五年级下册《分数乘法》知识点归纳
分数乘法归纳总结

分数乘法归纳总结分数乘法是数学中的重要概念之一,它涉及到分数的乘法运算规则及其性质。
在学习分数乘法时,我们不仅需要了解基本的运算规则,还需要理解其背后的数学原理,并将其应用到实际问题中。
本文将对分数乘法进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、基本概念1. 分数的乘法定义分数的乘法是指将两个分数相乘的运算。
若分数a/b与c/d相乘,则其乘积为ac/bd。
2. 分数的乘法性质分数的乘法具有以下性质:- 乘法的交换律:a/b * c/d = c/d * a/b- 乘法的结合律:(a/b * c/d) * e/f = a/b * (c/d * e/f)- 乘法的分配律:a/b * (c/d + e/f) = (a/b * c/d) + (a/b * e/f)二、乘法运算规则1. 相同分母的分数相乘当两个分数的分母相同,即 a/b * c/b,我们只需将两个分数的分子相乘,分母保持不变,即得到乘积 ac/b。
例如:2/5 * 3/5 = (2 * 3)/(5 * 5) = 6/252. 不同分母的分数相乘当两个分数的分母不同时,我们需要将两个分数化为相同分母的分数,再进行乘法运算。
具体步骤如下:- 找到两个分数的最小公倍数,将其作为相同分母;- 分别将两个分数的分子乘以最小公倍数除以原分母,得到新的分数;- 将两个新分数按照相同分母的规则相乘。
例如:1/3 * 2/5,最小公倍数为15,将两个分数转化为15为分母的分数:1/3 * 2/5 = (1 * 15)/(3 * 15) * (2 * 15)/(5 * 15) = 2/15 * 6/15 = 12/225三、应用举例1. 面积计算分数乘法在计算面积时非常有用。
例如,当我们需要计算一个长方形的面积时,可以将长和宽表示为分数,并进行分数乘法运算。
例如,一个长方形的长为2/3,宽为5/6,我们可以用分数乘法计算面积:面积 = 长 * 宽 = (2/3) * (5/6) = (2 * 5)/(3 * 6) = 10/18 = 5/92. 比例问题分数乘法还可以应用于比例问题中。
分数乘法、除法及比的知识点

一、分数乘法(一)、分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几几。
4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义: 乘积是1的两个数互为..倒数。
小学数学五年级下册《分数乘法-复习》知识点

规则:先讲清分数乘法的意义,在通过画图推出分数乘法的计算方法。
提高性公民素养
策略性知识
认
知
方
法
管
理
从例子中概括分数乘法的意义;利用类推法总结计算方法。
创新性知识
知新组
合
发
散
平
行
知新:知道分数乘法的意义和计算方法。
2.教研活动时,可以在正面印制3C知识建构表,背面印制3C知识观察表,便于观察者课堂上分项观测时参照
小学数学五年级下册《分数乘法-复习》知识点
类别
知 识 要 点
基础性公民素养
陈述性知识
符
号
概
念
命
题
1.概念:分数乘法的意义就是求一个数的几分之几是多少
2.计算方法:分数乘以分数,用分子乘以分子,分母乘以分母,能约分的先约分。
3.符号:B/A×E/C=BE/AC
程序性知识
动
作
思
维
模
型
规则Βιβλιοθήκη 思维模式:1.意义:看分数乘法算式,说一说意义,用图示表示。
4.发散:分数乘法,就是用分子乘以分子,分母乘以分母,能约分的先约分。
说明:1.表中“陈述性”表示说和写的,即思考、言传与呈现的理解性认识;“程序性”表示看和做的,即观察、思考
与操作的实践性步骤;“策略性”表示选择与变通的,即洞察、选择与优化的智慧型操作。“创新性”表示知新与创新,即第一次的认知体验和首创性的认识与操作成果。
第一单元《分数乘法》知识点

第一单元《分数乘法》知识点1、 分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
比如:72×3 ,表示求3个72相加是多少,或者求72的3倍是多少。
2、 一个数乘分数的意义:就是求这个数的几分之几是多少。
比如:3×72 ,表示求3的72是多少。
3、 分数乘法包括:① 分数和整数相乘:整数和分子相乘的积作分子,分母不变,能约分的要先约分。
(注意:整数和分子不能约分) 比如:103×5 ,分母10和整数5约分。
② 分数和分数相乘:用分子相乘的积作分子,用分母相乘的积作分母,能约分的要先约分。
(注意:分子只能和分母约分,分子与分子,分母与分母之间不能约分) 比如:152×85 ,分子2和分母8约分,分子5和分母15约分。
③ 分数和小数相乘:可以把小数化成分数;也可以把分数化成小数;或者直接用小数和分母进行约分。
比如:85×1.6 ,可以把1.6化成1016;也可以把85化成0.625;或者直接将分母8和小数1.6约分。
4、 分数乘法的运算顺序和整数乘法相同,先算乘除,后算加减,有括号先算括号里面的。
比如:85-83×65,先算乘法,再算减法,不能先用85减去83。
5、 整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
交换律:a × b = b × a结合律:(a × b )× c = a ×(b × c )分配律:a ×(b + c )= a × b + a × c 比如:154×94+154×95,运用乘法分配律,将两边乘法中相同的分数154提到括号外面,再乘括号中的(94+95)。
6、 分数乘法应用题分为:① 连续求一个数的几分之几是多少。
②求比一个数多(或少)几分之几的数是多少。
分数、分数乘法知识点

