2019-2020年七年级(上)月考数学试卷(12月份)(解析版)

合集下载

陕西省西安市碑林区西北工大附中2019-2020学年七年级(上)第一次月考数学试卷(含解析)

陕西省西安市碑林区西北工大附中2019-2020学年七年级(上)第一次月考数学试卷(含解析)

2019-2020学年七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.围成三棱柱的面共有()A.3个B.4个C.5个D.6个2.如图是哪种几何体的表面展开形成的图形?()A.圆锥B.球C.圆柱D.棱柱3.将下列三角形绕直线l旋转一周,可以得到如图所示立体图形的是哪一个()A.B.C.D.4.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.85.下列说法正确的是()A.正整数和正分数统称为有理数B.整数和分数统称为有理数C.整数可分为正整数和负整数D.零既不是整数,也不是分数6.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3 7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.8.A、B、C三个地方的海拔分别是124米、38米、﹣72米,那么最低点比最高点低()A.196米B.﹣196米C.110米D.﹣110米9.绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是()A.﹣28 B.28 C.﹣14 D.1410.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24 B.14 C.24或14 D.以上都不对二、填空题(每小题3分,共18分)11.一种零件的长度在图纸上标出为20±0.01(单位:mm)表示这种零件的长度应是20mm,加工要求最大不超过,最小不小于.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于.13.在数轴上,距离表示+2的点3个单位长度的点表示的数是.14.若|a|=|b|,则a与b的关系是.15.有理数a、b在数轴上的位置如图所示,则a、b,﹣a,﹣b按从小到大的顺序排列是.16.一个跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点个单位长度.三.解答题(共72分)17.把下列各数填入相应的集合内.,5.2,﹣2.3,0.5%正数集合:{ };整数集合:{ };分数集合:{ };负数集合:{ }.18.计算:(1)﹣21.8+4﹣(﹣7.6)+()(2)(﹣0.5)﹣(﹣2)+3.75﹣(+5)19.小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?20.画出如图由7个小立方块搭成的几何体的三视图.21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出长方体盒子的立体图形,并计算其体积;若不能,说明理由.22.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?23.我们知道相交的两直线的交点个数是1,记两平行直线的交点个数是0;这样平面内的三条平行线它们的交点个数就是0,经过同一点的三直线它们的交点个数就是1;依此类推,…(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由;(3)在平面内画出10条直线,使交点数恰好是31.参考答案与试题解析一.选择题(共10小题)1.围成三棱柱的面共有()A.3个B.4个C.5个D.6个【分析】三棱柱由三个侧面、两个底面,因此有五个面围成的.【解答】解:三棱柱由三个侧面、两个底面围成的,故选:C.2.如图是哪种几何体的表面展开形成的图形?()A.圆锥B.球C.圆柱D.棱柱【分析】一个几何体的表面展开图中的“圆”是物体的底面,半圆(扇形)是物体的侧面,因此这个物体是圆锥体.【解答】解:展开图中的“圆”是物体的底面,半圆(扇形)是物体的侧面,因此这个物体是圆锥体.故选:A.3.将下列三角形绕直线l旋转一周,可以得到如图所示立体图形的是哪一个()A.B.C.D.【分析】将各选项的图形旋转即可得到立体图形,找到合适的即可.【解答】解:A、旋转后可得,故本选项错误;B、旋转后可得,故本选项正确;C、旋转后可得,故本选项错误;D、旋转后可得,故本选项错误.故选:B.4.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.8【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,所以原正方体相对两个面上的数字和最小的是6.故选:B.5.下列说法正确的是()A.正整数和正分数统称为有理数B.整数和分数统称为有理数C.整数可分为正整数和负整数D.零既不是整数,也不是分数【分析】根据有理数的分类及定义即可判定.【解答】解:A、整数和分数统称为有理数,故不符合题意;B、整数和分数统称为有理数,故符合题意;C、整数可分为正整数和负整数和0,故不符合题意;D、零是整数,不是分数,故不符合题意.故选:B.6.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3 【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选:D.7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】根据各层小正方体的个数,综合三视图的知识,在这个几何体中,根据各层小正方体的个数可得:左视图有一层2个,另一层3个,即可得出答案.【解答】解:左视图是从左边看到的平面图形,发现从左面看一共有两列,左边一列有2个正方形,右边一列有3个正方形,故选:D.8.A、B、C三个地方的海拔分别是124米、38米、﹣72米,那么最低点比最高点低()A.196米B.﹣196米C.110米D.﹣110米【分析】根据题意得到算式,运用有理数的减法法则计算即可.【解答】解:∵124>38>﹣72,∴最低点比最高点低:124﹣(﹣72)=196m,故选:A.9.绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是()A.﹣28 B.28 C.﹣14 D.14【分析】先分别求出绝对值大于1.5而不大于5的所有负整数的和与正整数的和,再相减即可.【解答】解:绝对值大于1.5而不大于5的负整数有﹣2,﹣3,﹣4,﹣5,和为﹣2+(﹣3)+(﹣4)+(﹣5)=﹣﹣14;绝对值大于1.5而不大于5的正整数有2,3,4,5,和为2+3+4+5=14;所以绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是﹣14﹣14=﹣28,故选:A.10.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24 B.14 C.24或14 D.以上都不对【分析】根据绝对值的概念可得a=±5,b=±19,然后分类讨论,就可求出符合条件“|a+b|=﹣(a+b)时的a﹣b的值.【解答】解:∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当a=5,b=﹣19时,a﹣b=5+19=24,当a=﹣5,b=﹣19时,a﹣b=14.综上所述:a﹣b的值为24或14.故选:C.二.填空题(共6小题)11.一种零件的长度在图纸上标出为20±0.01(单位:mm)表示这种零件的长度应是20mm,加工要求最大不超过20.01mm,最小不小于19.99mm.【分析】20±0.01表示的是这种零件的标准长度为20mm,实际加工时,可以比20mm多0.01mm,也可以比20mm少0.01mm,进而求出答案.【解答】解:20+0.01=20.01mm,20﹣0.01=19.99mm,故答案为:20.01mm,19.99mm.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于48 .【分析】根据左视图的形状,联系底面的长和宽,可得出长方体的高为2,再根据长方体的体积计算公式计算即可.【解答】解:它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:4×6×2=48.故答案为:48.13.在数轴上,距离表示+2的点3个单位长度的点表示的数是﹣1或5 .【分析】画出数轴,分点在A的左右两边两种情况讨论求解.【解答】解:如图所示:①当点在A的左边时,与点A相距3个单位长度的点表示的数是﹣1;②当点在A的右边时,与点A相距3个单位长度的点表示的数是5.综上所述,该数是﹣1或5.故答案为:﹣1或5.14.若|a|=|b|,则a与b的关系是相等或互为相反数.【分析】根据绝对值相等的两个数相等或互为相反数即可求解.【解答】解:若|a|=|b|,则a与b的关系是相等或互为相反数.故答案为:相等或互为相反数.15.有理数a、b在数轴上的位置如图所示,则a、b,﹣a,﹣b按从小到大的顺序排列是﹣a<b<﹣b<a.【分析】根据原点左边的数为负数,原点右边的数为正数,数轴左边的数大于数轴右边的数,即可得出答案.【解答】解:由图可知:a>0,b<0,﹣b>0,|a|>|b|,则﹣a<b<﹣b<a;故答案为:﹣a<b<﹣b<a.16.一个跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点50 个单位长度.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50,所以落点处离0的距离是50个单位.故答案为50.三.解答题(共7小题)17.把下列各数填入相应的集合内.,5.2,﹣2.3,0.5%正数集合:{ ,1,5.2,0.5% };整数集合:{ 1 };分数集合:{ ,﹣,5.2,﹣2.3,0.5% };负数集合:{ ﹣,5.2 }.【分析】根据有理数的分类,把相应的数填写到相应的集合中.【解答】解:正数集合:{,1,5.2,0.5%};整数集合:{1};分数集合:{,﹣,5.2,﹣2.3,0.5%};负数集合:{﹣,5.2}.故答案为:,1,5.2,0.5%;1;,﹣,5.2,﹣2.3,0.5%;﹣,5.2.18.计算:(1)﹣21.8+4﹣(﹣7.6)+()(2)(﹣0.5)﹣(﹣2)+3.75﹣(+5)【分析】根据有理数的加减运算法则计算即可.【解答】解:(1)原式=﹣21.8+4+7.6﹣0.6=﹣(21.8﹣4)+(7.6﹣0.6)=﹣17.8+7=﹣10.8;(2)原式=﹣0.5+2.25+3.75﹣5.5=﹣(0.5+5.5)+(2.25+3.75)=﹣6+6=0.19.小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?【分析】(1)计算这些数的和,根据和的符合、绝对值可以判断出小虫是否回到出发点,(2)计算出每一次离开出发点的距离,比较得出结论,(3)求出这些数的绝对值的和,即爬行的总路程,即可求出得米粒.【解答】解:(1)6+4+9﹣7﹣6+10﹣8=8 cm,答:小虫最后没有回到出发点O,最后在出发点右侧8cm的地方.(2)每次爬行后离开出发点的距离为:6cm,10cm,19cm,12cm,6cm,16cm,8cm,答:小虫离开出发点O最远是19cm.(3)6+4+9+7+6+10+8=50(粒)答:小虫一共得到50粒米.20.画出如图由7个小立方块搭成的几何体的三视图.【分析】从正面看到的是两行三列,其中第一行两个小正方形,第二行是三个小正方形,从左面看到的是两行两列,每行、列都是两个小正方形,从上面看到的形状与主视图的相同.【解答】解:这个几何体的三视图如图所示:21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出长方体盒子的立体图形,并计算其体积;若不能,说明理由.【分析】(1)分别计算六个面的面积和及为该铁皮的面积,(2)根据棱柱的展开与折叠可得,可以做成长方体的盒子,根据长方体的体积的计算方法计算体积即可,【解答】解:(1)(1×3+1×2+2×3)×2=22 (平方米)答:该铁皮的面积为22平方米.(2)能做成一个长方体的盒子,体积为:3×1×2=6(立方米)22.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【分析】(1)由题意可知:星期一比上周的星期五涨了2元,星期二比星期一跌了0.5元,则星期二收盘价表示为25+2﹣0.5,然后计算;(2)星期一的股价为25+2=27;星期二为27﹣0.5=26.5;星期三为26.5+1.5=28;星期四为28﹣1.8=26.2;星期五为26.2+0.8=27;则星期三的收盘价为最高价,星期四的收盘价为最低价;(3)计算上周五以25元买进时的价钱,再计算本周五卖出时的价钱,用卖出时的价钱﹣买进时的价钱即为小王的收益.【解答】解:(1)星期二收盘价为25+2﹣0.5=26.5(元/股).(2)收盘最高价为25+2﹣0.5+1.5=28(元/股),收盘最低价为25+2﹣0.5+1.5﹣1.8=26.2(元/股).(3)小王的收益为:27×1000(1﹣5‰)﹣25×1000(1+5‰)=27000﹣135﹣25000﹣125=1740(元).∴小王的本次收益为1740元.23.我们知道相交的两直线的交点个数是1,记两平行直线的交点个数是0;这样平面内的三条平行线它们的交点个数就是0,经过同一点的三直线它们的交点个数就是1;依此类推,…(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由;(3)在平面内画出10条直线,使交点数恰好是31.【分析】(1)一平面内的五条直线最多有10个交点.画图即可;(2)平面内的五条直线可以有4个交点,有3种不同的情形;(3)可使5条直线平行,另3条直线平行且都与这5条相交,再有2条直线平行且都与这5条相交,且3条和2条也有相交.【解答】解:(1)如下图,最多有10个交点.(2)可以有4个交点,有3种不同的情形,如下图示.(3)如下图所示.。

