2011全国中考数学真题解析120考点汇编 开放性试题
2011全国中考数学真题解析120考点汇编 操作探究性试题

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆操作探究性试题一、选择题1. (2011山西,6,2分)将一个矩形纸片依次按图(1)、图⑵的方式对折,然后沿图(3)中的虚线裁剪,最后头将图(4)的纸再展开铺平,所得到的图案是( )考点:轴对称专题:操作题 图形变换分析:由图案的对称性进行想象,或动手操作一下都可.解答:A 点评:动手折一折,动脑想一想.不难得出答案.2. 若关于的二元一次方程组 {3x+y=1+ax+3y=3的解满足x+y <2,则a 的取值范围为( )A 、x <4B 、x >4C 、x <-4D 、x >-4 考点:解一元一次不等式;解二元一次方程组.专题:探究型.分析:先把先把两式相加求出x+y 的值,再代入x+y <2中得到关于a的不等式,求出的取值范围即可.解答:解: {3x+y=1+a ①x+3y=3②,①+②得,x+y=1+ a4,∵x+y <2,∴1+ a4<2,解得a <4.故选A .点评:本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是把a当作已知条件表示出x 、y 的值,再得到关于a 的不等式.3.(2011湖北咸宁,7,3分)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )(向上对折) 图(1) 图(3) (向右对折) 图(2) 图(4) D CB A (第6题)A .9B .339-C .3259-D .3239- 考点:剪纸问题;展开图折叠成几何体;等边三角形的性质。
专题:操作型。
分析:这个棱柱的侧面展开正好是一个长方形,长为3,宽为3减去两个三角形的高,再用长方形的面积公式计算即可解答.解答:解:∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个棱柱的底面边长为1,高为22)21(1-=,∴侧面积为长为3,宽为3﹣3的长方形,面积为9﹣33.故选B .点评:此题主要考查了剪纸问题的实际应用,动手操作拼出图形,并能正确进行计算是解答本题的关键.4. (2011湖北荆州,15,3分)请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.答案不唯一.考点:作图—应用与设计作图.专题:作图题.分析:整个图形含有36个小菱形,分为面积相等的六部分,则每一个部分含6个小菱形,由此设计分割方案.解答:解:分割后的图形如图所示.本题答案不唯一.点评:本题考查了应用与设计作图.关键是理解题意,根据已知图形设计分割方案.5. (2011,台湾省,6,5分)下图数轴上A 、B 、C 、D 、E 、S 、T 七点的坐标分别为﹣2、﹣1、0、1、2、s 、t .若数轴上有一点R ,其坐标为|s ﹣t+1|,则R 会落在下列哪一线段上?A 、AB B 、BCC 、CD D 、DE考点:数轴;解一元一次不等式。
2011中考数学真题解析19 一元一次方程的应用(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编一元一次方程的应用一、选择题1. (2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )A .54盏B .55盏C .56盏D .57盏考点:一元一次方程的应用。
专题:优选方案问题。
分析:可设需更换的新型节能灯有x 盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x 盏,则70(x+1)=36×(106+1)70x=3782,x≈55则需更换的新型节能灯有55盏.故选B .点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.2. (2011山西,10,2分)“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .()130%80%2080x +⨯=B . 30%80%2080x ⋅⋅=C . 208030%80%x ⨯⨯=D . 30%208080%x ⋅=⨯考点:一元一次方程专题:一元一次方程分析:成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .解答:A点评:找出题中的等量关系,是列一元一次方程的关键.3. (2011•柳州)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( )A 、17人B 、21人C 、25人D 、37人考点:一元一次方程的应用。
【史上最全】2011中考数学真题解析102_网格专题(含答案)