分数的意义、基本性质、加减法 (五下)一、分数的意义(基础)1.一个物体、一个计量单位或是一些物体等都可以看作一个整体,用自然数1来表示,叫做单位“1”。
把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
表示其中一份的数,叫分数单位。
2.分数与除法的关系:被除数÷除数=除数被除数 a ÷b=ba (b ≠0) 用分数表示整数除法的商,被除数相当于分数的分子,除数相当于分数的分母。
解决问题:求一个数是另一个数的几分之几。
本质上,与求一个数是另一个数的几倍是一样的,用除法计算。
二、分数的分类(基础)(判断题)假分数化成整数或带分数的一般方法:1. 分子是分母的倍数的,化成整数,商就是这个整数。
2. 分子不是分母的倍数的,化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
1......237=÷ 3123737=÷= 三、分数的基本性质(重点)分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
四、约分(基础)1.公因数和最大公因数的概念2.找每组数的最大公因数3.把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
依据:分数的基本性质。
分数的分子和分母只有公因数1,这样的分数就叫做最简分数。
五、通分(基础)1.公倍数和最小公倍数2.找每组数的最小公倍数3.通分比较大小。
把异分母分数分化化成和原来分数相等的同分母分数,叫做通分。
依据:分数的基本性质。
4.两个数的积=两个数的最大公因数×两个数的最小公倍数六、分数与小数的互化(基础)1.分数化小数。
依据:分数与除法的关系,分数的基本性质。
2.小数化分数。
依据:小数的意义。
(注意约分)3.分数能化成有限小数的判断方法:首先,把这个分数化成最简分数;其次,这个最简分数的分母中除了2或5以外,不含有其他质因数。
(重点)六、同分母分数加减法1. 分数加法的意义与整数加法的意义相同,都是求把两个数合并成一个数的运算。
小学数学《分数乘法》知识点

1.分数乘整数的意义是:求几个相同分数相加的和或求一个数的几分之几是多少。
2.分数乘整数,用分数的分子和整数相乘的积做分子,分母不变,能约分的要先约分。
3.分数乘分数的意义是:求一个分数的几分之几是多少。
4.分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的要先约分。
5.乘积是1的两个数互为倒数,可以说一个数是另一个数的倒数,不能孤立的说某个数是倒数。
求一个数倒数的方法是:把这个数的分子、分母交换位置。
0没有倒数,1的倒数是1.6.商店按一定的比降价出售商品,叫做打折销售。
一折表示现价是原价的十分之一,几折就表示现价是原价的十分之几。
原价×折扣=现价,现价÷折扣=原价。
7.一个数(0除外)×大于1的数,积大于这个数;一个数(0除外)×小于1的数,积小于这个数;一个数(0除外)×等于1的数,积等于这个数。
8.物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
1立方米=1000立方分米1立方分米=1000立方厘米1立方米=1000000立方厘米。
9.容积是指容器所能容纳的物体的体积。
常用的容积单位有:升、毫升。
1升=1000毫升。
10.长方体的体积=长×宽×高V=a×b×h正方体的体积=棱长×棱长×棱长V=a×a×a长方体、正方体体积统一计算公式:体积=底面积×高V=Sh S=V÷h h=V÷S11.计算不规则物体的体积时,可以把不规则物体的体积转化为上升的水的体积。
分数乘法知识点