江苏省泰州市兴化市板桥中学2019-2020年七年级(上)第一次月考数学试卷 含解析

江苏省泰州市兴化市板桥中学2019-2020年七年级(上)第一次月考数学试卷  含解析

2019-2020学年七年级(上)第一次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.23.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9二、填空题(本大题共10小题,每小题3分,共30分)7.某人的身份证号码是320106************,此人的生日是月日.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.12.的平方等于25,立方得﹣8的数是.13.若|x﹣2|+(y+3)2=0,则y x=.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c=.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是.三、解答题(本大题共10小题,共102分)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ },无理数集合:{ },整数集合:{ },分数集合:{ }.18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]21.计算:(1)(2)﹣1+2﹣3+4…﹣2019+202022.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是.(2)上海、纽约与悉尼的时差分别为(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是.(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|=.参考答案与试题解析一.选择题(共6小题)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.【分析】只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:﹣3的相反数是3.故选:B.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.2【分析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:0,﹣3是整数,属于有理数;﹣1.2是有限小数,属于有理数,∴无理数的是1.1010010001…,故选:C.3.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】各式计算得到结果,即可作出判断.【解答】解:①(﹣3)+(﹣9)=﹣12,符合题意;②0﹣(﹣5)=0+5=5,不符合题意;③(﹣)=﹣,符合题意;④(﹣36)÷(﹣9)=4,不符合题意,故选:B.4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数【分析】数轴上的点与实数一一对应,不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.【解答】解:数轴上的点不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.故选:D.5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大【分析】根据有理数的性质,因由mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.【解答】解:若有理数m,n满足mn>0,则m,n同号,排除B,C,D选项;且m+n<0,则m<0,n<0,故A正确.故选:A.6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9【分析】可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2019÷6=336…3,所以a2017=a3=1.故选:A.二.填空题(共10小题)7.某人的身份证号码是320106************,此人的生日是10 月17 日.【分析】身份证的第7﹣14位表示的出生日期,其中7﹣10位是出生的年份,11、12位是出生的月份,13、14是出生的日;据此解答.【解答】解:身份证号码是320106************,第7﹣14位是:20071017,表示2007年10月17日出生故答案为:10,17.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为3×1012美元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000000000000=3×1012美元.故答案为:3×1012美元.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是9 .【分析】由数轴上两点表示的数,利用数轴上两点间的距离公式即可求出线段AB的长度.【解答】解:∵数轴上两点A、B表示的数分别是2和﹣7,∴A、B两点间的距离为2﹣(﹣7)=9.故答案为:9.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=﹣1 .【分析】利用两数互为相反数,和为0;两数互为倒数,积为1,由此可解出此题.【解答】解:依题意得:a+b=0,cd=1,所以(a+b)﹣cd=0﹣1=﹣1.故答案为:﹣1.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是﹣4 .【分析】在4,﹣1,+2,﹣5这四个数中找出较小的三个数,再计算它们的和即可.【解答】解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.故答案为:﹣412.±5 的平方等于25,立方得﹣8的数是﹣2 .【分析】根据乘方的性质,可得答案.【解答】解:±5的平方等于25,立方得﹣8的数是﹣2,故答案为:±5,﹣2.13.若|x﹣2|+(y+3)2=0,则y x=9 .【分析】根据非负数的性质可求出x、y的值,再将它们代入y x中求解即可.【解答】解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则y x=(﹣3)2=9.故答案为:9.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c= 1 .【分析】根据|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,可以得到a、b、c的值,从而可以求得所求式子的值.【解答】解:∵|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,∴a=2,b=3,c=﹣4,∴a+b+c=2+3+(﹣4)=1,故答案为:1.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是1﹣π.【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案.【解答】解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是13 .【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,则在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.【解答】解:在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.故答案为:13三.解答题(共10小题)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ ﹣(﹣11)、、0.,、},无理数集合:{ ﹣5.0101001…(两个1间的0的个数依次多1个)},整数集合:{ +(﹣2),0,﹣(﹣11)…},},分数集合:{ ﹣0.314,,,0.,}.【分析】根据实数的分类即可求出答案.【解答】解:故答案为:正有理数集合:{﹣(﹣11)、、0.,、…},无理数集合:{﹣5.0101001(两个1间的0的个数依次多1个)……},整数集合:{+(﹣2),0,﹣(﹣11)…},分数集合:{﹣0.314,,,0.,…}18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.【分析】将各数在数轴上表示出来,根据“在数轴上从右到左,数逐步减小”用“>”连接各数即可.【解答】解:将各数在数轴上表示出来,如图所示:∵在数轴上从右到左,数逐步减小,∴.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)【分析】(1)根据有理数的加减法可以解答本题;(2)先去掉绝对值,然后根据有理数的加减法即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)7﹣(﹣4)+(﹣5)=7+4+(﹣5)=6;(2)=6+0.2+(﹣2)﹣1.5=2.7;(3)﹣7.2﹣0.8﹣5.6+11.6=(﹣7.2)+(﹣0.8)+(﹣5.6)+11.6=﹣2;(4)=4.20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]【分析】(1)根据有理数的乘法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)==2;(2)=﹣=﹣;(3)=﹣5×=﹣1;(4)﹣14﹣[2﹣(﹣3)2]=﹣1﹣(2﹣9)=﹣1﹣(﹣7)=﹣1+7=6.21.计算:(2)﹣1+2﹣3+4…﹣2019+2020【分析】(1)根据乘法的分配律解答即可;(2)先把数字分组:(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020),分组后得出规律每组都为1,算出有多少个1相加即可得出结果.【解答】解:(1)===12+18﹣30﹣27=﹣27;(2)﹣1+2﹣3+4…﹣2019+2020=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020)=1×1010=1010.22.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.【分析】(1)由题意x=±5,y=±2,由于xy<0,x=5,y=﹣2或x=﹣5,y=2,代入x+y即可求出答案.(2)由题意x=±5,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:因为|x|=5,|y|=2,所以x=±5,y=±2,(1)∵xy<0,∴x=5,y=﹣2或x=﹣5,y=2,∴x+y=±3,(2)当x=5,y=2时,x﹣y=5﹣2=3;当x=5,y=﹣2时,x﹣y=5﹣(﹣2)=7;当x=﹣5,y=2时,x﹣y=﹣5﹣2=﹣7;当x=﹣5,y=﹣2时,x﹣y=﹣5﹣(﹣2)=﹣3,所以x﹣y的最大值是7.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据题意列出算式,即可得出答案.【解答】解:(1);(2)C村离A村的距离为9﹣3=6(km);(3)邮递员一共行驶了2+3+9+4=18(千米).24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.【分析】(1)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(2)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(3)根据题意和a⊕b=ab+a﹣b,可以求得b的值.【解答】解:(1)∵a⊕b=ab+a﹣b,∴3⊕(﹣4)=3×(﹣4)+3﹣(﹣4)=(﹣12)+3+4(2)∵a⊕b=ab+a﹣b,∴3⊕[(﹣2)⊕1]=3⊕[(﹣2)×1+(﹣2)﹣1]=3⊕[(﹣2)+(﹣2)﹣1]=3⊕(﹣5)=3×(﹣5)+3﹣(﹣5)=(﹣15)+3+5=﹣7;(3)∵(﹣3)⊕b与b互为相反数,∴(﹣3)×b+(﹣3)﹣b+b=0,解得,b=﹣1.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是10月1日上午12时.(2)上海、纽约与悉尼的时差分别为﹣2,﹣14 (正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【分析】(1)由统计表得出:悉尼时间比上海时间早2小时,也就是10月1日上午12时.(2)由统计表得出:上海比悉尼晚2个小时,所以时差为﹣2,纽约比悉尼晚14个小时,所以时差为﹣14;(3)先计算飞机到达机场时纽约的时间,即:(10+14)时(45+55)分,2018年9月2日1时40分,再根据时差计算结果即可.【解答】解:(1)由题意得:当上海是10月1日上午10时,悉尼时间是10月1日上午故答案为:10月1日上午12时;(2)上海与悉尼的时差是:﹣2;纽约与悉尼的时差是:﹣2﹣12=﹣14;故答案为:﹣2,﹣14;(3)由题意得:(10+14)时(45+55)分,即2018年9月2日1时40分,又知上海比纽约早12小时,所以到上海时是:9月2日13时40分;答:飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=﹣4或2 ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是8 .(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|= 6 .【分析】(1)根据题意可以求得数轴上表示4 和1的两点之间的距离和表示﹣3和2两点之间的距离;(2)根据|x+1|=3,可以求得x的值,本题得以解决;(3)根据题意可以求得a、b的值,从而可以求得A,B两点间的最大距离;(4)根据数轴上表示数a的点位于﹣4 与2之间,可以求得|a+4|+|a﹣2|的值.【解答】解:(1)数轴上表示4 和1的两点之间的距离是4﹣1=3,表示﹣3和2两点之间的距离是2﹣(﹣3)=5,故答案为:3,5;(2)∵|x+1|=3∴x+1=±3,解得,x=2或x=﹣4,故答案为:﹣4或2;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或a=1,b=﹣3或b=﹣1,∴当A为5,B为﹣3时,A,B两点间的距离最大,最大距离是5﹣(﹣3)=8,故答案为:8;(4)∵数轴上表示数a的点位于﹣4 与2之间,∴﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,故答案为:6.。

2019-2020学年湖南省长沙市雨花区中雅培粹学校七年级(上)第一次月考数学试卷

2019-2020学年湖南省长沙市雨花区中雅培粹学校七年级(上)第一次月考数学试卷

2019-2020学年湖南省长沙市雨花区中雅培粹学校七年级(上)第一次月考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3分)如果盈利2元记为“+2元”,那么“﹣2元”表示()A.亏损2元B.亏损﹣2元C.盈利2元D.亏损4元2.(3分)下列说法正确的有()A.正数、负数统称为有理数B.正整数、负整数统称为有理数C.正有理数,负有理数和0统称有理数:D.0不是有理数3.(3分)下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+104.(3分)若a与b互为相反数,则a+b﹣2等于()A.﹣2B.2C.﹣1D.15.(3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg6.(3分)如果四个有理数之和是12,其中三个数是﹣10,+8,﹣6,则第四个数是()A.+8B.+11C.+12D.+207.(3分)在算式(﹣57)×24+36×24﹣79×24=(﹣57+36﹣79)×24中,这是应用了()A.加法交换律B.乘法交换律C.乘法结合律D.乘法对加法的分配律8.(3分)下列说法正确的是()A.23表示2×3的积B.任何一个有理数的偶次方是正数C.一个数的平方是,这个数一定是D.﹣32与(﹣3)2互为相反数9.(3分)点A为数轴上表示﹣2的点,当A点沿数轴移动4个单位长度到达点B时,则点B所表示的数是()A.1B.﹣6C.2或﹣6D.不同于以上10.(3分)已知a、b、c三个数在数轴上对应的点如图所示,下列结论错误的是()A.a+c<0B.b﹣c>0C.c<﹣b<﹣a D.﹣b<a<﹣c11.(3分)若x,y满足|x﹣3|+(y+3)2=0,则()2019的值是()A.1B.﹣1C.2019D.﹣201912.(3分)已知ab>0,则++=()A.3B.﹣3C.3或﹣1D.3或﹣3二、填空题(共6小题,每小题3分,共18分)13.(3分)﹣3.2的倒数是.14.(3分)比较大小,用“>“或“<“表示:﹣﹣15.(3分)绝对值不大于3的非负整数有.16.(3分)若|x|=3,则x=.17.(3分)如果a是有理数.那么|a|+2019的最小值是.18.(3分)一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.三、解答题(本题共8小题,其中第19.、20题6分,第21、22题8分,第23.、24题9分,第25、26题10分,共66分)19.(6分)计算:(1)34+(﹣15)﹣(﹣16)﹣(+25)(2)(﹣2)××(﹣)×420.(6分)计算:(1)﹣(﹣8)÷4+(﹣)×(﹣8)(2)﹣12018﹣×[(﹣5)×(﹣)2+0.8]21.(8分)已知下列有理数:﹣(﹣3)、﹣4、0、+5、﹣(1)这些有理数中,整数有个,非负数有个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:.22.(8分)已知m,n互为相反数,且m≠n,p,q互为倒数,数轴上表示数a的点距原点的距离恰为6个单位长度.求+2pq﹣a﹣的值.23.(9分)某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:km):﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)在第几次纪录时距A地最远?为多少km.(2)求收工时距A地多远?在A地的什么方向?(3)若每千米耗油0.3升,问共耗油多少升?24.(9分)如图所示,在一条不完整的数轴上从左到右有三点A,B,C,其中AB=2,BC=1,设点A,B,C所对应的数的和是m.(1)若B为原点.则A点对应的数是;点C对应的数是m=(2)若原点O在图中数轴上点C的右边,且CO=6.求m.(3)若m=2,求点A,B,C,分别对应的数.25.(10分)如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足|a+8|+(b﹣6)2=0.(1)A,B两点对应的数分别为a=b=(2)若将数轴折叠,使得点A与点B重合.则原点O与数表示的点重合:(3)若点A,B分别以4个单位/秒和2个单位/秒的速度相向面行,则几秒后A,B两点相距2个单位长度?(4)若点A,B以(3)中的速度同时向右运动,同时点P从原点O以7个单位/秒的速度向右运动,设运动时间为t秒,请问:在运动过程中,AP+2OB﹣OP的值是否会发生变化?若变化,请用t表示这个值:若不变.请求出这个定值.26.(10分)阅读下列材料:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.将这个数列如下式进行计算:﹣x1,﹣x1+x2,﹣x1+x2﹣x3所得的三个新数中,最大的那个数称为数列x1,x2,x3.的“关联数值“.例如:对于数列﹣1,2,﹣3.因为﹣(﹣1)=1,﹣(﹣1)+2=3,﹣(﹣1)+2﹣(﹣3)=6所以数列﹣1,2,﹣3的“关联数值“为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列2,﹣1,﹣3的“关联数值“为0;数列﹣3,﹣1,2的“关联数值“为3…而对于这三个数,核照不同的排列顺序得到的不同数列中,“关联数值“的最大值为6.(1)数列4,﹣3,2的“关联数值”为(2)将“4,﹣3,2“这三个数按照不同的顺序排列.可得到若干个不同的数列.这些数列的“关联数值”的最大值是取得“关联数值“的最大值的数列是.(3)将“3,﹣6,a”(a>0)这三个数按照不同的顺序排列.可得到若干个不同的数列.这些数列的“关联数值”的最大值为10,求a的值,并写出取得“关联数值“最大值的数列.2019-2020学年湖南省长沙市雨花区中雅培粹学校七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.【解答】解:∵盈利2元记为“+2元”,∴“﹣2元”表示亏损2元.故选:A.2.【解答】解:A、正数和负数及0统称有理数,故不符合题意;B、正整数和负整数及0统称为整数,故不符合题意;C、正有理数,负有理数和0统称有理数;故符合题意;D、0是有理数;故不符合题意;故选:C.3.【解答】解:A、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B.4.【解答】解:由题意得:a+b=0,则原式=0﹣2=﹣2,故选:A.5.【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.6.【解答】解:根据题意得:12﹣(﹣10+8﹣6)=12﹣(﹣8)=12+8=20,故选:D.7.【解答】解:在算式(﹣57)×24+36×24﹣79×24=(﹣57+36﹣79)×24中,这是应用了乘法对加法的分配律,故选:D.8.【解答】解:A、23表示2×2×2的积,所以A选项错误;B、小于1且大于0的有理数的平方一定小于原数,0的平方为0,所以B选项错误;C、一个数的平方是,这个数是或﹣,所以C选项错误;D、﹣32=﹣9,(﹣3)2=9,它们互为相反数,所以D选项正确.故选:D.9.【解答】解:∵点A为数轴上的表示﹣2的点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为﹣2﹣4=﹣6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为﹣2+4=2.故选:C.10.【解答】解:从数轴可知:c<b<0<a,|a|>|c|>|b|,A、a+c<0,故本选项不符合题意;B、b﹣c>0,故本选项不符合题意;C、c<﹣a<﹣b,故本选项符合题意;D、﹣b<a<﹣c,故本选项不符合题意.故选:C.11.【解答】解:∵|x﹣3|+(y+3)2=0,∴x﹣3=0,y+3=0,解得:x=3,y=﹣3,故()2019=()2019=﹣1.故选:B.12.【解答】解:∵ab>0,∴ab同号,①ab同为正数时,原式=1+1+1=3;②ab同为负数时,原式=﹣1+(﹣1)+1=1,故选:C.二、填空题(共6小题,每小题3分,共18分)13.【解答】解:﹣3.2=﹣的倒数是:﹣.故答案为:﹣.14.【解答】解:∵|﹣|==,|﹣|==,且>,∴﹣<﹣.故答案为:<.15.【解答】解:根据绝对值的意义,绝对值不大于3的非负整数有0,1,2,3.16.【解答】解:∵|x|=3,∴x=±3.故答案为:±3.17.【解答】解:∵|a|≥0,∴|a|+2019≥2019,∴|a|+2019的最小值是2019.故答案为:2019.18.【解答】解:设向右为正,向左为负.1+(﹣2)+3+(﹣4)+.+(﹣100)=[1+(﹣2)]+[3+(﹣4)]+.+[99+(﹣100)]=﹣50.∴落点处离O点的距离是50个单位.故答案为50.三、解答题(本题共8小题,其中第19.、20题6分,第21、22题8分,第23.、24题9分,第25、26题10分,共66分)19.【解答】解(1)原式=34﹣15+16﹣25=50﹣40=10;(2)原式=2×××4=9.20.【解答】解:(1)原式=2+4﹣6=0;(2)原式=﹣1﹣×(﹣+)=﹣1﹣×(﹣1)=﹣1+=﹣.21.【解答】解:(1)这些有理数中,整数有:﹣(﹣3)、﹣4、0、+5,共4个,非负数有:﹣(﹣3)、0、+5,共3个.故答案为:4,3;(2)在数轴上表示这些有理数如图:(3)根据数轴可得﹣4<﹣<0<﹣(﹣3)<+5.故答案为:﹣4<﹣<0<﹣(﹣3)<+5.22.【解答】解:∵m,n互为相反数,且m≠n,p,q互为倒数,数轴上表示数a的点距原点的距离恰为6个单位长度,∴m+n=0,=﹣1,pq=1,a=±6,当a=6时,+2pq﹣a﹣=(﹣1)=0,当a=﹣6时,+2pq﹣a﹣=×(﹣6)﹣(﹣1)=6,由上可得,+2pq﹣a﹣的值是0或6.23.【解答】解:(1)由题意得,第一次距A地|﹣4|=4千米;第二次距A地﹣4+7=3千米;第三次距A地|﹣4+7﹣9|=6千米;第四次距A地|﹣4+7﹣9+8|=2千米;第五次距A地|﹣4+7﹣9+8+6|=8千米;第六次距A地|﹣4+7﹣9+8+6﹣5|=3千米;第七次距A地|﹣4+7﹣9+8+6﹣5﹣2|=1千米;所以在第五次纪录时距A地最远.答:在第五次纪录时距A地最远,为8km;(2)根据题意列式﹣4+7﹣9+8+6﹣5﹣2=1km.答:收工时距A地1km,在A的东面;(3)根据题意得检修小组走的路程为:|﹣4|+|+7|+|﹣9|+8|+|+6|+|﹣5|+|﹣2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升.24.【解答】解:(1)若B为原点.则A点对应的数是:﹣2;点C对应的数是:1,∴m=﹣2+0+1=﹣1,故答案为:﹣2,1,﹣1;(2)∵原点O在图中数轴上点C的右边,且CO=6,∴点C对应的数是﹣6,点B对应的数是﹣7,点A对应的数是﹣9,故m=﹣6﹣7﹣9=﹣22;(3)设点A对应的数是x,则点B对应的数是x+2,点C对应的数是x+3,所以m=x+x+2+x+3=3x+5,因为m=2,所以3x+5=2,解得:x=﹣1,故点A对应的数是:﹣1,点B对应的数是:﹣1+2=1,点C对应的数是:﹣1+3=2.25.【解答】解:(1)∵|a+8|+(b﹣6)2=0,∴|a+8|=0,(b﹣6)2=0,即a=﹣8,b=6.故答案为:﹣8,6;(2)∵|AB|=6﹣(﹣8)=14,=7,∴点A、点B距离折叠点都是7个单位∴原点O与数﹣2表示的点重合.故答案为:﹣2.(3)法一:分两种情况讨论:设x秒后A,B两点相距2个单位长度.①A,B两点相遇前相距2个单位长度,则4x+2x=6﹣(﹣8)﹣2解得:x=2②A,B两点相遇后相距2个单位长度,则4x+2x=6﹣(﹣8)+2解得:x=答:经过2秒或秒后,A,B两点相距2个单位长度.法二:设x秒后A,B两点相距2个单位长度.此时点A对应的数为﹣8+4x,点B对应的数为6﹣2x,则:|(﹣8+4x)﹣(6﹣2x)|=2即:(﹣8+4x)﹣(6﹣2x)=2或(﹣8+4x)﹣(6﹣2x)=﹣2;解得:x=或x=2答:经过2秒或秒后,A,B两点相距2个单位长度.(4)在运动过程中,AP+2OB﹣OP的值不会发生变化.由题意可知:t秒后,点A对应的数为﹣8+4t,点B对应的数为6+2t,点P对应的数7t,则:AP=7t﹣(﹣8+4t)=3t+8,OB=6+2t,OP=7t,所以AP+2OB﹣OP=(3t+8)+2(6+2t)﹣7t=3t+8+12+4t﹣7t=20.26.【解答】解:(1)∵﹣4,﹣4+(﹣3)=﹣7,﹣4+(﹣3)﹣2=﹣9,∴数列4,﹣3,2的“关联数值”为﹣4,故答案为:﹣4;(2)∵不同数列为:4、﹣3、2,4、2、﹣3,﹣3、4、2,﹣3、2、4,2、4、﹣3,2、﹣3、4.∴三个新数的数列为:﹣4、﹣7、﹣9,﹣4、﹣2、﹣5,3、7、5,3、5、1,﹣2、2、5,﹣2、﹣5、﹣9.∴这些数列的“关联数值”的最大值是7,取得“关联数值“的最大值的数列是﹣3、4、2.故答案为:7,﹣3、4、2.(3)可列表讨论:根据a>0判断每个数列的“关联数值”由题可知a>0,且所得到的:关联数值的最大值10,故只能是6+a=10解得a=4.此时取得“关联数值”最大值得数列为﹣6、4、3答:a的值为4,此时取得“关联数值”最大值得数列为﹣6、4、3.第11页(共11页)。