2011全国中考真题解析120考点汇编网格专题一、选择题1. (2011•台湾20,4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分( )A 、11B 、12C 、13D 、14考点:一元二次方程的应用。
专题:网格型。
分析:可设方格纸的边长是x ,灰色三角形的面积等于方格纸的面积减去周围三个直角三角形的面积,列出方程可求解. 解答:解:方格纸的边长是x ,21 x 2﹣21•x•21x ﹣21•21x•43x ﹣21•x•41x=421 x 2=12.所以方格纸的面积是12, 故选B .点评:本题考查识图能力,关键看到灰色三角形的面积等于正方形方格纸的面积减去周围三个三角形的面积得解.2. (2011湖北潜江,7,3分)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点.作△ABC 的外接圆⊙O ,则弧AC 的长等于( )A .π43 B .π45 C .π23 D .π25 考点:弧长的计算;勾股定理;勾股定理的逆定理;圆周角定理。
专题:网格型。
分析:求弧AC 的长,关键是求弧所对的圆心角,弧所在圆的半径,连接OC ,由图形可知OA ⊥OC ,即∠AOC =90°,由勾股定理求OA ,利用弧长公式求解. 解答:解:连接OC ,由图形可知OA ⊥OC , 即∠AOC =90°,由勾股定理,得OA =2212+=5,∴弧AC 的长=180590⨯⨯π=25π.故选D .点评:本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=180rn ∙∙π. 3. (2011•西宁)如图,△DEF 经过怎样的平移得到△ABC ( )A 、把△DEF 向左平移4个单位,再向下平移2个单位B 、把△DEF 向右平移4个单位,再向下平移2个单位C 、把△DEF 向右平移4个单位,再向上平移2个单位D 、把△DEF 向左平移4个单位,再向上平移2个单位考点:平移的性质。
全国中考数学真题解析120考点汇编 三角形三边关系

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆三角形三边关系一、选择题1.(2011•南通)下列长度的三条线段,不能组成三角形的是()A、3,8,4B、4,9,6C、15,20,8D、9,15,8考点:三角形三边关系。
专题:计算题。
分析:根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.解答:解:A,∵3+4<8∴不能构成三角形;B,∵4+6>9∴能构成三角形;C,∵8+15>20∴能构成三角形;D,∵8+9>15∴能构成三角形.故选A.点评:此题主要考查学生对运用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.(2011•江苏徐州,6,2)若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A、2cmB、3cmC、7cmD、16cm考点:三角形三边关系。
专题:应用题。
分析:已知三角形的两边长分别为6cm和9cm,根据在三角形中任意两边之和>第三边,或者任意两边之差<第三边,即可求出第三边长的范围.解答:解:设第三边长为xcm.由三角形三边关系定理得9﹣6<x<9+6,解得3<x<15.故选C.点评:本题考查了三角形三边关系定理的应用.关键是根据三角形三边关系定理列出不等式组,然后解不等式组即可.3.(2011内蒙古呼和浩特,7,3)如果等腰三角形两边长是6cm和3cm,那么它的周长是()A、9cmB、12cmC、15cm或12cmD、15cm考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长.根据三角形三边关系定理列出不等式,确定是否符合题意.解答:解:当6为腰,3为底时,6-3<6<6+3,能构成等腰三角形,周长为5+5+3=13;当3为腰,6为底时,3+3=6,不能构成三角形.故选D.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.(2011•青海)某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5考点:三角形三边关系。
全国中考真题解析120考点汇编直接开平方配方法求根公式法因式分解法解一元二次方程

(20XX年1月最新最细)2011全国中考真题解析120考点汇编☆直接开平方、配方法、求根公式法、因式分解法解一元二次方程一、选择题1.(2011•泰州,3,3分)一元二次方程x2=2x的根是()A、x=2B、x=0C、x1=0,x2=2D、x1=0,x2=﹣2考点:解一元二次方程-因式分解法。
专题:计算题。
