状 (2)1.3 本文的主要内容 (3)2 风力发电机 (5)2.1传统的风力发电机 (5)2.1.1 笼型异步发电机 ................................................... 错误!未定义书签。
2.1.2 绕线式异步发电机 ............................................... 错误!未定义书签。
2.1.3 有刷双馈异步发电机 ........................................... 错误!未定义书签。
风力发电机文献综述

林内小型风力发电机风叶的设计摘要:随着国民经济的持续发展,能源危机的阴影正日益困扰着人类的生产和生活,因此人们开始把目光风能这个取之不尽、用之不竭的清洁能源,若风力发电机跟森林中的监测传感器配合,则能有效利用自然资源,实现可持续发展。
本文就林内小型风力发电机叶片原有的基础上进行优缺点分析,总结国内外风力发电机的发展和现状。
前言本人毕业设计题目为《林内小型风力发电机叶片部件的设计》,主要针对垂直轴风力发电机叶片部件的设计进行研究,对现有风力发电机的叶片发展历史进行总结分析,探索其优越性和可行性。
本文主要查询了2000年以来的有关小型风力发电文献期刊。
主体风力发电机分为水平轴风机和垂直轴风机。
水平轴风机最为典型的代表是3个叶片的荷兰风车,也是目前阶段技术最成熟,应用最广泛,占据主流市场的产品。
水平轴风机主要包括叶片技术、发电机和传动技术、并网技术三大部分。
其中叶片技术是其核心部分,叶片除了靠叶素理论计算和设计外,还要靠经验对计算值进行修正,对操作人员的技术要求十分高。
而我国是从20世纪80年代后期才涉足风力发电这一新兴行业,技术远远落后与世界发展水平,其研究主要是引进、吸收、消化叶片设计技术,没有自己的独立成果。
到2006年底,中国进入或正在进入大型风机市场的厂商已超过20家1 ,从企业数量上看,中国的企业数量超过了全世界风机厂商数量的一倍以上,但均缺乏叶片这一核心技术的独创性。
垂直轴风机,即转轴垂直于地面的风机,其历史可以追溯到几千年前,人们利用垂直轴风车进行提水。
而垂直轴风力发电机的发明则要比水平轴的晚很多,知道20世纪20年代才开始出现。
由于人们普遍认为垂直轴风轮的尖速比不可能大于1,风能利用率低于水平轴风力发电机,因而导致垂直轴风机长期得不到重视。
然而,随着科技日新月异和人类认识水平的不断提高,人们逐渐意识到垂直轴风机的尖速比不能大于1只适用于阻力型风机,而升力型风机的尖速比甚至可以达到6,并且其风能利用率也不低于水平轴,于是越来越多的人认识到垂直轴风机的发展前景,并大大提高了其研发技术,取得了突破性进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电机及风力发电控制技术综述姜礼龙
发表时间:2019-07-05T11:50:40.807Z 来源:《电力设备》2019年第4期作者:姜礼龙
[导读] 摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。
(国华(科左中旗)风电有限公司内蒙古通辽 028000)
摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。
由于风能的能量密度低,具有不稳定性和随机性,控制技术是大型风力发电机组安全高效运行的关键。
本文就风力发电的现状及风力发电机工作原理进行分析,着重探讨风力发电控制技术,提升风力发电经济效益。
关键词:风力发电;控制技术
随着我国经济发展有中低端迈向中高端的转型升级发展,更加各种清洁能源在经济社会发展中的作用、环保价值与开发前景。
作为清洁可再生能源,风能的应用正在我国逐步推进。