精品模拟人教版2019-2020七年级(上)第一次月考数学试卷解析版

精品模拟人教版2019-2020七年级(上)第一次月考数学试卷解析版

人教版2019-2020七年级(上)第一次月考数学试卷一、选择题:(每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(3分)2-、0、1、3-四个数中,最小的数是( )A .2-B .0C .1D .3-2.(3分)下列各式中,不是整式的是( )A .3aB .21x =C .0D .x y +3.(3分)下列各式中运算正确的是( )A .761x x -=B .224x x x +=C .235325a a a +=D .22234x y yx x y -=-4.(3分)下列有理数中,负数的个数是( )①(1)--,②2(3)--,③||π--,④3(4)--,⑤22-A .1个B .2个C .3个D .4个5.(3分)已知单项式232n x y -与33m x y 是同类项,则n m -的值为( )A .1-B .1C .2D .36.(3分)下列说法中,不正确的个数有( )①符号不同的数是相反数,②绝对值等于本身的数是正数,③0是最大的非负整数,也是最小的非正整数,④有理数分为正有理数和负有理数,⑤2341x y x -+-是三次三项式,常数项是1.A .2个B .3个C .4个D .5个7.(3分)有理数a 、b 在数轴上的位置如图所示,则下列各式中,正确的有( ) ①0ab >;②||b a a b -=-;③0a b +>;④11a b>;⑤0a b -<A .3个B .2个C .5个D .4个8.(3分)若2a b -=-,3ab =,则代数式323a ab b +-的值为( )A .12B .0C .12-D .8-9.(3分)若A 是四次多项式,B 是三次多项式,则A B +的次数是( )A .四次B .三次C .七次D .不能确定10.(3分)两个小朋友玩跳棋游戏,游戏的规则是:先画一根数轴,棋子落在数轴上0k 点,第一步从0k 点向左跳1个单位到1k ,第二步从1k 向右跳2个单位到2k ,第三步从2k 向左跳3个单位到3k ,第四步从3k 向右跳4个单位到4k ,⋯,如此跳20步,棋子落在数轴的20k 点,若表示的数是18,问0k 的值为( )A .12B .10C .8D .611.(3分)某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .20060x -B .14015x -C .20015x -D .14060x -12.(3分)如图①是一块瓷砖的图案,用这种瓷砖铺设地面,如果铺设成如图②的图案,其中完整的圆一共有5个,如果铺设成如图③的图案,其中完整的圆一共有13个,如果铺设成如图④的图案,其中完整的圆一共有25个,以此规律下去,第20个图中,完整的圆一共有( )A .761个B .400个C .181个D .221个二、填空题(每小题2分,共26分)13.(2分)据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为 平方千米.14.(2分)237x y -的系数是 . 15.(2分)在下列各式:①3π-;②ab ba =;③x ;④210m ->:⑤x y x y-+;⑥228()x y +中,代数式的有 个.16.(2分)计算:|62|ππ--= .17.(2分)若a 是最大的负整数,b 与c 互为倒数,||5d =,则2a bc d --= .18.(2分)设a ※2231b ab b =--,则4※(1)-= .19.(2分)如图是一个边长为a 的正方形草坪,在草坪中修两条互相垂直的宽度为b 的小路,则剩下草坪(即空白部分)的面积可以表示为 .20.(2分)如果多项式22(3)56b x a x x -+++是关于x 的四次三项式,则ab = .21.(2分)当5x =时,538ax bx --的值为12,当5x =-时,538ax bx --的值为 .22.(2分)由于看错了运算符号,“小马虎”把一个整式减去一个多项式23a b -误认为加上这个多项式,结果得出的答案是2a b +,则原题的正确答案是 .23.(2分)下列说法:①若a b ≠,则22a b ≠,②若|||2|a =-,则2a =-,③若a 为任意有理数,则||11a +…,④若0ab >,0a b +<,则0a <,0b <,⑤若||||||m n m n +=+,则0mn >,其中正确的有(填番号) .24.(2分)若0ab ≠,0a b +≠,则||||||||a b ab a b a b ab a b++++=+ . 25.(2分)世界上著名的莱布尼兹三角形如图所示,则第20行从左边数第3个位置上的数是 .三、解答题(共38分)26.(16分)计算:(1)(8)(15)(9)(12)---+---(2)757(18)()9618-⨯-+ (3)111(1)()(7)532-÷-⨯- (4)4202124242(1)[2()]333-+-÷⨯--+ 27.(8分)化简下列各式(1)222()23a ab a ab --+(2)2213[5(3)2]42m m m m ---++ 28.(6分)化简求值2222225[23(2)51]4a b a b ab a b ab ab ------,其中a ,b 满足2(1)|2|0a b -++=.29.(8分)从有关方面获悉,在我市农村已经实行了农民新型合作医疗保险制度.享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准:(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30000,则5000元按30%报销、15000元按40%报销、余下的10000元按50%报销;题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2017年门诊看病医疗费用为600元,则他这一年的门诊医疗费用报销后自己应支付 元.(2)若某农民一年内实际住院医疗费为(500020000)m m <<元,求他应自付医疗费多少元(用含m 的代数式表示)?(3)若某农民一年内因本人住院按标准报销医疗费15000元,求该农民当年实际医疗费用共多少元?四、附加题(每题4分,共20分):30.(4分)①|5||1|x x -++的最小值= .②|3||2||1||2|x x x x -+-++++的最小值= .31.(4分)若2210x x +-=,则代数式43234112018x x x x +---的值为 .32.(4分)若a 、b 为整数,且20162016||||1a b c a -+-=,则||||a b c a b c -+-+-= .33.(4分)黑板上写有1,2,3,⋯,2015,2016这2016个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字.例如:擦掉7,13和1998后,添上8;若再擦掉8,6,38,添上2,等等.如果经过1007次操作后,发现黑板上剩下两个数,一个是51,则另一个数是 .34.(4分)有这样一对数:一个数的数字排列完全颠倒过来就变成另一个数,简单地说就是顺序相反的两个数,我们把这样的一对数互称为反序数.比如:123的反序数是321,4056的反序数是6504.若一个两位数与其反序数之和是一个整数的平方,求满足上述条件的所有两位数.参考答案与试题解析一、选择题:(每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(3分)2-、0、1、3-四个数中,最小的数是( )A .2-B .0C .1D .3-【考点】18:有理数大小比较【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:2-、0、1、3-四个数中,最小的数是3-;故选:D .【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)下列各式中,不是整式的是( )A .3aB .21x =C .0D .x y +【考点】41:整式【分析】根据单项式和多项式统称整式,可得答案.【解答】解:A 、是单项式,则A 是整式;故A 正确 B 、是方程,不是整式,故B 错误;C 、0是单项式,则C 是整式,故C 正确;D 、是多项式,故D 正确;故选:B .【点评】本题考查了整式,单项式和多项式统称为整式,注意等式不是整式.3.(3分)下列各式中运算正确的是( )A .761x x -=B .224x x x +=C .235325a a a +=D .22234x y yx x y -=-【考点】35:合并同类项【分析】根据合并同类项的法则把系数相加即可.【解答】解:A 、系数相加作为结果的系数,字母和字母的指数不变,故A 不符合题意;B 、系数相加作为结果的系数,字母和字母的指数不变,故B 不符合题意;C 、不是同类项不能合并,故C 不符合题意;D 、系数相加作为结果的系数,字母和字母的指数不变,故D 符合题意;故选:D .【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.4.(3分)下列有理数中,负数的个数是( )①(1)--,②2(3)--,③||π--,④3(4)--,⑤22-A .1个B .2个C .3个D .4个【考点】14:相反数;11:正数和负数;1E :有理数的乘方【分析】根据去括号法则、有理数的乘方法则、绝对值的性质进行计算,判断即可.【解答】解:①(1)1--=,是正数,②2(3)9--=-,是负数;③||ππ--=-,是负数,④3(4)64--=,是正数;⑤224-=-,是负数;故选:C .【点评】本题考查的是正数和负数、绝对值、有理数的乘方,掌握相关的概念和性质是解题的关键.5.(3分)已知单项式232n x y -与33m x y 是同类项,则n m -的值为( )A .1-B .1C .2D .3【考点】34:同类项【分析】直接利用同类项的定义得出m ,n 的值,进而得出答案.【解答】解:单项式232n x y -与33m x y 是同类项,2m ∴=,33n =, 解得:1n =,故121n m -=-=-.故选:A .【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.(3分)下列说法中,不正确的个数有( )①符号不同的数是相反数,②绝对值等于本身的数是正数,③0是最大的非负整数,也是最小的非正整数,④有理数分为正有理数和负有理数,⑤2341x y x -+-是三次三项式,常数项是1.A .2个B .3个C .4个D .5个【考点】15:绝对值;14:相反数;12:有理数;43:多项式【分析】根据相反数、正数、有理数和多项式解答即可.【解答】解:①只有符号不同的数是相反数,错误;②绝对值等于本身的数是正数和0,错误,③0是最小的非负整数,也是最大的非正整数,错误,④有理数分为正有理数和负有理数和0,错误,⑤2341x y x -+-是三次三项式,常数项是1-,错误.故选:D .【点评】本题考查了相反数、正数、有理数和多项式,理解概念是解题关键.7.(3分)有理数a 、b 在数轴上的位置如图所示,则下列各式中,正确的有( ) ①0ab >;②||b a a b -=-;③0a b +>;④11a b>;⑤0a b -<A .3个B .2个C .5个D .4个【考点】13:数轴;15:绝对值【分析】根据数轴得出0b a <<,||||b a >,进行判断即可解答.【解答】解:由数轴得出0b a <<,||||b a >,0ab ∴<,||b a a b -=-,0a b +<,11a b>,0a b ->, ∴正确的有②④, 故选:B .【点评】本题考查了数轴,有理数的大小比较的应用,关键是根据数轴得出0b a <<,||||b a >.8.(3分)若2a b -=-,3ab =,则代数式323a ab b +-的值为( )A .12B .0C .12-D .8-【考点】33:代数式求值【分析】将2a b -=-,3ab =代入到原式3()2a b ab =-+,计算可得.【解答】解:当2a b -=-,3ab =时,原式3()2a b ab =-+3(2)23=⨯-+⨯66=-+0=,故选:B .【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.9.(3分)若A 是四次多项式,B 是三次多项式,则A B +的次数是( )A .四次B .三次C .七次D .不能确定【考点】44:整式的加减【分析】根据整式的运算法则即可求出答案.【解答】解:由于A 是四次多项式,B 是三次多项式,∴无论A 与B 中的项是否有同类项,A B +运算后,最高次数的项必为四次,故选:A .【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(3分)两个小朋友玩跳棋游戏,游戏的规则是:先画一根数轴,棋子落在数轴上0k 点,第一步从0k 点向左跳1个单位到1k ,第二步从1k 向右跳2个单位到2k ,第三步从2k 向左跳3个单位到3k ,第四步从3k 向右跳4个单位到4k ,⋯,如此跳20步,棋子落在数轴的20k 点,若表示的数是18,问0k 的值为( )A .12B .10C .8D .6【考点】38:规律型:图形的变化类;13:数轴【分析】根据向左减向右加可知每两步跳动向右1个单位,然后设0K 的值是x ,然后列出方程求解即可.【解答】解:由题意得,第一步、第二步后向右跳动1个单位,跳20步后向右20210÷=个单位,设0k 的值是x ,则1018x +=,解得8x =,即0k 的值是8.故选:C .【点评】本题考查了数轴,读懂题目信息,理解每两步跳动向右1个单位是解题的关键.11.(3分)某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .20060x -B .14015x -C .20015x -D .14060x -【考点】44:整式的加减【分析】由于学校租用45座的客车x 辆,则余下20人无座位,由此可以用x 表示出师生的总人数,又租用60座的客车则可少租用2辆,且最后一辆还没坐满,利用这个条件就可以求出乘坐最后一辆60座客车的人数.【解答】解:学校租用45座的客车x 辆,则余下20人无座位,∴师生的总人数为4520x +, 又租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:452060(3)45206018020015x x x x x +--=+-+=-. 故选:C .【点评】此题主要考查了整式的计算,解题时首先根据题意列出代数式,然后根据题意进行整式的加减即可.12.(3分)如图①是一块瓷砖的图案,用这种瓷砖铺设地面,如果铺设成如图②的图案,其中完整的圆一共有5个,如果铺设成如图③的图案,其中完整的圆一共有13个,如果铺设成如图④的图案,其中完整的圆一共有25个,以此规律下去,第20个图中,完整的圆一共有( )A .761个B .400个C .181个D .221个【考点】38:规律型:图形的变化类【分析】根据给出的四个图形可知,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方;又每四个小正方形组成一个完整的圆,这样的圆的个数是大正方形边长减1的平方,从而可得若这样铺成一个n n ⨯的正方形图案,所得到的完整圆的个数.【解答】解:分析可得:组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,即为2n ;又每四个小正方形组成一个完整的圆,这样的圆的个数是大正方形边长减1的平方,即为2(1)n -,∴若这样铺成一个n n ⨯的正方形图案,所得到的完整圆的个数共有:222(1)221n n n n +-=-+, 当20n =时,222212202201761n n -+=⨯-⨯+=,故选:A .【点评】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,此类题目难度一般偏大,属于难题.二、填空题(每小题2分,共26分)13.(2分)据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为 83.610⨯ 平方千米.【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将360000000用科学记数法表示为:83.610⨯.故答案是:83.610⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(2分)237x y -的系数是 37- . 【考点】42:单项式【分析】单项式的系数是指数字因数.【解答】解:故答案为:37- 【点评】本题考查单项式,解题的关键是正确理解单项式的系数、次数、指数等概念,本题属于基础题型.15.(2分)在下列各式:①3π-;②ab ba =;③x ;④210m ->:⑤x y x y-+;⑥228()x y +中,代数式的有 4 个.【考点】31:代数式【分析】代数式即用运算符号把数或字母连起来的式子,根据这一概念进行判断即可.