分析:利用因式分解法即可将原方程变为x(x﹣2)=0,即可得x=0或x﹣2=0,则求得原方程的根.解答:解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选C.点评:此题考查了因式分解法解一元二次方程.题目比较简单,解题需细心.2.(2011湖北荆州,3,3分)将代数式x2+4x-1化成(x+p)2+q的形式()A、(x-2)2+3B、(x+2)2-4C、(x+2)2-5D、(x+2)2+4考点:配方法的应用.专题:配方法.分析:根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.解答:解:x2+4x-1=x2+4x+4-4-1=x+22-5,故选C.点评:本题考查了学生的应用能力,解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,难度适中.3.(2011•柳州)方程x2﹣4=0的解是()A、x=2B、x=﹣2C、x=±2D、x=±4考点:解一元二次方程-直接开平方法。
专题:计算题。
分析:方程变形为x2=4,再把方程两边直接开方得到x=±2.解答:解:x2=4,∴x=±2.故选C.点评:本题考查了直接开平方法解一元二次方程:先把方程变形为x2=a(a≥0),再把方程两边直接开方,然后利用二次根式的性质化简得到方程的解.4.(2011•湘西州)小华在解一元二次方程x2﹣x=0时,只得出一个根x=1,则被漏掉的一个根是()A、x=4B、x=3C、x=2D、x=0考点:解一元二次方程-因式分解法。
2011全国中考数学真题解析120考点汇编 整体思想

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆整体思想一、选择题1. (2011某某,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5考点:代数式求值. 专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可. 解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解. 2. (2011,某某省,26,5分)计算(250+0.9+0.8+0.7)2﹣(250﹣0.9﹣0.8﹣0.7)2之值为何?( )C 、1200D 、2400考点:平方差公式。
分析:利用平方差公式a 2﹣b 2=(a+b )(a ﹣b )解题即可求得答案. 解答:解:(250+0.9+0.8+0.7)2﹣(250﹣0.9﹣0.8﹣0.7)2=(250+2.4)2﹣(250﹣2.4)2=[(250+2.4)+(250﹣2.4)][(250+2.4)﹣(250﹣2.4)] =2400. 故选D .点评:本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.注意整体思想的应用.3. 10(2011某某某某10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---的值为( )C.﹣ 考点:分式的化简求值;一元二次方程的解。
专题:计算题。
分析:先化简22211a a a---,由a 是方程x 2+x ﹣1=0的一个根,得a 2+a ﹣1=0,则a 2+a=1,再整体代入即可.解答:解:原式=2(1)(1)(1)a a a a a -++-=1(1)a a +,∵a 是方程x 2+x ﹣1=0的一个根, ∴a 2+a ﹣1=0, 即a 2+a=1, ∴原式=1(1)a a +=1.故选D .点评:本题考查了分式的化简求值,以及解一元二次方程,是基础知识要熟练掌握.二、填空题1.(2011•某某,14,4分)若x 1,x 2是方程x 2+x ﹣1=0的两个根,则x 12+x 22=. 考点:根与系数的关系。
2011全国中考数学真题解析120考点汇编 定义与命题

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆定义与命题一、选择题1.(2011某某某某,10,4分)现定义运算“★”,对于任意实数a 、b ,都有a ★b =a 2﹣3a +b ,如:3★5=33﹣3×3+5,若x ★2=6,则实数x 的值是( ) A.﹣4或﹣1 B.4或﹣1 C.4或﹣2D.﹣4或2考点:解一元二次方程-因式分解法.分析:根据新定义a ★b =a 2﹣3a +b ,将方程x ★2=6转化为一元二次方程求解. 解答:解:依题意,原方程化为x 2﹣3x +2=6,即x 2﹣3x ﹣4=0, 分解因式,得(x +1)(x ﹣4)=0, 解得x 1=﹣1,x 2=4. 故选B .点评:本题考查了因式分解法解一元二次方程.根据新定义,将方程化为一般式,将方程左边因式分解,得出两个一次方程求解.2.(2011某某某某,6,4分)定义一种运算☆,其规则为a ☆b =1a +1b ,根据这个规则,计算2☆3的值是( ) A.56 B. 15考点:代数式求值. 专题:新定义.分析:由a ☆b =11a b+,可得2☆3=1123+,则可求得答案.解答:解:∵a ☆b =11a b +,∴2☆3=115236+=.故选A .点评:此题考查了新定义题型.解题的关键是理解题意,根据题意解题.3.(2011•黔南,3,4分)在平面直角坐标系中,设点P 到原点O 的距离为p ,OP 与x 轴正方向的夹角为a ,则用[p ,α]表示点P 的极坐标,显然,点P 的极坐标与它的坐标存在一一对应关系.例如:点P的坐标为(1,1),则其极坐标为[2,45°].若点Q的极坐标为[4,60°],则点Q的坐标为()A、(2,23)B、(2,﹣23)C、(23,2)D、(2,2)考点:解直角三角形;点的坐标。