但是我国风能研究理论与应用技术落后于欧美国家。
1 风力发电的现状及原理
1.风力发电在能源开发企业中属于重点开发的项目。
历经多年的发展,风力发电获得了较好的成绩,现阶段风力发电技术发展的现状较为良好。
风力发电技术的单机容量近年一直在增加,能满足更多场合的发电需求。
随着能源公司规模的不断发展与扩大,整个发电行业中风能发电的占有比例也随之增大。
从技术发展的层面进行分析我们不难发现,我国现有的市场经济环境中,风电企业从最开始的单存引进阶段到将国外的技术经过革新本土化后应用,最后到自主创新的阶段,当前已经有了基本的技术积累,尤其是兆瓦级机组在国内市场中的普及,更是标志着我国自主研发能力,已经进入了全新的阶段。
2.风力发电机的工作原理。
风力发电利用的是自然能源,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。
风力发电机一般由风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成,风力发电机是将风能转换为机械能,机械能转换为电能的电力设备。
依据目前的风力发电机技术,大约是每秒三公尺的微风速度,便可以开始发电。
正因为风力发电没有燃料,也不会产生辐射或空气污染等问题,所以风力发电正在世界上形成一股热潮。
目前在风力发电机组中,两种最有竞争能力的结构型式是异步电机双馈式机组和永磁同步电机直接驱动式机组。
双馈风力发电机组风轮将风能转变为机械转动的能量,经过齿轮箱增速驱动异步发电机,应用励磁变流器励磁而将发电机定子电量输入电网,如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电;直驱永磁风力发电机组的发电机轴直接连接到风轮上,省去了齿轮箱,转子的转速随风速而改变,其交流电的频率也随之变化,经过大功率的电力电子变流器,将频率不定的交流电整流成直流,再逆变成与电网同频率的交流电输出。
2 风力发电控制技术
1.定桨距失速风力发电技术。
定桨距风力发电机迈入风力发电市场是在20世纪80年代中期,其研制成功解决了发电机组的并网问题。
定桨距风力发电机主要是软并网技术、空气动力刹车技术、偏行与自动解缆技术三种技术的结合。
定桨距风力发电机组的特点是桨叶与轮毅固定连接,在风速发生变化时,桨叶的迎风角度不发生变化,结合桨叶翼型本身的失速特性,在风速高于额定值时,气流的功角就会达到失速状态,可使桨叶的表面产生紊流,使发电机的效率降低来达到限制功率的目的,风力发电机的这一特性控制发电系统的安全可靠。
发电机转速是由电网频率限制,输出功率由桨叶本身性能限制,当风速比额定转速高时,桨叶能够通过失速调节功能将功率控制在额定值范围之内,其起到重大作用的是叶片独特的翼型结构,在遇到强风时,流过叶片背风面的气流产生紊流,降低叶片气动效率,影响能量捕获,产生失速是一个较为复杂的过程,在风速不稳定时,很难得出失速的效果,因此很少用来控制MW级以上的大型风力发电机。
2.变桨距风力发电技术。
从空气动力学角度考虑,当风速过高时,可以通过控制叶片的角度使风轮的转速保持恒定,以保持稳定的输出功率。
采用变桨距调节方式,风机输出功率曲线平滑,在阵风时,塔筒、叶片、基础受到的冲击较失速调节型风力发电机要小,可减少材料使用率,降低整机重量,它能自动调节叶片桨距角度,适应不同风况下功率的调节,特别是使得在接近额定风速附近得功率曲线充实,增加风力发电机的年发电量。
但其也有一定的缺点,即其需要一套复杂的变桨距机构,变桨距机构的设计要求对阵风的响应速度足够快,以减小由于风的波动引起的功率脉动,变桨距执行机构及液压驱动系统较复杂,运行可靠性难以有效保证,其成本也较高。
3.主动失速、混合失速发电技术。