【解答】解:根据代数式的定义,可知①、③、⑤、⑥都是代数式.故答案为:4.【点评】此题考查了代数式的概念.注意代数式中不含有关系符号.16.(2分)计算:|62|ππ--= 6π- .【考点】1A :有理数的减法【分析】先确定26π>,再计算差的绝对值.【解答】解:|62|266πππππ--=--=-,故答案为:6π-.【点评】本题考查了有理数的减法和绝对值的意义.理清运算顺序是解决本题的关键.17.(2分)若a 是最大的负整数,b 与c 互为倒数,||5d =,则2a bc d --= 8-或2 .【考点】1G :有理数的混合运算【分析】利用倒数的定义,绝对值的代数意义,找出最大的负整数,代入原式计算即可求出值.【解答】解:根据题意得:1a =-,1bc =,5d =或5-,当5d =时,原式2158=---=-;当5d =-时,原式2152=--+=,故答案为:8-或2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(2分)设a ※2231b ab b =--,则4※(1)-= 12- .【考点】1G :有理数的混合运算【分析】原式利用题中的新定义化简,计算即可求出值.【解答】解:根据题中的新定义得:原式83112=---=-,故答案为:12-【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(2分)如图是一个边长为a 的正方形草坪,在草坪中修两条互相垂直的宽度为b 的小路,则剩下草坪(即空白部分)的面积可以表示为 2()a b - .【考点】32:列代数式【分析】可以利用平移的思想,将两条小路平移到草坪的边缘,利用整体思想将空白部分集中计算即可.【解答】解:可利用平移思想将原图形中的两条小路平移到下图的位置,于是空白部分面积2()()()a b a b a b =--=-故答案为2()a b -【点评】本题考查的是用代数式来表示图形的面积,利用平移的思想与整体的思想是解决问题的关键.20.(2分)如果多项式22(3)56b x a x x -+++是关于x 的四次三项式,则ab = 4.5- .【考点】43:多项式【分析】根据多项式的项的系数和次数定义解题.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.【解答】解:多项式22(3)56b x a x x -+++是关于x 的四次三项式,30a ∴+=,解得3a =-,23b =,解得 1.5b =.故ab 的值为 4.5-.故答案为: 4.5-【点评】本题考查了同学们对多项式的项的系数和次数定义的掌握情况,关键是根据多项式的项的系数和次数定义解题.21.(2分)当5x =时,538ax bx --的值为12,当5x =-时,538ax bx --的值为 28- .【考点】33:代数式求值【分析】根据当5x =时,538ax bx --的值为12,可以求得当5x =-时,538ax bx --的值.【解答】解:当5x =时,538ax bx --的值为12,5355812a b ∴⨯-⨯-=,535520a b ∴⨯-⨯=,当5x =-时,5353(5)(5)8(55)820828a b a b ⨯--⨯--=-⨯-⨯-=--=-,故答案为:28-.【点评】本题考查代数式求值,解答本题的关键是明确题意,求出所求式子的值.22.(2分)由于看错了运算符号,“小马虎”把一个整式减去一个多项式23a b -误认为加上这个多项式,结果得出的答案是2a b +,则原题的正确答案是 82b a - .【考点】44:整式的加减【分析】根据整式的运算法则即可求出答案.【解答】解:设该整式为A ,(23)22A a b a b ∴+-=+,22(23)A a b a b ∴=+--2223a b a b =+-+5b =,∴正确答案为:5(23)52382b a b b a b b a --=-+=-,故答案为:82b a -.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.(2分)下列说法:①若a b ≠,则22a b ≠,②若|||2|a =-,则2a =-,③若a 为任意有理数,则||11a +…,④若0ab >,0a b +<,则0a <,0b <,⑤若||||||m n m n +=+,则0mn >,其中正确的有(填番号) ③④ .【考点】15:绝对值;1C :有理数的乘法;19:有理数的加法【分析】根据题目中的各个小题,可以判断它们的说法是否正确,从而可以解答本题.【解答】解:11≠-,则221(1)=-,故①错误;若|||2|a =-,则2a =±,故②错误;若a 为任意有理数,则||11a +…,故③正确;若0ab >,0a b +<,则0a <,0b <,故④正确;若|01||0||1|+=+,则010⨯=,故⑤错误;故答案为:③④.【点评】本题考查有理数的乘法、绝对值、有理数的加法,解答本题的关键是明确题意,可以判断各个小题中的说法是否正确.24.(2分)若0ab ≠,0a b +≠,则||||||||a b ab a b a b ab a b++++=+ 2-或0或4 . 【考点】15:绝对值【分析】由条件0ab ≠,0a b +≠,得0a ≠,0b ≠且a 、b 不互为相反数,所以原式有意义.式子里每项都是一个数的绝对值与它本身的比值,若这个数是正数比值为1,若这个数是负数比值为1-.故需要讨论a 、b 、ab 、a b +的正负性,分四种情况①都为正数;②都为负数;③一正一负且0a b +>;④一正一负且0a b +<.【解答】解:0ab ≠,0a ∴≠,0b ≠0a b +≠a ∴、b 不互为相反数 ①若a 、b 均小于0,则0ab >,0a b +< ∴||||||||(1)(1)1(1)2a b ab a b a b ab a b++++=-+-++-=-+ ②若a 、b 均大于0,则0ab >,0a b +> ∴||||||||11114a b ab a b a b ab a b++++=+++=+ ③若a 、b 为一正一负,且正数绝对值大于负数绝对值,则0ab <,0a b +> ∴||||||||1(1)(1)10a b ab a b a b ab a b++++=+-+-+=+ ④若a 、b 为一正一负,且负数绝对值大于正数绝对值,则0ab <,0a b +<∴||||||||1(1)(1)(1)2 a b ab a ba b ab a b++++=+-+-+-=-+故答案为:2-或0或4【点评】本题考查了绝对值,关键是对每个要求绝对值的式子分析正负性,所以需要分类讨论.作为填空题也可用特殊值代入求解答案.25.(2分)世界上著名的莱布尼兹三角形如图所示,则第20行从左边数第3个位置上的数是13420.【考点】37:规律型:数字的变化类【分析】观察图中数的变化规律,可以发现莱布尼兹三角形每一行都用分数表示,而且分子总是1,分母最左边每行递增1,而且和右边对称.中间的数是上一行中间的数和下一行最近左边数之差.例如:111236-=,根据这个规律可求解.【解答】解:根据图中莱布尼兹三角形的排列规律可以得到一个结论:它的数的填充规律为右图所示.即111236-=,1113412-=,并且构成一个“轴对称”的数字三角形.所以,根据规律可得:111 3423803420-=,所以在第20行从左边数第3个未知的数是1 3420,故答案是:1 3420.【点评】本题考查学生对有规律数的变化的分析、归纳和总结能力,寻找到数与数之间的运算规则是解题的关键.三、解答题(共38分)26.(16分)计算:(1)(8)(15)(9)(12)---+---(2)757(18)()9618-⨯-+ (3)111(1)()(7)532-÷-⨯- (4)4202124242(1)[2()]333-+-÷⨯--+ 【考点】1G :有理数的混合运算【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式815912172710=-+-+=-+=;(2)原式141576=-+-=-;(3)原式2152251()()1524=-÷-⨯-=-; (4)原式32613109161164966=--⨯⨯=--=-. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27.(8分)化简下列各式(1)222()23a ab a ab --+(2)2213[5(3)2]42m m m m ---++ 【考点】44:整式的加减【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式222223a ab a ab =--+ab =;(2)原式2213(532)42m m m m =--+++ 2912m m =-+ 【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.28.(6分)化简求值2222225[23(2)51]4a b a b ab a b ab ab ------,其中a ,b 满足2(1)|2|0a b -++=.【考点】16:非负数的性质:绝对值;1F :非负数的性质:偶次方;45:整式的加减-化简求值【分析】根据整式的运算法则去括号,合并同类项把整式化简,然后根据非负数的性质求得a ,b 的值代入即可求出答案.【解答】解:原式2222225(26351)4a b a b ab a b ab ab =--+---22225(5111)4a b a b ab ab =----271ab =+,由题意可知:10a -=,20b +=,即1a =,2b =-,∴原式7141=⨯⨯+29=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.29.(8分)从有关方面获悉,在我市农村已经实行了农民新型合作医疗保险制度.享受医保的农民可在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标准:(说明:住院医疗费用的报销分段计算,如:某人住院医疗费用共30000,则5000元按30%报销、15000元按40%报销、余下的10000元按50%报销;题中涉及到的医疗费均指允许报销的医疗费)(1)某农民在2017年门诊看病医疗费用为600元,则他这一年的门诊医疗费用报销后自己应支付420元.(2)若某农民一年内实际住院医疗费为(500020000)<<元,求他应自付医疗费多少元m m(用含m的代数式表示)?(3)若某农民一年内因本人住院按标准报销医疗费15000元,求该农民当年实际医疗费用共多少元?【考点】33:代数式求值;32:列代数式【分析】(1)根据题意和表格中的数据可以求得他这一年的门诊医疗费用报销后自己应支付的费用;(2)根据题意和表格中的数据可以用含m的代数式表示出他应自付医疗费用;(3)根据表格中的数据可以计算出该农民当年实际医疗费用共多少元.【解答】解:(1)600(130%)⨯-=⨯60070%=(元),420故答案为:420;(2)由题意可得,他应自付医疗费为:500030%(5000)40%0.4600m m⨯+-⨯=-,即他应自付医疗费(0.4600)m-元;(3)500030%1500⨯=(元),-⨯=(元),(200005000)40%6000(1500015006000)40%18750--÷=(元),则该农民当年实际医疗费用为:200001875038750+=(元),答:该农民当年实际医疗费用为38750元.【点评】本题考查代数式求值、列代数式,解答本题的关键是明确题意,求出相应代数式的值.四、附加题(每题4分,共20分):30.(4分)①|5||1|x x -++的最小值= 6 .②|3||2||1||2|x x x x -+-++++的最小值= .【考点】15:绝对值【分析】分种情况去绝对值符号,计算各种不同情况的值,最后讨论得出最小值.【解答】解:①|5||1|x x -++5x …时,原式5124x x x =-++=-,此时的最小值是6,15x -剟时,原式516x x =-+++=,1x -…时,原式5124x x x =-+--=-+,此时的最小值是6,故答案为6;②|3||2||1||2|x x x x -+-++++3x …时,原式321242x x x x x =-+-++++=-,此时的最小值是10;23x 剟时,原式321224x x x x x =-+-++++=+,此时的最小值是8;12x -剟时,原式32128x x x x =-+-+++++=,21x --剟时,原式321226x x x x x =-+-+--++=-+,此时的最小值是8;2x -…时,原式321242x x x x x =-+-+----=-+,此时的最小值是10.故答案为8【点评】本题考查了绝对值,两点间的距离,理解绝对值的几何意义是解题的关键.31.(4分)若2210x x +-=,则代数式43234112018x x x x +---的值为 2013- .【考点】59:因式分解的应用【分析】首先根据2210x x +-=得到221x x +=,然后将原式转化为433224112018x x x x x ++---后提取公因式得到2232(2)4112018x x x x x x ++---,直至化简为25(2)2018x x -+-后求解即可.【解答】解:2210x x +-=221x x ∴+=, ∴原式433224112018x x x x x =++---2232(2)4112018x x x x x x =++---323112018x x x =---32225112018x x x x =+---22(2)5112018x x x x x =+---25102018x x =---25(2)2018x x =-+-52018=--2013=-,故答案为:2013-.【点评】本题考查了因式分解的应用,解题的关键是能够对原式进一步变形,难度不大.32.(4分)若a 、b 为整数,且20162016||||1a b c a -+-=,则||||a b c a b c -+-+-= 2 .【考点】15:绝对值【分析】首先由题意可得到a 、b 、c 之间的关系,然后依据a 、b 、c 之间的关系可求得代数式的值.【解答】解:a ,b ,c 为整数,且20162016()()1a b c a -+-=,a b ∴=且1c a -=±或c a =且1a b -=±.①当a b =,1c a -=时,0a b -=,1b c -=-,1c a -=,所以||||01a b c a b c -+-+-=++=; ②当a b =,1c a -=-时,0a b -=,1b c -=,1c a -=-,所以||||01a b c a b c -+-+-=++=; ③当c a =,1a b -=时,1a b -=,1b c -=-,0c a -=,所以||||10a b c a b c -+-+-=++=; ④当c a =,1a b -=-时,1a b -=-,1b c -=,0c a -=,所以||||10a b c a b c -+-+-=++=.综上所述,代数式||||a b c a b c -+-+-的值为2.【点评】本题主要考查的是求代数式的值,分类讨论是解题的关键.33.(4分)黑板上写有1,2,3,⋯,2015,2016这2016个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字.例如:擦掉7,13和1998后,添上8;若再擦掉8,6,38,添上2,等等.如果经过1007次操作后,发现黑板上剩下两个数,一个是51,则另一个数是 0 .【考点】37:规律型:数字的变化类【分析】因为新添的数字就是所擦掉三数之和的个位数字,所以这2016个自然数的个位数字的和的个位数字不变,又因为其他数都擦掉了,就剩51和另一个数了,所以另一个数是擦掉的三数之和的个位数,必小于10,且与51之和的个位数为不变.【解答】解:1232016(20161)20162+++⋯+=+⨯÷,∴这2016个自然数的个位数字的和的个位数字不变,是1, 又其他数都擦掉了,就剩51和另一个数了,∴另一个数是擦掉的三数之和的个位数,必小于10,且与51之和的个位数为1,故为0. 故答案为:0.【点评】此题考查数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.34.(4分)有这样一对数:一个数的数字排列完全颠倒过来就变成另一个数,简单地说就是顺序相反的两个数,我们把这样的一对数互称为反序数.比如:123的反序数是321,4056的反序数是6504.若一个两位数与其反序数之和是一个整数的平方,求满足上述条件的所有两位数.【考点】#9:完全平方数【分析】设出两位数的个位数字和十位数字,表示出此两位数,进而得出它的反序数,求出它们的和,即可判断出11a b +=,即可得出结论.【解答】解:设两位数十位数字为a ,个位数字为b ,(a ,b 都为正整数),则这个两位数为(10)a b +,∴它的反序数数为(10)b a +101011()a b b a a b ∴+++=+,一个两位数与其反序数之和是一个整数的平方,11a b ∴+=,①2a =,9b =;②3a =,8b =;③4a =,7b =;④5a =,6b =;⑤6a =,5b =;⑥7a =,。