专题:新定义。
分析:根据特殊角的三角函数值求出Q点的坐标.解答:解:作QA⊥x轴于点A,则OQ=4,∠QOA=60°,故OA=OQ×cos60°=2,AQ=OQ×sin60°=23,∴点Q的坐标为(2,23).故选A.点评:解决本题的关键是理解极坐标和点坐标之间的联系,运用特殊角的三角函数值即可求解.二、填空题1.定义运算a⊗b=a(1-b),下列给出了关于这种运算的几点结论:①2⊗(-2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗b)+(b⊗a)=2ab;④若a⊗b=0,则a=0.其中正确结论序号是①.(把在横线上填上你认为所有正确结论的序号)【考点】整式的混合运算;代数式求值.【专题】新定义.【分析】本题需先根据a ⊗b=a (1-b )的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论. 【解答】解:∵a ⊗b=a (1-b ),①2⊗(-2)=6=2×[1-(-2)]=2×3=6,故本选项正确。
2011全国中考数学真题解析120考点汇编 相似三角形判定和性质

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆相似三角形判定和性质一、选择题1.(2011湖北荆州,7,3分)如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,则图中相似三角形有()A、1对B、2对C、3对D、4对考点:相似三角形的判定.专题:证明题.分析:根据题目提供的相等的角和图形中隐含的相等的角,利用两对应角对应相等的两三角形相似找到相似三角形即可.解答:解:∵∠CPD=∠A=∠B,∴△PCF∽△BCP△APG∽△BFP△APD∽△GPD故选B.点评:本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.2.(2011江苏无锡,7,3分)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()A.①与②相似B.①与③相似 C.①与④相似D.②与③相似考点:相似三角形的判定。
分析:由OA:OC﹣=0B:OD,利用对顶角相等相等,两三角形相似,①与③相似,问题可求.解答:证明:∵OA:OC=0B:OD,∠AOB=∠COD(对顶角相等),∴①与③相似.故选B.点评:本题解答的关键是熟练记住所学的三角形相似的判定定理,此题难度不大,属于基础题.3.(2011山西,11,2分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2㎝,则AC的长为()A. B.4cm C. D.考点:三角形中位线,相似三角形的相似比专题:相似三角形分析:由题意知DE 是等腰△ABC 的中位线,所以DE ∥BC ,DE =12BC , 因为DE =2㎝,所以BC =4㎝.又DE ∥BC , 所以△ADE ∽△ABC ,且相似比为12.过点A 作AM ⊥BC 于点M .则MC =2㎝, 由点E 是边AC 的中点,EF ∥AM ,所以FC =1㎝.在△EFC 中, 因为正方形DEFG 的边长是2㎝,所以根据勾股定理得ECAC=)cm , 故选D .解答:D点评:此题是三角形中位线, 等腰三角形的性质,勾股定理,相似三角形的相似比等的综合应用.过点A 作AM ⊥BC 于点M ,构造等腰三角形的高学生不易想到.4. (2011陕西,9,3分)如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形共有( )A .2对B .3对C .4对D .5对考点:相似三角形的判定;平行四边形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆开放性试题一、选择题1.(2011湖北荆州,15,3分)请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.答案不唯一.考点:作图—应用与设计作图.专题:作图题.分析:整个图形含有36个小菱形,分为面积相等的六部分,则每一个部分含6个小菱形,由此设计分割方案.解答:解:分割后的图形如图所示.本题答案不唯一.点评:本题考查了应用与设计作图.关键是理解题意,根据已知图形设计分割方案.二、填空题1.(2011江苏淮安,17,3分)在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)考点:矩形的判定。