主动失速、混合失速发电技术是上述两种技术的组合,低风速时采用变桨距调节可提高气动效率,使桨距角向减小的方向转过一个角度,增大相应的攻角,加深叶片的失速效应,从而限制风能的捕获,这种变桨距调节不需要很灵敏的调节速度,执行机构的功率相对较小,风力发电机组在超过额定风速(一般为14-16m/s)以后,由于机械强度和发电机、电力电子容量等物理性能的限制,必须降低风力发电机的能量捕获,使功率输出保持在额定值附近,同时减少叶片承受负荷和整个风力发电机收到的冲击,从而有效的避免风力发电机受到损害,这种调节将引起叶片攻角的变化,从而导致更深层次的失速,使功率输出更加平滑。
4.变速风力发电技术。
风力发电机组分恒速恒频风力发电和变速恒频风力发电。
变速风力发电技术是改变了风力发电机的恒速运动规律,可以根据风速的变化调整运行,保持恒频发电,当风速小时争取获得更大的风能,风速过大时调整储存转化能量,比恒速风力发电机组的实用范围更广泛。
变速风力发电技术可以根据风速的变化保证恒定的最佳叶尖速比,低风速时尽量获取多的风能,以保证平稳输出;高风速时及时调整风轮转速储存能量,避免功率过大,当风速变大风能变强时风轮可以吸收储存部分的风能,提高了传动系统的柔性,减轻了主轴承受的应力及扭距,通过电力电子装置的作用,变速风力的风能转化为可以输入电网的电能,使风力发电机组安全平稳的运行,能量传输机构系统也平稳运行。
3 风力发电系统的智能控制
风力发电中,所选择的控制技术合理与否,将直接影响到风力发电效益。
就风力发电技术来看,影响因素较为多样,控制过程涉及内容较为繁杂,可以通过建立数学模型分析,实现对风力发电的智能控制。
1.滑模变结构控制。
滑模变结构控制是一种较为前沿的非线性系统,在系统运行过程中可能由于风向变化和负载变化,所以无法建立更加精准的数学模型进行控制。
滑模变结构控制相当于一种连续开关型控制技术,在满足系统运行条件基础上,在特定空间内运动,系统对参数变化不敏感、响应速度快以及设计简单的特点,确保系统可以安全稳定运行,提升风力发电机控制水平。
2.矢量控制控制。
矢量控制主要是在双馈电机控制系统中应用,实现风能的最大效率利用,此种技术可以实现有功功率和无功功率的
独立解耦调节,抗干扰能力强,可以实现风力发电机组的稳定控制。
但同时,此种技术由于转自电流励磁分量多少会对发电机组运行稳定带来影响。
通过收集得到的数据信息,应用现代化智能控制技术的同时,还要注重数据信息的深层次挖掘,把握数据规律,在此基础上对于无法观测的数据进行预测和分析,实现对风力发电运行过程的有效控制。
4 技术发展趋势展望
为提高风力发电效率,降低成本,改善电能质量,减少噪声,实现稳定可靠运行,风力发电将向大容量、变转速、直驱化、无刷化、智能化以及微风发电等方向发展:
1.风力发电机大型化。
这可以减少占地,降低并网成本和单位功率造价,有利于提高风能利用效率。
2.采用变桨距和变速恒频技术。
变桨距和变速恒频技术为大型风力发电机的控制提供了技术保障。
其应用可减小风力发电机的体积、重量和成本,增加发电量,提高效率和电能质量。
3.风力发电机直接驱动。
直接驱动可省去齿轮箱,减少能量损失、发电成本和噪声,提高了效率和可靠性。
4.风力发电机无刷化。
无刷化可提高系统的运行可靠性,实现免维护,提高发电效率。
5.智能化控制。
采用先进的模糊控制、神经网络、模式识别等智能控制方法,可以有效克服风力发电系统的参数时变与非线性因素。
6.采用磁力传动技术和磁悬浮技术,使电机能够“轻风起动,微风发电”。
现有的可再生能源技术中,风力发电技术又最为成熟,我国幅员辽阔,风电产业的发展具备得天独厚的条件,因此对风力发电中的关键技术一风力发电机技术的研究就变得尤为重要。
参考文献:
[1]周朱益.磁悬浮风力发电机发展及其控制策略研究[J].电气自动化,2014,(01):7-11.
[2]汪晓娜.风力发电技术发展综述[J].电气开关,2014,(03):16-19.。