北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷(word版,含答案)

北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷(word版,含答案)

北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷数学一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.(4分)在﹣5,﹣2.3,0,0.89五个数中,负数共有()A.2个B.3个C.4个D.5个2.(4分)﹣5的绝对值是()A.5 B.﹣5 C.D.±53.(4分)如图,数轴上两点A,B表示的数互为相反数()A.﹣1 B.1 C.﹣2 D.24.(4分)下列几种说法中,正确的是()A.有理数分为正有理数和负有理数B.整数和分数统称有理数C.0不是有理数D.负有理数就是负整数5.(4分)a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a﹣2|为正数D.|a|+2为正数6.(4分)如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C 表示的数为1()A.7 B.3 C.﹣3 D.﹣27.(4分)如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大8.(4分)已知a,b是有理数,|ab|=﹣ab(ab≠0),b下列正确的是()A.B.C.D.二、填空题(每小题4分,本大题共32分)9.(4分)﹣1的相反数是.10.(4分)比较大小:﹣3﹣2.1,﹣(﹣2)﹣|﹣2|(填>”,“<”或“=”).11.(4分)请写出一个比﹣3大的非负整数:.12.(4分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是.13.(4分)如果a为有理数,且|a|=﹣a,那么a的取值范围是.14.(4分)已知a>0,b<0,|b|>|a|,﹣a,b,﹣b四个数的大小关系.15.(4分)已知点O为数轴的原点,点A,B在数轴上若AO=8,且点A表示的数比点B表示的数小,则点B表示的数是.16.(4分)已知x,y均为整数,且|x﹣y|+|x﹣3|=1.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.(8分)计算(1)(﹣6)+(﹣13).(2)(﹣)+.18.(8分)画数轴,并在数轴上表示下列数:﹣3、﹣2.7、﹣、1,再将这些数用“<”连接.19.(7分)已知|a|=3,|b|=3,a、b异号20.(7分)若|x﹣2|+|2y﹣5|=0,求x+y的值.21.(8分)出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,又向西走了11千米,又向东走了10千米(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?22.(8分)已知数轴上三点A、O、B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)若点P到点A,点B,点O的距离之和最小.四.【附加】23.在某种特制的计算器中有一个按键,它代表运算.例如:上述操作即是求的值,运算结果为1.回答下面的问题:(1)小敏的输入顺序为﹣6,,﹣8,,运算结果是;(2)小杰的输入顺序为1,,,,,﹣2,,,,,,3,,运算结果是;(3)若在,,,,,,,,0,,,,,,,,这些数中,任意选取两个作为a、b的值运算,则所有的运算结果中最大的值是.北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷参考答案一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.【分析】根据小于零的数是负数,可得答案.【解答】解:在﹣5,﹣2.7,0,﹣4,负数有﹣5,﹣3.3,共有3个.故选:B.【点评】本题考查了有理数,解题的关键是明确小于零的数是负数.2.【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=2.故选:A.【点评】此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【分析】利用数形结合的思想,数轴上A、B表示的数互为相反数,说明A,B到原点的距离相等,并且点A在点B的右边,可以确定这两个点的位置,即它们所表示的数.【解答】解:数轴上A、B表示的数互为相反数,所以它们到原点的距离都为2,所以点B表示的数﹣2,故选:C.【点评】练掌握数轴的有关知识和相反数的定义.数轴有原点,方向和单位长度,数轴上的点与实数一一对应;若两个数互为相反数,则它们的和为0.利用数轴可以很好的解决有关实数的问题.4.【分析】按照有理数的分类做出判断.【解答】解:A、有理数分为正有理数,故错误;B、整数和分数统称为有理数;C、0是有理数;D、负有理数就是负整数和负分数;故选:B.【点评】此题考查了有理数,掌握有理数的分类是本题的关键,注意0是整数,但它既不是正数,也不是负数.5.【分析】根据绝对值进行判断即可.【解答】解:因为a为有理数,A、当a<0时,错误;B、当a=0时,错误;C、当a=6时,不是正数;D、无论a取任何数,是正数;故选:D.【点评】此题考查正数和负数,关键是根据绝对值的非负性解答.6.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=8,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.7.【分析】两数异号,两数之和小于0,说明两数都是负数或一正一负,且负数的绝对值大.综合两个条件可选出答案.【解答】解:∵a+b<0,∴a,b同为负数,且负数的绝对值大,∵a,b异号,∴a、b异号.故选:D.【点评】此题主要考查了有理数的乘法和加法,解题的关键是熟练掌握计算法则,正确判断符号.8.【分析】根据题中的两个等式,分别得到a与b异号,a为负数,b为正数,且a的绝对值大于b的绝对值,采用特值法即可得到满足题意的图形.【解答】解:∵|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b,∴|a|>|b|,且a<0在原点左侧,得到满足题意的图形为选项C.故选:C.【点评】此题考查了绝对值的代数意义、几何意义,及异号两数的加法法则.其中绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.几何意义为:|a|表示在数轴上表示a的点到原点的距离.此类题目比较简单,可根据题中已知的条件利用取特殊值的方法进行比较,以简化计算.二、填空题(每小题4分,本大题共32分)9.【分析】根据相反数的定义分别填空即可.【解答】解:﹣1的相反数是1.故答案为:1.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.【分析】第一个根据两个负数比大小,其绝对值大的反而小比较即可,第二个根据正数都大于一切负数比较即可.【解答】解:∵|﹣3|=3,|﹣7.1|=2.5,﹣|﹣2|=﹣2,∴﹣3<﹣2.1,﹣(﹣2)>﹣|﹣2|,故答案为:<,>.【点评】本题考查了相反数,绝对值和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.11.【分析】此题答案不唯一,写出一个符合的即可.【解答】解:比﹣3大的非负整数有0,6,2…,故答案为:0.【点评】本题考查了有理数的大小比较和非负整数的意义,能求出符合的数是解此题的关键,注意:非负整数是指正整数和0.12.【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点﹣2的左侧或右侧.【解答】解:根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:﹣5或5.故答案为:﹣5或1.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.13.【分析】根据绝对值的性质解答即可.【解答】解:当a≤0时,|a|=﹣a,故答案为:a≤0【点评】此题考查绝对值,关键是根据非正数的绝对值是它的相反数解答.14.【分析】先在数轴上标出a、b、﹣a、﹣b的位置,再比较即可.【解答】解:∵a>0,b<0,∴b<﹣a<a<﹣b,故答案为:b<﹣a<a<﹣b.【点评】本题考查了数轴,相反数和有理数的大小比较,能知道a、b、﹣a、﹣b在数轴上的位置是解此题的关键.15.【分析】根据AO=8,先得出点A表示的数,再根据AB=2,分类讨论即可得出点B表示的数.【解答】解:∵AO=8∴点A表示的数为﹣8或4∵AB=2∴当点A表示的数为﹣8,且点A表示的数比点B表示的数小时,点B表示的数为﹣4;当点A表示的数为8,且点A表示的数比点B表示的数小时,点B表示的数为10.故答案为:﹣6或10.【点评】本题考查了数轴上的点所表示的数,分类讨论是解题的关键.16.【分析】根据x﹣y=±1,x﹣3=0,或x﹣3=±1,x﹣y=0四种情况解答即可.【解答】解:因为x,y均为整数,可得:x﹣y=±1,x﹣3=3,x﹣y=0,当x﹣y=1,x﹣7=0,y=2;当x﹣y=﹣7,x﹣3=0,y=7;当x﹣y=0,x﹣3=5,y=4;当x﹣y=0,x﹣4=﹣1,y=2,故答案为:4或8或4或2.【点评】本题考查了绝对值,分类讨论解含绝对值的方程是关键.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.【分析】(1)根据有理数的加法法则可以解答本题;(2)先通分,后加减即可解答.【解答】解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.【点评】本题考查有理数的加减法运算,解答本题的关键是明确有理数加减法的计算方法.18.【分析】先在数轴上表示出各个数,再比较即可.【解答】解:﹣3<﹣2.5<﹣<3.【点评】本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的各个数,右边的数总比左边的数大.19.【分析】根据|a|=3,|b|=3,a、b异号,可以求得a、b的值,从而可以求得所求式子的值.【解答】解:∵|a|=3,|b|=3,a,∴a=7,b=﹣3或a=﹣3,当a=6,b=﹣3时,当a=﹣3,b=8时,由上可得,a+b的值是0.【点评】本题考查有理数的加法、绝对值,解答本题的关键是明确题意,求出a、b的值.20.【分析】根据“|x﹣2|+|2y﹣5|=0”,结合绝对值的定义,分别得到关于a和关于b的一元一次方程,解之,代入x+y,计算求值即可.【解答】解:根据题意得:x﹣2=0,解得:x=8,2y﹣5=4,解得:y=,则x+y=6+=,即x+y的值为.【点评】本题考查了代数式求值,非负数的性质:绝对值,正确掌握绝对值的定义,一元一次方程的解法,有理数的混合运算是解题的关键.21.【分析】(1)向东为正,则向西为负,再根据距离,即可用正数、负数表示,(2)计算(1)中的数的和,即可得出答案,(3)分别计算出将每一位顾客送到目的地时,距离出发点的距离,比较得出答案,(4)计算出行驶的总路程,即(1)中的各个数的绝对值的和,再根据单价、数量,进而求出总价即可.【解答】解:(1)用正负数表示小张向东或向西运动的路程(单位:千米)为:+15,﹣13,﹣11,﹣8,(2)(+15)+(﹣13)+14+(﹣11)+10+(﹣8)=2千米,答:将最后一名乘客送到目的地时,小张在下午出车点东7千米的地方,(3)将每一位顾客送到目的地,离出发点的距离为,2千米,5千米,7千米,因此最远为16千米,答:离开下午出发点最远时是16千米.(4)0.06×4.5×(15+13+14+11+10+8)=19.17元,答:这天下午共需支付19.17元的油钱.【点评】考查正数、负数、绝对值的意义,以及数轴表示数,理解正负数的意义是解决问题的前提,借助数轴表示是关键.22.【分析】(1)点P位于点A和点B中间时,点P到点A和点B的距离相等;(2)根据点A、点B的距离之和为4,将点P从点A向左移动1个单位或向右移动1个单位,则点P到点A和点B的距离之和为6,据此可解;(3)点P位于点A和点B之间时,点P到点A,点B的距离之和最小,据此可解;(4)点P位于点O时,点P到点A,点B,点O的距离之和最小,据此可解.【解答】解:(1)∵A、B对应的数分别为﹣3,1,如果点P到点A,点B的距离相等,则x=﹣5故答案为:﹣1;(2)∵点A、点B的距离之和为4∴若要使得点P到点A、点B的距离之和是3则点P位于点A左侧一个单位或点P位于点B右侧1个单位,即:x=﹣4或x=8时,点P到点A;(3)∵点P位于点A和点B之间时,点P到点A,此时x的取值范围是﹣3≤x≤1故答案为:﹣5≤x≤1.(4)若点P位于点O时,点P到点A,点O的距离之和最小最小值为线段AB的长,即4.故答案为:7.【点评】本题考查了数轴上的点所表示的数及点与点之间的距离的关系,明确题意,是解题的关键.四.【附加】23.【分析】本题要求同学们能熟练应用计算器,会用科学计算器进行计算.【解答】解:根据题意,分析运算,b中的最小值,故答案为:(1)根据题意有结果为﹣6与﹣6中的较小的数,即﹣8.(2)根据题意由运算的结果为﹣,﹣8,﹣2.(3)找这一列数中,绝对值相差最小,;按运算法则计算可得结果是.(由于本份试卷有些题目的解法不唯一,因此请老师们依据评分酌情给分.)【点评】本题要求学生根据题意中的计算法则,分析出计算的结果;考查学生的分析,处理问题的能力.。