专题:开放型。
分析:已知两组对边相等,如果其对角线相等可得到△ABD≌△ABC≌ADC≌△BCD,进而得到,∠A=∠B=∠C=∠D=90°,使四边形ABCD是矩形.解答:解:若四边形ABCD的对角线相等,则由AB=DC,AD=BC可得.△ABD≌△ABC≌ADC≌△BCD,所以四边形ABCD的四个内角相等分别等于90°即直角,所以四边形ABCD是矩形,故答案为:对角线相等.点评:此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是是要得到四个内角相等即直角.2.(2011•泰州,17,3分)“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x(0≤x≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是:每增加1千克重物弹簧伸长0.5cm (只需写出1个).考点:根据实际问题列一次函数关系式。
专题:开放型。
分析:解题时可以将污染部分看做问题的结论,把问题的结论看作问题的条件,根据条件推得结论即可.解答:解:根据弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式为y=10+0.5x (0≤x≤5)可以得到:当x=1时,弹簧总长为10.5cm,当x=2时,弹簧总长为11cm,…∴每增加1千克重物弹簧伸长0.5cm,故答案为:每增加1千克重物弹簧伸长0.5cm.点评:本题考查了根据实际问题列一次函数关系式,同时训练了学生的开放性思维,也考查了同学们逆向思考的能力.3.(2011•南通)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:(1)▲ (2)▲不同点:(1)▲ (2)▲考点:正多边形和圆。
专题:计算题。
分析:此题要了解正多边形的有关性质:正多边形的各边相等,正多边形的各个角相等,所有的正多边形都是轴对称图形,偶数边的正多边形又是中心对称图形.根据正多边形的性质进行分析它们的相同和不同之处.解答:解:相同点不同点①都有相等的边.①边数不同;②都有相等的内角.②内角的度数不同;③都有外接圆和内切圆.③内角和不同;④都是轴对称图形.④对角线条数不同;⑤对称轴都交于一点.⑤对称轴条数不同.点评:本题考查了正多边形和圆的知识,一个是奇数边的正多边形,一个是偶数边的正多边形.此题的答案不唯一,只要抓住正多边形的性质进行回答均可4.(2011山东日照,14,4分)如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC考点:根与系数的关系;勾股定理;正方形的性质;圆周角定理;相似三角形的判定与性质。
专题:开放型;数形结合。
分析:连接AD ,BD ,OD ,由AB 为直径与四边形DCFE 是正方形,即可证得△ACD∽△DCB,则可求得AC•BC=DC 2=1,又由勾股定理求得AB 的值,即可得AC+BC=AB ,根据根与系数的关系即可求得答案.注意此题答案不唯一. 解答:解:连接AD ,BD ,OD ,∵AB 为直径, ∴∠ADB=90°,∵四边形DCFE 是正方形, ∴DC⊥AB,∴∠ACD=∠DCB=90°,∴∠ADC+∠CDB=∠A+∠ADC=90°, ∴∠A=∠CDB, ∴△ACD∽△DCB, ∴BCDC DCAC ,又∵正方形CDEF 的边长为1, ∵AC•BC=DC 2=1, ∵AC+BC=AB,在Rt△OCD 中,OC 2+CD 2=OD 2, ∴OD=25,∴AC+BC=AB=5,以AC 和BC 的长为两根的一元二次方程是x 2﹣5x+1=0.故答案为:此题答案不唯一,如:x 2﹣5x+1=0.点评:此题考查了正方形的性质,相似三角形的判定与性质以及根与系数的关系.此题属于开放题,注意数形结合与方程思想的应用.5. (2011山西,14,3分)如图,四边形ABCD 是平行四边形,添加一个..条件:___________ _______________________,可使它成为矩形.考点:矩形的判定 专题:四边形分析:由有一个角是直角的平行四边形是矩形.想到添加∠ABC =90°; 由对角线相等的平行四边形是矩形.想到添加AC =BD . 解答:∠ABC =90°(或AC =BD 等)点评:本题是一道开放题,只要掌握矩形的判定方法:“有一个角是直角的平行四边形是矩形”或“对角线相等的平行四边形是矩形”,就不难得到正确答案(共有五个即四个内角中任意一个角为直角、对角线相等).6.(2011天津,13,3分)已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以为 y =x +1(答案不唯一,可以是形如y =kx +1,k >0的一次函数) .考点:一次函数的性质。