分数乘法知识点一分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算;注:“分数乘整数”指的是第二个因数必须是整数,不能是分数;例如:¾×7表示: 求7个¾的和是多少或表示:¾的7倍是多少2、一个数乘分数的意义就是求一个数的几分之几是多少;注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数;第一个因数是什么都可以例如:¾×½表示: 求¾的½是多少9 ×½表示: 求9的½是多少A ×½表示: 求a的½是多少二分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变;注:1为了计算简便能约分的可先约分再计算;整数和分母约分2约分是用整数和下面的分母约掉最大公因数;整数千万不能与分母相乘,计算结果必须是最简分数2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母;分子乘分子,分母乘分母注:1如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算;2分数化简的方法是:分子、分母同时除以它们的最大公因数;3在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数;约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数4分数的基本性质:分子、分母同时乘或者除以一个相同的数0除外,分数的大小不变;三积与因数的关系:一个数0除外乘大于1的数,积大于这个数;a×b=c,当b >1时,c>a.一个数0除外乘小于1的数,积小于这个数;a×b=c,当b <1时,c<a b≠0.一个数0除外乘等于1的数,积等于这个数;a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况;四分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的;2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便;乘法交换律:a×b=b×a乘法结合律:a×b×c=a×b×c乘法分配律:a×b±c=a×b±a×c五倒数的意义:乘积为1的两个数互为倒数;1、倒数是两个数的关系,它们互相依存,不能单独存在;单独一个数不能称为倒数;必须说清谁是谁的倒数2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”;例如:a×b=1则a、b互为倒数;3、求倒数的方法:①求分数的倒数:交换分子、分母的位置;②求整数的倒数:整数分之1;③求带分数的倒数:先化成假分数,再求倒数;④求小数的倒数:先化成分数再求倒数;4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母;5、任意数aa≠0,它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身;假分数的倒数小于或等于1;带分数的倒数小于1;六分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少用乘法“1”×b/a =b/a例如:求25的3/5是多少列式:25×3/5=15甲数的3/5等于乙数,已知甲数是25,求乙数是多少列式:25×3/5=15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘;2、什么是什么的;= “1”×几/几例1: 已知甲数是乙数的3/5,乙数是25,求甲数是多少甲数=乙数×3/5 即25×3/5=15注:1“是”“的”字中间的量“乙数”是3/5的单位“1”的量,即3/5是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份;2“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”;3单位“1”的量×分率=分率对应的量例2:甲数比乙数多少3/5,乙数是25,求甲数是多少甲数=乙数±乙数×3/5 即25±25×3/5=25×1±3/5=40或103、巧找单位“1”的量:在含有分数分率的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”;4、什么是速度——速度是单位时间内行驶的路程;速度=路程÷时间时间=路程÷速度路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等;5、求甲比乙多少几分之几多:甲-乙÷乙少:乙-甲÷乙。
分数乘法知识点总结

分数乘法单元总结一、分数乘法(一)1、分数乘整数的意义:是求几个相同加数(这里的加数是指分数)的和的简便运算。
2、分数乘整数的计算方法:分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变。
二、分数乘法(二)1、分数乘整数的意义:整数乘分数的意义可以根据分数的意义来推断,也可以把这个整数看作单位“1”,平均分成几份,再取其中的几份,也就是求这个数的几分之几。
2、求一个数的几分之几是多少的计算方法:由分数的意义看出,求一个数的几分之几是多少,就是把前面这个数看坐单位“1”,求这个整体的几分之几是多少,根据整数乘分数的意义要用乘法计算。
也就是用这个数乘后面的几分之几,即乘这个分数.3、已知一个数多几分之几求多多少?已知比一个数多几分之几,求多多少,用乘法计算三、分数乘法(三)1、分数乘分数的意义:是求一个数的几分之几是多少。
2、分数乘分数的计算方法:分子相乘,乘得的积作分子,分母与分母相乘的积作分母。
在计算时能约分的先约分。
最后结果要化成最简分数。
3、一个数与分数相乘,积与这个数的关系:一个数乘真分数,积小于这个数;一个数乘假分数,积等于或大于这个数。
(如果所乘额分数大于1,积是大于这个数。
如果所乘的分数小于1,积小于这个数。
)四、倒数1、倒数的意义:如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,它们是互相依存的,必须说一个数另一个数的倒数,不能孤立的某一个数是倒数。
2、求一个数的倒数的方法:(1)因为互为倒数的两个数的分子、分母是调换位置的,根据这点,我们可以求一个数的倒数。
给出一个数,只要我们将其化为分数的形式再调换它的分子、分母的位置,就求出了它的倒数。
对于一个自然数(0除外),我们可以把它看成分母是1的分数,再调换分子和分母的位置,求出这个数的倒数。
(2)1的倒数是1,因为1乘1得1,符合倒数的意义。
(3)0没有倒数。
分数乘法的整理与复习教学目标知识与技能:使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册《分数乘法》知识点归纳分数乘法(一)
知识点:
1、理解分数乘整数的意义。
分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法。
分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分数。
3、计算时,可以先约分在计算。
分数乘法(二)
知识点:
1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算。
2、能够求一个数的几分之几是多少。
3、理解打折的含义。
例如:九折,是指现价是原价的十分之九。
分数乘法(三)
知识点:
1、分数乘分数的计算方法,并能正确进行计算。
分子相乘做分子,分母相乘做分母,能约分的可以先约分。
计算结果要求是最简分数。
2、比较分数相乘的积与每一个乘数的大小。
真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。