北师大版2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷解析版

北师大版2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷解析版

2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.2.(2分)2019的相反数是()A.B.﹣C.|2019|D.﹣20193.(2分)下列图形中属于棱柱的有()A.5个B.4个C.3个D.2个4.(2分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣D.﹣15.(2分)下列哪个图形经过折叠可以得到正方体()A.B.C.D.6.(2分)下列计算正确的是()A.7+(﹣8)=﹣15B.4﹣(﹣4)=0C.0﹣3=3D.﹣1.3+(﹣1.7)=﹣37.(2分)用一个平面去截一个几何体,若截面形状是长方形(包括正方形),那么该几何体不可能是()A.圆柱B.五棱柱C.圆锥D.正方体8.(2分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A.B.C.D.9.(2分)对4袋标注质量为450g的食品的实际质量进行检测,检测结果(用正数记超过标准质量的克数,用负数记不足标准质量的克数)如表;袋数.第1袋第2袋第3袋第4袋检测结果/g﹣2+3﹣5+4最接近标准质量的是()A.第1袋B.第2袋C.第3袋D.第4袋10.(2分)有理数a、b在数轴上的位置如图所示,则a+b的值()A.小于a B.大于b C.大于0D.小于0二、填空题(每小题3分,共18分]11.(3分)计算:﹣3+2=.12.(3分)如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作万元.13.(3分)如图是一个几何体的表面展开图,这个几何体共有条棱.14.(3分)若A.B两地的海拔高度分别是﹣129.5米和﹣71.3米,则A.B两地相差米.15.(3分)一个小立方体的六个面分别标有数字1、2、3、4、5、6.从三个不同的方向看到的情形如图所示,则数字6的对面是.16.(3分)若|x|=3,|y|=5,且x+y>0,则x﹣y=.三、解答题(第17题6分,第18、19题各8分,共22分)17.(6分)计算:18.(8分)计算:19.(8分)所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:正数集合{…};分数集合{…};负整数集合{…}四、(每小题8分,共16分)20.(8分)某检修小组开车从A地出发,在一条东西方向的马路上检修线路,一天中行驶记录如下(向东行驶为正,向西行驶为负.单位:km).+9,﹣8,+6,﹣13,+7,﹣12,+3,﹣2.(1)收工时检修小组在A地什么方向?距A地多远?(2)若每千米耗油0.6升,检修小组工作一天需耗油多少升?21.(8分)画出数轴,用数轴上的点表示下列各数.并用“<”将它们连接起来.五、(本题10分)22.(10分)(1)如图1是由大小相同的小立方块搭成的几何体,请在图2的方格中画出从上面和左面看到的该几何体的形状图.(只需用2B铅笔将虚线化为实线)(2)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体最大需要个小立方块.六、(本题10分)23.(10分)如图是一张长方形纸片,AB长为3cm,BC长为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是;(2)若将这个长方形纸片绕AB边所在直线旋转一周,则形成的几何体的体积是cm3(结果保留π);(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留π).七、(本题12分)24.(12分)下表是今年某水库一周内的水位变化情况(正号表示水位比前一天上升,负号表示水位比前一天下降),该水库的警戒水位是34m.(上周末的水位达到警戒水位).星期一二三四五六日水位变化/m+0.22+0.81﹣0.36+0.03+0.29﹣0.35﹣0.01(1)本周星期河流的水位最高,水位是m,本周星期河流的水位最低,水位是m;(2)本周三的水位位于警戒水位之(填“上”或“下”),与警戒水位的距离是m;(3)与上周末相比,本周末河流水位是上升了还是下降了?变化了多少米?八、(本题12分)25.(12分)如图,数轴的单位长度为1.点M.A.B.N是数轴上的四个点,其中点A.B表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置.并用点O表示:(2)点M表示的数是,点N表示的数是,M,N两点间的距离是.(3)将点M先向有移动4个单位长度,再向左移动2个单位长度到达点C.点C表示的数是,在数轴上距离c点3个单位长度的点表示的数是.2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.2.【解答】解:2019的相反数是﹣2019,故选:D.3.【解答】解:根据棱柱的定义可得:符合棱柱定义的有第一、二、三、七、八个几何体都是棱柱,共5个.故选:A.4.【解答】解:|﹣3|>|﹣2|,∴﹣3<﹣2,故选:B.5.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项能围成正方体,故选:C.6.【解答】解:7+(﹣8)=﹣1因此A选项不符合题意,4﹣(﹣4)=8因此B选项不符合题意,0﹣3=﹣3因此C选项不符合题意,﹣1.3+(﹣1.7)=﹣1.3﹣1.7=﹣3因此D选项符合题意,故选:D.7.【解答】解;A、用垂直于地面的一个平面截圆柱截面为矩形,与要求不符;B、五棱柱的截面可以是长方形,与要求不符;C、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,与要求相符;D、正方体的截面可以是长方形,与要求不符.故选:C.8.【解答】解:从正面看所得到的图形为:B故选:B.9.【解答】解:∵|﹣2|<|+3|<|+4|<|﹣5|,∴第1袋最接近标准质量.故选:A.10.【解答】解:观察数轴可知:﹣2<a<﹣1,0<b<1,∴﹣2<a+b<0.故选:D.二、填空题(每小题3分,共18分]11.【解答】解:﹣3+2=﹣1.故答案为:﹣1.12.【解答】解:如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作﹣4万元.故答案为:﹣4.13.【解答】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱,如图:所以这个几何体共有9条棱.故答案为:9.14.【解答】解:根据题意得:﹣71.3﹣(﹣129.5)=58.2(米),答:A.B两地相差58.2米;故答案为:58.2.15.【解答】解:由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴数字6的对面是3,故答案为:3.16.【解答】解:∵|x|=3,|y|=5,且x+y>0,∴x=3,y=5;x=﹣3,y=5,则x﹣y=﹣2或﹣8,故答案为:﹣2或﹣8.三、解答题(第17题6分,第18、19题各8分,共22分)17.【解答】解:原式=﹣12+﹣8﹣=﹣20+=﹣.18.【解答】解:=2.4+0.6﹣3.1+0.8=0.7.19.【解答】解:故答案为:正数有:,7,15.分数有:,,﹣1.25,负整数有:﹣3.四、(每小题8分,共16分)20.【解答】解:(1)9﹣8+6﹣13+7﹣12+3﹣2=﹣10 km,答:收工时检修小组在A地西面,距A地10km.(2)0.6×(9+8+6+13+7+12+3+2)=0.6×60=36(升)答:工作一天耗油36升.21.【解答】解:﹣(2)<﹣1<﹣1<0<|﹣3|.五、(本题10分)22.【解答】解:(1)如图所示:(2)搭这样的一个几何体最大需要5+4=9个小立方块.故答案为:9.六、(本题10分)23.【解答】解:(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是圆柱;(2)π×42×3=48π(cm3).故形成的几何体的体积是48πcm3;(3)情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).故形成的几何体的表面积是42πcm2或56πcm2.故答案为:圆柱;48π.七、(本题12分)24.【解答】解:通过计算本周每一天的水位为:周一、34.22米,周二、35.03米,周三、34.67米,周四、34.7米,五周、34.99米,周六、34.64米,周日、34.63米,(1)故答案为:二,35.03,一,34.22(2)34.67米>34米,34.67﹣34=0.67米,故答案为:上,0.67,(3)∵34.63米>34米,34.63﹣34=0.63米,答:本周末河流水位是上升了,变化了0.63米.八、(本题12分)25.【解答】解:(1)距离A点和B点的距离相等的点是点O.如图所示,点O即为所求.(2)点M表示的数是﹣4,点N表示的数是5,所以M,N两点间的距离是5﹣(﹣4)=9.故答案为9.(3)如图,将点M先向右移动4个单位长度是0,再向左移动2个单位长度到达点﹣2,得点C表示的数是﹣2.距离点C3个单位长度的点表示的数是﹣5或1.故答案为﹣2,﹣5或1.。

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷(解析版)

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷一、单项选择题:(本题共10小题,每小题3分,共30分)1.在下列各数:﹣(+2019),﹣|﹣2019|,﹣,﹣(﹣2019),2019中,负数的个数是()个A.2B.3C.4D.52.主视图、左视图和俯视图完全相同的几何体是()A.圆锥B.长方体C.圆柱D.正方体3.﹣2的相反数等于()A.﹣2B.2C.D.4.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A.圆锥B.五棱柱C.正方体D.圆柱6.为庆祝郑州一中建校70周年,桐一学子制作了精美纪念胸章,质量要求是“70±0.25克”,则有理数中大小合格的有()A.69.70克B.70.30克C.70.51克D.69.80克7.下列各图中,()是四棱柱的侧面展开图.A.B.C.D.8.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.249.在立方体六个面上,分别标上“我、爱、郑、州、一、中”,如图是立方体的三种不同摆法,则“州”字相对面是()A.我B.爱C.一D.中10.用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块二、填空题:(本题共6小题,每题3分,共18分.)11.有理数可分为:、、.12.比较大小:﹣2019﹣2018(填=,>,<号)13.圆柱的侧面展开图是形.14.在数轴上到表示﹣2的点的距离为4的点所表示的数是.15.已知|a+2019|=﹣|b﹣2020|,a+b=.16.张老师在黑板上写出以下四个结论:①﹣3的绝对值为;②一个负数的绝对值一定是正数;③若|a|=﹣a,则a一定是负数;④一个五棱柱的截面最多是七边形,认为张老师写的结论正确的有(填序号)三、解答题.(共6道题,52分.)17.(8分)计算:(1)﹣5+2×(﹣3)+(﹣12)÷[﹣2](2)﹣|﹣2|×[÷(﹣)+0×(﹣2019)+]÷()18.(9分)画出如图图形的三视图.19.(8分)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足|a﹣8|+|b+5|=0.(1)写出a、b及AB的距离:a=b=AB=;(2)若动点P从点A出发,以每秒3个单位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动.若P、Q同时出发,问点Q运动多少秒追上点P?20.(8分)如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.21.(9分)“十•一”黄金周期间,郑州市绿博园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化(单位:万人)+1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9(1)第3天与假期前的游客人数相比,是增加了还是减少了?增加(减少)了多少万人?(2)7天假期中平均每天的游客数相较假期前是增加还是减少了?增加(减少)了多少万人?(3)请判断七天内游客人数最多的是日.22.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a >0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷参考答案与试题解析一、单项选择题:(本题共10小题,每小题3分,共30分)1.在下列各数:﹣(+2019),﹣|﹣2019|,﹣,﹣(﹣2019),2019中,负数的个数是()个A.2B.3C.4D.5【分析】根据负数的定义即小于0的数是负数,再把所给的数进行计算,即可得出答案.【解答】解:﹣(+2019)=﹣2019,﹣|﹣2019|=﹣2019,﹣,﹣(﹣2019)=2019,∴在所列实数中负数有3个,故选:B.【点评】此题主要考查了绝对值以及有理数的乘方运算,正确化简各数是解题关键.2.主视图、左视图和俯视图完全相同的几何体是()A.圆锥B.长方体C.圆柱D.正方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,不符合题意;B、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,不符合题意;C、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,不符合题意;D、正方体的三视图都是大小相同的正方形,符合题意.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.﹣2的相反数等于()A.﹣2B.2C.D.【分析】根据相反数的概念解答即可.【解答】解:﹣2的相反数是﹣(﹣2)=2.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.【分析】数轴的定义:规定了原点、单位长度和正方向的直线.【解答】解:A中,无原点;B中,无正方向;D中,数的顺序错了.故选:C.【点评】考查了数轴的定义.注意数轴的三要素:原点、正方向和单位长度.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A.圆锥B.五棱柱C.正方体D.圆柱【分析】根据圆柱体的主视图只有矩形或圆,即可得出答案.【解答】解:∵圆柱体的主视图只有矩形或圆,∴如果截面是三角形,那么这个几何体不可能是圆柱.故选:D.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.6.为庆祝郑州一中建校70周年,桐一学子制作了精美纪念胸章,质量要求是“70±0.25克”,则有理数中大小合格的有()A.69.70克B.70.30克C.70.51克D.69.80克【分析】计算精美纪念胸章的质量标识的范围:在70﹣0.25和70+0.25之间,即:从69.75到70.25之间.【解答】解:70﹣0.25=69.75(克),70+0.25=70.25(克),所以精美纪念胸章,质量标识范围是:在69.75到70.25之间.故选:D.【点评】此题考查了正数和负数,解题的关键是:求出精美纪念胸章的质量标识的范围.7.下列各图中,()是四棱柱的侧面展开图.A.B.C.D.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.【解答】解:由分析知:四棱柱的侧面展开图是矩形图;故选:A.【点评】本题考查了几何体的展开图,此题应根据四棱柱的侧面展开图,进行分析、解答.8.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.24【分析】根据八棱柱的定义可知,一个棱柱有10个面,那么这个棱柱是八棱柱,即可得出答案.【解答】解:一个棱柱有10个面,那么这个棱柱是八棱柱,它的棱数为3×8=24;故选:D.【点评】本题考查了棱柱的特征:n棱柱有(n+2)个面,有3n条棱;熟记棱柱的特征是解题的关键.9.在立方体六个面上,分别标上“我、爱、郑、州、一、中”,如图是立方体的三种不同摆法,则“州”字相对面是()A.我B.爱C.一D.中【分析】根据与“我”相邻的字是“中”“州”“爱”“一”可以得到“我”的对面是“郑”,同理可以找出与“中”相邻的四个字,然后找出“中”的对面是“一”,从而得出“州”与“爱”相对即可得解.【解答】解:根据图形,“我”相邻的字是“中”“州”“爱”“一”,∴“我”的对面是“郑”,“中”相邻的字是“我”“郑”“州”“爱”,∴“中”的对面是“一”,∴“州”与“爱”相对.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻面入手找出四个相邻的字,从而得到对面的字是解题的关键.10.用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【解答】解:有两种可能;由主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,∴最多为3+4+1=8个小立方块,最少为个2+4+1=7小立方块.故选:C.【点评】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.二、填空题:(本题共6小题,每题3分,共18分.)11.有理数可分为:正有理数、零、负有理数.【分析】根据有理数的分类即可解答.【解答】解:有理数包括整数和分数,可以分为正有理数、零、负有理数.故答案为:正有理数,零,负有理数.【点评】此题主要考查了有理数的分类,解题时熟练掌握有理数的定义及不同的分类标准即可解决问题.12.比较大小:﹣2019<﹣2018(填=,>,<号)【分析】两个负数作比较,绝对值大的反而小.据此可得.【解答】解:∵|﹣2019|>|﹣2018|,∴﹣2019<﹣2018.故答案为:<【点评】此题考查了两个负数比较大小:两个负数作比较,绝对值大的反而小.13.圆柱的侧面展开图是长方形.【分析】由圆柱的侧面展开图的特征知它的侧面展开图为长方形.【解答】解:圆柱的侧面展开图为长方形.故答案为:长方.【点评】本题考查了圆柱的展开图,熟练掌握常见立体图形的侧面展开图的特征是解决本题的关键.14.在数轴上到表示﹣2的点的距离为4的点所表示的数是﹣6或2.【分析】根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.【解答】解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.【点评】此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.15.已知|a+2019|=﹣|b﹣2020|,a+b=1.【分析】直接利用绝对值的性质得出b的值,进而得出a的值,即可得出答案.【解答】解:∵|a+2019|=﹣|b﹣2020|,∴b﹣2020=0,∴b=2020,∴a=﹣2019,∴a+b=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.16.张老师在黑板上写出以下四个结论:①﹣3的绝对值为;②一个负数的绝对值一定是正数;③若|a|=﹣a,则a一定是负数;④一个五棱柱的截面最多是七边形,认为张老师写的结论正确的有②④(填序号)【分析】根据乘积为1的数互为倒数;负数的绝对值是它的相反数;五棱柱有7个面,用平面去截长方体时最多与7个面相交得七边形判断即可.【解答】解:①﹣3×(﹣)=1,∴﹣3的倒数为﹣,故不符合题意;②负数的绝对值一定是正数,正确;故符合题意;③若|a|=﹣a,则a一定是非正数,故不符合题意;④截面可以经过三个面,四个面,五个面,六个面或七个面,那么得到的截面的形状最多是七边形,故符合题意;故答案为:②④.【点评】本题考查倒数,绝对值的定义及有关几何体的截面等知识,正确的理解题意是解题的关键.三、解答题.(共6道题,52分.)17.(8分)计算:(1)﹣5+2×(﹣3)+(﹣12)÷[﹣2](2)﹣|﹣2|×[÷(﹣)+0×(﹣2019)+]÷()【分析】(1)根据有理数的混合运算顺序即可求解;(2)根据有理数的混合运算顺序:先算括号内的和绝对值,再算乘除即可.【解答】解:(1)原式=﹣5﹣6+6=﹣5;(2)原式=﹣2×(﹣×4+0+)×3=﹣2×(﹣+)×3=﹣2×(﹣)×3=4.【点评】本题考查了有理数的混合运算,严格按运算顺序进行计算是关键.18.(9分)画出如图图形的三视图.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,分别画出即可.【解答】解:如图所示:【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.19.(8分)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足|a﹣8|+|b+5|=0.(1)写出a、b及AB的距离:a=8b=﹣5AB=13;(2)若动点P从点A出发,以每秒3个单位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动.若P、Q同时出发,问点Q运动多少秒追上点P?【分析】(1)利用绝对值的非负性,可求出a,b的值,进而可得出线段AB的长;(2)由点P,Q的出发点、速度可得出:当运动时间为t秒时,点P表示的数为3t+8,点Q表示的数为5t﹣5,根据点Q追上点P,即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)∵|a﹣8|+|b+5|=0,∴a=8,b=﹣5,∴AB=8﹣(﹣5)=13.故答案为:8;﹣5;13.(2)当运动时间为t秒时,点P表示的数为3t+8,点Q表示的数为5t﹣5,依题意,得:3t+8=5t﹣5,解得:t=.答:点Q运动秒追上点P.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)利用绝对值的非负性,求出a,b的值;(2)找准等量关系,正确列出一元一次方程.20.(8分)如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.【分析】根据圆柱表面积=底面周长×高,底面积=πr2公式计算表面积,根据底面积乘以高计算体积.【解答】解:根据圆柱表面积的计算公式可得π×2×3×4+π×32×2=42π(cm2).体积π×32×4=36π(cm3)【点评】本题主要考查了圆柱表面积和体积的计算方法.熟练运用圆柱面积公式与体积公式是解题的关键.21.(9分)“十•一”黄金周期间,郑州市绿博园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化(单位:万人)+1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9(1)第3天与假期前的游客人数相比,是增加了还是减少了?增加(减少)了多少万人?(2)7天假期中平均每天的游客数相较假期前是增加还是减少了?增加(减少)了多少万人?(3)请判断七天内游客人数最多的是2日.【分析】(1)求出第3天的变化人数,即可得出结论;(2)求出7天假期中平均每天的游客数,即可得出答案;(3)由1.6+0.8=2.4,以后连续3天减少,第6日增加不多,即可得出答案.【解答】解:(1)第3天的游客人数为1.6+0.8﹣0.4=2.0>0,∴第3天与假期前的游客人数相比,是增加了,增加了2.0万人;(2)7天假期中平均每天的游客数为(1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9)≈﹣0.07<0,∴7天假期中平均每天的游客数相较假期前是减少了,减少了约0.07万人;(3)∵1.6+0.8=2.4,以后连续3天减少,第6日增加不多,∴七天内游客人数最多的是2日;故答案为:2.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性.22.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a >0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.【分析】(1)根据阅读材料分情况讨论计算即可;(2)根据绝对值的意义,先求出a、b的值,进而可得结果.【解答】解:(1)由题意得:a,b,c三个有理数都为负数或其中一个为负数,另两个为正数.①当a,b,c都是负数,即a<0,b<0,c<0时,则:++=﹣﹣﹣=﹣1﹣1﹣1=﹣3;②当a,b,c有一个为负数,另两个为正数时,设a>0,b>0,c<0,则:++=++=1+1﹣1=1所以:++的值为﹣3或1.(2)因为|a|=9,|b|=4,所以a=±9,b=±4,因为a<b,所以a=﹣9,b=±4,所以a﹣2b=﹣9﹣2×4=﹣17或a﹣2b=﹣9﹣2×(﹣4)=﹣1.答:a﹣2b的值为﹣17或﹣1.【点评】本题考查了有理数的混合运算、绝对值的意义,解决本题的关键是读懂阅读材料.。