专题:开放型。
分析:先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b 的值,再根据y 随x 的增大而增大确定出k 的符号即可. 解答:解:设一次函数的解析式为:y =kx +b (k ≠0), ∵一次函数的图象经过点(0,1), ∴b =1,∵y 随x 的增大而增大, ∴k >0,故答案为y =x +1(答案不唯一,可以是形如y =kx +1,k >0的一次函数).点评:本题考查的是一次函数的性质,即一次函数y =kx +b (k ≠0)中,k >0,y 随x 的增大而增大,与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上.7. (2011•青海)如图,四边形ABCD 是平行四边形,E 是CD 延长线上的任意一点,连接BE 交AD 于点O ,如果△ABO≌△DEO,则需要添加的条件是 开放型题,答案不唯一(参考答案:O 是AD 的中点或OA=OD ;AB=DE ;D 是CE 的中点;O 是BE 的中点或OB=OE ;或OD 是△EBC 的中位线) (只需一个即可,图中不能添加任何点或线)考点:全等三角形的判定;平行四边形的性质。
专题:开放型。
分析:因为四边形ABCD 是平行四边形,所以AB∥DE ,所以∠ADE=∠BAD,又对顶角∠AOB=∠DOE,若使△ABO≌△DEO 则少一对边相等,所以可添加的条件为O 是AD 的中点或OA=OD ;AB=DE ;D 是CE 的中点;O 是BE 的中点或OB=OE ;或OD 是△EBC 的中位线) 解答:证明:∵四边形ABCD 是平行四边形, ∴∠ADE=∠BAD, ∵O 是AD 的中点,(第14题)D∴OA=OD,又∵∠AOB=∠DOE,∴△ABO≌△DEO(ASA).故答案为:O是AD的中点或OA=OD.点评:本题考查了全等三角形的判定,常见的判断方法有5中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.(2011•贺州)写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).考点:正比例函数的性质。
专题:开放型。
分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k 的符号,再写出符合条件的正比例函数即可.解答:解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).点评:本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.9.(2011•安顺)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为(2,4)或(3,4)或(8,4).考点:矩形的性质;坐标与图形性质;等腰三角形的性质。
专题:数形结合。
分析:分PD=OD(P在右边),PD=OD(P在左边),OP=OD三种情况,根据题意画出图形,作PQ垂直于x轴,找出直角三角形,根据勾股定理求出OQ,然后根据图形写出P的坐标即可.解答:解:当OD=PD(P在右边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=OA=5,(8,4);根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P1当PD=OD(P在左边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,(2,4);根据勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,则P2当PO=OD时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,(3,4),根据勾股定理得:OQ=3,则P3综上,满足题意的P坐标为(2,4)或(3,4)或(8,4).故答案为:(2,4)或(3,4)或(8,4)点评:这是一道代数与几何知识综合的开放型题,综合考查了等腰三角形和勾股定理的应用,属于策略和结果的开放,这类问题的解决方法是:数形结合,依理构图解决问题10.(2011•郴州)写出一个不可能事件明天是三十二号.考点:随机事件。
专题:开放型。
分析:不可能事件是指在一定条件下,一定不发生的事件.解答:解:一个月最多有31天,故明天是三十二号不可能存在,为不可能事件.点评:关键是理解不可能事件的概念.11.(2011•湖南张家界,16,3)在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,要使△ABC与△DEF相似,则需添加的一个条件是(写出一种情况即可).考点:相似三角形的判定。