2019-2020学年江苏省常州市天宁区丽华中学七年级(上)第一次月考数学试卷 解析版

2019-2020学年江苏省常州市天宁区丽华中学七年级(上)月考数学试卷一、选择题(每小题3分,共24分)1.(3分)小明的身份证号码是320483************,则小明的生日是()A.4月2日B.2月12日C.12月6日D.4月21日2.(3分)某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.8 kg B.0.4 kg C.0.5 kg D.0.6 kg3.(3分)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫作无理数4.(3分)数轴上一点从﹣1向正方向移动3个单位长度,再向负方向移动5个单位长度,此时这点表示的数为()A.8B.﹣2C.2D.﹣35.(3分)下列各组数中,互为相反数的是()A.﹣|﹣2|和﹣(+2)B.|﹣(﹣2)|和﹣[﹣(﹣2)]C.|﹣2|和﹣(﹣2)D.|﹣2|和26.(3分)已知a=|5|,b=|8|,且满足a+b<0,则a﹣b的值为()A.13或3B.11或3C.3D.﹣37.(3分)如果一个数的倒数等于它本身,那么这个数为()A.1和﹣1B.1和0C.﹣1和0D.±1和08.(3分)有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,若a1=﹣,从第二个数起,每个数都等于1与它前面那个数的差的倒数,则a2019值为()A.﹣B.C.3D.二、填空题(每小题2分,共20分)9.(2分)太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为.10.(2分)×(﹣)=﹣1.11.(2分)若|x|=|﹣5|,则x=.12.(2分)大于﹣7小于6.5的正整数有个.13.(2分)比较大小:﹣﹣.14.(2分)若数轴上的两点A、B分别表示﹣2和﹣9,则AB=.15.(2分)某公交车原有20人,经过3个站台时上下车情况如下(上车为正,下车为负):(+3,﹣5)、(+2,﹣5)、(6,﹣3),则车上还有人.16.(2分)在数轴上,若点A和点B表示的数互为相反数,点A在点B的左侧,且它们之间的距离是4个单位长度,那么点A和点B分别表示的数为.17.(2分)三个数﹣12,﹣2,7的和减去它们的绝对值的和,结果为.18.(2分)规定符号⊕的意义为a⊕b=ab﹣a﹣b﹣1,那么﹣2⊕5=.二、解答题(共56分)19.(16分)计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣5.29+3.1﹣(﹣2)+(﹣0.1)﹣9.71;(3)(﹣0.25)×(﹣)×4×(﹣18);(4)(1﹣﹣)×(﹣48).20.(8分)把下列各数填在相应的集合中:﹣5,,0.62,﹣|﹣4|,﹣1.1,﹣(﹣7.3),0.,0.1010010001 0(1)非正整数:{…}(2)分数:{…}(3)正有理数:{…}(4)无理数:{…}21.(6分)将﹣|﹣3|,2,﹣(﹣4),0这些数在数轴上表示出来,并用“<”将它们连接起来.22.(4分)学习了有理数之后,老师给同学们出了一道题:计算:17×(﹣9)下面是小方给出的答案,请判断是否正确,若错误给出正确解答过程.解:原式=﹣17×9=﹣17=﹣25.23.(8分)如图所示,小明有5张卡片,每张卡片上写着不同的数字,请你按要求抽出卡片,完成各问题:(1)从中取出2张卡片,使这2张卡片上数字相减最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(3)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).24.(6分)某水泥仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+20、﹣25、﹣13、+28、﹣29、﹣16.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?25.(8分)阅读下列材料:我们知道|x|的几何意义是数轴上数x的对应点与原点之间的距离,即|x|=|x﹣0|,也可以说|x|表示数轴上数x与数0对应点之间的距离.这个结论可以推广为|x1﹣x2|表示数轴上数x1与数x2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为﹣2和2,∴x的值为﹣2或2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,∴x的值为3或﹣1.仿照材料中的解法,求下列各式中x的值.(1)|x|=3.(2)|x﹣(﹣2)|=4.2019-2020学年江苏省常州市天宁区丽华中学七年级(上)月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)小明的身份证号码是320483************,则小明的生日是()A.4月2日B.2月12日C.12月6日D.4月21日【分析】身份证的第7~14位表示的出生日期,其中7﹣10位是出生的年份,11、12位是出生的月份,13、14是出生的日;据此解答.【解答】解:小明的身份证号码是320483************,那么小明的生日是2月12日.故选:B.2.(3分)某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.8 kg B.0.4 kg C.0.5 kg D.0.6 kg【分析】先根据已知条件算出质量最重的和最轻的面粉,再把所得的结果相减即可.【解答】解:∵质量最重的面粉为2.5+0.3=2.8kg,质量最轻的面粉为:2.5﹣0.3=2.2kg,∴它们的质量最多相差:2.8﹣2.2=0.6kg.故选:D.3.(3分)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫作无理数【分析】根据实数分类以及有关概念解答即可.【解答】解:A、整数就是正整数,0和负整数,说法错误;B、分数包括正分数、负分数,说法正确;C、正有理数、0和负有理数统称有理数,说法错误;D、无限不循环小数是无理数,说法错误;4.(3分)数轴上一点从﹣1向正方向移动3个单位长度,再向负方向移动5个单位长度,此时这点表示的数为()A.8B.﹣2C.2D.﹣3【分析】根据有理数的意义,列式计算即可.【解答】解:﹣1+3﹣5=﹣3,故选:D.5.(3分)下列各组数中,互为相反数的是()A.﹣|﹣2|和﹣(+2)B.|﹣(﹣2)|和﹣[﹣(﹣2)]C.|﹣2|和﹣(﹣2)D.|﹣2|和2【分析】利用相反数的定义和绝对值的意义对各选项进行判断.【解答】解:A、﹣|﹣2|=﹣2,﹣(+2)=﹣2,则﹣|﹣2|=﹣(+2);B、|﹣(﹣2)|=2,﹣[﹣(﹣2)]=﹣2,则|﹣(﹣2)|与﹣[﹣(﹣2)]互为相反数;C、|﹣2|=2,﹣(﹣2)=2,则|﹣2|=﹣(﹣2);D、|﹣2|=2.故选:B.6.(3分)已知a=|5|,b=|8|,且满足a+b<0,则a﹣b的值为()A.13或3B.11或3C.3D.﹣3【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法法则,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,则a﹣b的值为3或13,故选:A.7.(3分)如果一个数的倒数等于它本身,那么这个数为()A.1和﹣1B.1和0C.﹣1和0D.±1和0【分析】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:如果一个数的倒数等于它本身,那么这个数一定是±1.8.(3分)有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,若a1=﹣,从第二个数起,每个数都等于1与它前面那个数的差的倒数,则a2019值为()A.﹣B.C.3D.【分析】先分别求出a1=﹣,a2=,a3=3,a4=﹣,a5=,根据以上算式得出规律,即可得出答案.【解答】解:a1=﹣,a2==,a3==3,a4==﹣,a5=,…,∵2019÷3=673,∴a2019=a3=3,故选:C.二、填空题(每小题2分,共20分)9.(2分)太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为﹣11034m.【分析】根据正数与负数的意义可直接求解.【解答】解:太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为﹣11034m,故答案为﹣11034m.10.(2分)×(﹣)=﹣1.【分析】利用倒数积为1可得答案.【解答】解:×(﹣)=﹣1,故答案为:.11.(2分)若|x|=|﹣5|,则x=±5.【分析】依据绝对值的意义,得出x=±5.注意结果有两个.【解答】解:因为|x|=|﹣5|=5,所以x=±5.故答案为:±5.12.(2分)大于﹣7小于6.5的正整数有6个.【分析】根据正整数的定义即可求解.【解答】解:大于﹣7小于6.5的正整数有1,2,3,4,5,6,一共6个.故答案为:6.13.(2分)比较大小:﹣<﹣.【分析】应先算出两个负数的绝对值,比较两个绝对值,进而比较两个负数的大小即可.【解答】解:∵|﹣|=,|﹣|=,>,∴﹣<﹣.14.(2分)若数轴上的两点A、B分别表示﹣2和﹣9,则AB=7.【分析】根据数轴表示数的意义和数轴上两点之间距离的计算方法,列式计算即可.【解答】解:|﹣2﹣(﹣9)|=7,故答案为:7.15.(2分)某公交车原有20人,经过3个站台时上下车情况如下(上车为正,下车为负):(+3,﹣5)、(+2,﹣5)、(6,﹣3),则车上还有18人.【分析】根据题意可求出三个站点共上车人数和下车人数,容易得车上剩余的人数.【解答】解:经过三个站点上车人数共有3+2+6=11;下车人数共有5+5+3=13.下车人数比上车人数多13﹣11=2.所以剩余人数为20﹣2=18.故答案是:18.16.(2分)在数轴上,若点A和点B表示的数互为相反数,点A在点B的左侧,且它们之间的距离是4个单位长度,那么点A和点B分别表示的数为﹣2和2.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:4÷2=2,则点A和点B分别表示的数为﹣2和2.故答案为:﹣2和2.17.(2分)三个数﹣12,﹣2,7的和减去它们的绝对值的和,结果为﹣28.【分析】根据绝对值的性质进行选择即可.【解答】解:﹣12﹣2+7=﹣7,|﹣12|+|﹣2|+|7|=21,﹣7﹣21=﹣28,故答案为:﹣28.18.(2分)规定符号⊕的意义为a⊕b=ab﹣a﹣b﹣1,那么﹣2⊕5=6.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=﹣2×5+2﹣5﹣1=10+2﹣5﹣1=6.故答案为:6.二、解答题(共56分)19.(16分)计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣5.29+3.1﹣(﹣2)+(﹣0.1)﹣9.71;(3)(﹣0.25)×(﹣)×4×(﹣18);(4)(1﹣﹣)×(﹣48).【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,结合后相加即可求出值;(3)原式从左到右依次计算即可求出值;(4)原式利用乘法分配律计算即可求出值.【解答】解:(1)原式=23﹣17+7﹣16=6+7﹣16=13﹣16=﹣3;(2)原式=﹣5.29﹣9.71+3.1﹣0.1+2=﹣15+3+2=﹣15+5=﹣10;(3)原式=﹣××4×18=﹣14;(4)原式=×(﹣48)﹣×(﹣48)﹣×(﹣48)=﹣50+36+6=﹣50+42=﹣8.20.(8分)把下列各数填在相应的集合中:﹣5,,0.62,﹣|﹣4|,﹣1.1,﹣(﹣7.3),0.,0.1010010001 0(1)非正整数:{﹣5,﹣|﹣4|,0,…}(2)分数:{,062,﹣1.1,﹣(﹣7.3),,…}(3)正有理数:{,0.62,﹣(﹣7.3),,…}(4)无理数:{0.1010010001…,,…}【分析】根据实数分类解答即可.【解答】解:(1)非正整数有﹣5,﹣|﹣4|,0;(2)分数有,062,﹣1.1,﹣(﹣7.3),;(3)正有理数有,0.62,﹣(﹣7.3),;(4)无理数有0.1010010001…,;故答案为:(1)﹣5,﹣|﹣4|,0;(2),062,﹣1.1,﹣(﹣7.3),;(3),0.62,﹣(﹣7.3),;(4)0.1010010001…,.21.(6分)将﹣|﹣3|,2,﹣(﹣4),0这些数在数轴上表示出来,并用“<”将它们连接起来.【分析】直接在数轴上把相关数据表示出来,根据数轴上右边的数总比左边的大,用“<”将它们连接起来即可.【解答】解:﹣|﹣3|<0<2<﹣(﹣4).22.(4分)学习了有理数之后,老师给同学们出了一道题:计算:17×(﹣9)下面是小方给出的答案,请判断是否正确,若错误给出正确解答过程.解:原式=﹣17×9=﹣17=﹣25.【分析】利用乘法分配律进行计算即可.【解答】解:小方给出的答案错误;17×(﹣9)=﹣[(17+)×9]=﹣(17×9+×9)=﹣161.23.(8分)如图所示,小明有5张卡片,每张卡片上写着不同的数字,请你按要求抽出卡片,完成各问题:(1)从中取出2张卡片,使这2张卡片上数字相减最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(3)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).【分析】(1)观察这五个数,要找相减最大的就要找符号不同且绝对值最大的数,所以选4和﹣5;(2)观察这五个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选﹣3和﹣5;(3)2张卡片上数字相除的商最小就要找符号不同,且分母越大越好,分子越小越好,所以就要选3和﹣5,且﹣5为分母;(4)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如﹣3、﹣5、0、3四个数,{0﹣[(﹣3)+(﹣5)]}×3=24.【解答】解:(1)抽取4,﹣5,最大的差是4﹣(﹣5)=9.(2)抽取﹣3,﹣5,最大的乘积是(﹣3)×(﹣5)=15.(3)抽取﹣5,+3,最小的商是﹣.(4)(答案不唯一)如抽取﹣3,﹣5,0,+3,运算式子为{0﹣[(﹣3)+(﹣5)]}×(+3)=24.24.(6分)某水泥仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+20、﹣25、﹣13、+28、﹣29、﹣16.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【解答】解:(1)+20+(﹣25)+(﹣13)+(+28)+(﹣29)+(﹣16)=20﹣25﹣13+28﹣29﹣16=﹣35,答:仓库里的水泥减少了,减少了35吨;(2)200﹣(﹣35)=235(吨)答:6天前,仓库里存有水泥235吨;(3)(|+20|+|﹣25|+|﹣13|+|+28|+|﹣29|+|﹣16|)×5=131×5=655(元)答:这6天要付655元的装卸费.25.(8分)阅读下列材料:我们知道|x|的几何意义是数轴上数x的对应点与原点之间的距离,即|x|=|x﹣0|,也可以说|x|表示数轴上数x与数0对应点之间的距离.这个结论可以推广为|x1﹣x2|表示数轴上数x1与数x2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为﹣2和2,∴x的值为﹣2或2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,∴x的值为3或﹣1.仿照材料中的解法,求下列各式中x的值.(1)|x|=3.(2)|x﹣(﹣2)|=4.【分析】(1)|x|可表示数轴上表示x的点到原点的距离,据此求解可得;(2)|x﹣(﹣2)|可表示数轴上与﹣2对应的点的距离,据此求解可得.【解答】解:(1)在数轴上与原点距离为3的点表示的数为﹣3和3,∴x的值为﹣3或3.(2)在数轴上与﹣2对应的点的距离为4的点表示的数为2和﹣6,∴x的值为2或﹣6.。

2019-2020学年河北省石家庄四中七年级(上)第一次月考数学试卷(附答案详解)

2019-2020学年河北省石家庄四中七年级(上)第一次月考数学试卷1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若收入60元记作+60元,则−20元表示()A. 收入20元B. 收入40元C. 支付40元D. 支出20元2.如果10m表示向北走10m,那么−20m表示的是()A. 向东走20mB. 向南走20mC. 向西走20mD. 向北走20m3.下列各数中是负整数的是()A. −2B. 5C. 12D. −254.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P表示的有理数为a,b,c(对应顺序暂不确定).如果bc<0,b+c>0,ab>ac,那么表示数c的点为()A. 点MB. 点NC. 点PD. 点O5.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A. b+c<0B. |b|<|c|C. |a|>|b|D. abc<06.若数a,b在数轴上的位置如图示,则()A. a+b>0B. ab>0C. a−b>0 D. −a−b>07.−7的相反数是()A. −7B. −17C. 7D. 18.下列各数中,与5互为相反数的是()A. 15B. −5 C. |−5| D. −159.下列四个数中,最大的数是()A. −2B. −1C. 0D. |−3|10.下列四个地方:死海(海拔−400米),卡达拉低地(海拔−133米),罗讷河三角洲(海拔−2米),吐鲁番盆地(海拔−154米).其中最低的是()A. 死海B. 卡达拉低地C. 罗讷河三角洲D. 吐鲁番盆地11.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x−2y=()A. 2B. 4C. 6D. 812.温度由−4℃上升7℃后的温度为()A. −3℃B. 3℃C. −11℃D. 11℃13.如图所示的是长春12月28日的天气预报,图中关于温度的信息是()A. 下降19℃B. 下降10℃C. 最低零下10℃D. 最低零下19℃14.已知贵阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低()A. 4℃B. 零下4℃C. 4℃或者−4℃D. 34℃15.下列计算正确的是()A. 5+(−6)=−11B. −1.3+(−1.7)=−3C. (−11)−7=−4D. (−7)−(−8)=−116.下列计算结果等于4的是()A. |(−9)+(+5)|B. |(+9)−(−5)|C. |−9|+|+5|D. |+9|+|−5|17.如果存款600元记作+600元,那么取款400元记作______元.18.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A与表示1的点重合,滚动一周后到达点B,点B表示的数是______.19.当a,b互为相反数,则代数式a2+ab−2的值为______.20.比较大小:−23______−34。

辽宁省沈阳市实验中学2019-2020学年七年级(上)第一次月考数学试卷

2019-2020学年七年级(上)第一次月考数学试卷一.选择题(共10小题)1.将图中的三角形绕虚线旋转一周,所得的几何体是()A.B.C.D.2.如图,用水平的平面截几何体,所得几何体的截面图形标号是()A.B.C.D.3.绝对值小于5的所有整数的和为()A.0 B.﹣8 C.10 D.204.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.5.下列说法正确的是()A.有理数包括正整数、零和负分数B.﹣a不一定是整数C.﹣5和+(﹣5)互为相反数D.两个有理数的和一定大于每一个加数6.下列各组数中,不相等的一组是()A.﹣(+7),﹣|﹣7| B.﹣(+7),﹣|+7|C.+(﹣7),﹣(+7)D.+(+7),﹣|﹣7|7.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或138.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和09.如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a≥0 D.a≤010.下列等式成立的是()A.|±3|=±3 B.|﹣2|=﹣(﹣2) C.(±2)2=±22D.二.填空题(共6小题)11.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.12.数轴上与﹣1的距离等于3个单位长度的点所表示的数为.13.﹣8的相反数是.如果﹣a=2,则a=.14.若a<0,b>0,且|a|<|b|,则a+b0.15.若|a﹣6|+|b+5|=0,则a+b的值为.16.若规定a*b=5a+2b﹣1,则(﹣4)*6的值为.三.解答题(共11小题)17.(1)画出下列几何体的三种视图(图1).(2)如图2,这是一个由小立方体搭成的几何体的俯视图,小正方体中的数字表示该位置的小立方体的个数,请你画出它的主视图和左视图.18.计算:(1)45+(﹣20)(2)(﹣8)﹣(﹣1)(3)|﹣10|+|+8|(4)(﹣+)×(﹣36)(5)0.47﹣4﹣(﹣1.53)﹣1(6)99×(﹣3)(7)0.25+(﹣)+(﹣)﹣(+)(8)1÷(﹣)×(9)﹣9﹣(﹣3)×2﹣(﹣16)÷4(10)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|(11)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3)(12)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2)19.把下列各数在数轴上表示出来,并比较大小.﹣4,3,﹣,0,3,﹣220.若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.21.已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,其中一条直角边旋转一周,得到了一个几何体,请计算出几何体的体积.(锥体体积=底面积×高)23.已知有理数a、b、c在数轴上的位置如图所示,求|b﹣a|﹣|a﹣c|+|b﹣c|的值.24.若a,b都是非零的有理数,那么+的值是多少?25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为 2.4元,司机一个下午的营业额是多少?26.如图,点A、B在数轴上分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点之间的距离表示为;(3)若x表示一个有理数,请你结合数轴求|x﹣1|+|x+3|的最小值.27.已知:b是最小的正整数,且a、b满足|c﹣5|+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在﹣1到1之间运动时(即﹣1≤x≤1),请化简式子:|x+1|﹣|x﹣1|﹣2|x+3|(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒一个单位长度的速度向左运动,同时点B以每秒2个单位长度,点C以每秒5个单位长度的速度向右运动3秒钟后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请求BC﹣AB的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年七年级(上)月考数学试卷(12月份)(解析版) 一、选择题: 1.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是( ) A.垂线段最短 B.两点确定一条直线 C.两点之间,直线最短 D.两点之间,线段最短 2.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是( ) A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB 3.下列图形中,是棱锥展开图的是( )

A. B. C. D. 4.A看B的方向是北偏东21°,那么B看A的方向( ) A.南偏东69° B.南偏西69° C.南偏东21° D.南偏西21° 5.下列图形中能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( )

A. B. C. D. 6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的( )

A. B. C. D. 7.如图所示立体图形从上面看到的图形是( ) A. B. C. D. 8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是( )

A.低 B.碳 C.生 D.活 9.如图所示,点O为直线AB上一点∠AOC=∠DOE=90°,那么图中互余角的对数为( )

A.2对 B.3对 C.4对 D.5对 10.将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开( )条棱. A.3 B.5 C.7 D.9

二、填空题: 11.要把木条固定在墙上至少需要钉 颗钉子,根据是 . 12.时钟在2点30分时,其时针和分针所成的角的大小为 °. 13.34.37°= ° ′ ″. 14.13°36'= °. 15.如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD= 度.

16.往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有 种不同票价. 17.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是 .

18.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB= .

19.一个角的补角等于它的余角的6倍,则这个角的度数为 . 20.已知x、y都是钝角的度数,甲、乙、丙、丁四人计算(x+y)的结果依次为50°、26°、72°、90°,你认为 结果是正确的.

三、解答题 21.计算: (1)40°26′+30°30′30″÷6; (2)13°53′×3﹣32°5′31″. 22.如图,根据下列语句,画出图形.

(1)如图1,已知四点A、B、C、D. ①画直线AB; ②连接AC、BD,相交于点O; ③画射线AD、BC,交于点P. (2)如图2,已知线段a、b,画一条线段,使它等于2a﹣b(不要求写画法). (3)如图3.货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线. 23.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.

24.如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB平分线,求∠DOE的度数. 25.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.

26.已知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长. 27.已知∠AOB=90°,OC是从∠AOB的顶点O引出的一条射线,若∠AOB=2∠BOC,求∠AOC的度数. 28.如图,点C在线段AB上,线段AC=8,BC=6,点M、N分别是AC、BC的中点,求MN的长度. (2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗? (3)若把(1)中的“点C在线段AB上”改为“点C在线段AB的延长线上,且满足AC﹣BC=b,你能猜想出MN的长度吗?写出你的结论,并说明理由. 29.O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.

(1)如图①,∠AOC与∠DOE的数量关系为 ,∠COF和∠DOE的数量关系为 _; (2)若将∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由; (3)若将∠COE绕点O旋转至图③的位置,射线OF依然平分∠AOE,请直接写出∠COF和∠DOE之间的数量关系. xx学年江苏省南通市启东市南苑中学七年级(上)月考数学试卷(12月份) 参考答案与试题解析

一、选择题: 1.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是( ) A.垂线段最短 B.两点确定一条直线 C.两点之间,直线最短 D.两点之间,线段最短 【考点】线段的性质:两点之间线段最短. 【分析】根据两点之间线段最短即可得出答案. 【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短, 故选:D.

2.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是( ) A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB 【考点】比较线段的长短. 【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点. 【解答】解:A、AC=BC,则点C是线段AB中点; B、AC+BC=AB,则C可以是线段AB上任意一点; C、AB=2AC,则点C是线段AB中点; D、BC=AB,则点C是线段AB中点. 故选:B.

3.下列图形中,是棱锥展开图的是( ) A. B. C. D. 【考点】几何体的展开图. 【分析】根据图形结合所学的几何体的形状得出即可. 【解答】解:A、是三棱柱的展开图,故此选项错误; B、是一个平面图形,故此选项错误; C、是棱锥的展开图,故此选项正确; D、是圆柱的展开图,故此选项错误. 故选:C.

4.A看B的方向是北偏东21°,那么B看A的方向( ) A.南偏东69° B.南偏西69° C.南偏东21° D.南偏西21° 【考点】方向角. 【分析】根据A看B的方向是北偏东21°,是以A为标准,反之B看A的方向是以B为标准,从而得出答案. 【解答】解:A看B的方向是北偏东21°,那么B看A的方向南偏西21°; 故选D.

5.下列图形中能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( ) A. B. C. D. 【考点】角的概念. 【分析】根据角的表示方法和图形逐个判断即可. 【解答】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故A选项错误; B、能用∠1,∠AOB,∠O三种方法表示同一个角,故B选项正确; C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故C选项错误; D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项错误; 故选B.

6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的( )

A. B. C. D. 【考点】点、线、面、体. 【分析】分别根据各选项分析得出几何体的形状进而得出答案. 【解答】解:A、可以通过旋转得到两个圆柱,故本选项正确; B、可以通过旋转得到一个圆柱,一个圆筒,故本选项错误; C、可以通过旋转得到一个圆柱,两个圆筒,故本选项错误; D、可以通过旋转得到三个圆柱,故本选项错误. 故选:A.

7.如图所示立体图形从上面看到的图形是( )

A. B. C. D. 【考点】简单组合体的三视图. 【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可. 【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.

8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是( ) A.低 B.碳 C.生 D.活 【考点】专题:正方体相对两个面上的文字. 【分析】根据正方形展开图相对的面应相隔一个面作答. 【解答】解:和“崇”相隔一个面的面为“低”,故选A.

9.如图所示,点O为直线AB上一点∠AOC=∠DOE=90°,那么图中互余角的对数为( )

A.2对 B.3对 C.4对 D.5对 【考点】余角和补角. 【分析】根据余角的和等于90°,结合图形找出构成直角的两个角,然后再计算对数. 【解答】解:∵∠AOC=∠DOE=90°, ∴∠AOD+∠COD=90°,∠AOD+∠BOE=90°,∠COD+∠COE=90°,∠COE+∠BOE=90°. ∴互余角的对数共有4对. 故选C.

10.将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开( )条棱. A.3 B.5 C.7 D.9 【考点】几何体的展开图. 【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.

相关文档
最新文档