数值分析课后习题答案4

合集下载

数值方法课后习题答案第4章

数值方法课后习题答案第4章
第四章
解线性方程组迭代法
第四章 解线性方程组迭代法
习题4-1
第四章
解线性方程组迭代法
Байду номын сангаас
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
习题4
习题4
习题4
习题4
8.
设A为严格对角优势阵,证明:
习题4
9. A是n阶非奇异阵,B是n阶奇异阵,试求证:
习题4
习题4
P91
P91.
x0
p0 r0
Ap0
x1
r1
p1
Ap1
x2
r2
0
3
7
30/29=
17/29=
1360/841=
1530/841=
14/9=
0.3
P91
1.034482758 0 1 8 10/29= 0.344827586
0.570796875 0.493315839 0.500166165 0.499999398 1.001438281 0.998173633 1.000074653 1.000013383 -0.49943416 -
0.500558834 0.499923587 0.500003961
w=1.03
10 29 a0 =10/29=0.344827586
2890/841=3.436385254 260100/24389=10.66464388 a1 =8381/26010=0.322222222 -289/29= -9.965517218 b0 =289/841=0.343638524

《数值分析》第四章答案

《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。

再给13169=建立3次插值公式,给出相应的结果。

解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。

数值分析(第四版)课后习题及答案

数值分析(第四版)课后习题及答案

0.30
0.39
0.45
0.53
yj
0.5000
0.5477
0.6245
0.6708
0.7280
试求三次样条插值 S (x) 并满足条件
i) S(0.25) 1.0000, S(0.53) 0.6868; ii) S(0.25) S(0.53) 0.
25. 若 f (x) C2 a,b, S (x) 是三次样条函数,证明
12. 在 1,1 上利用插值极小化求 1 f (x) tg 1x 的三次近似最佳逼近多项式.
13. 设 f (x) ex 在 1,1 上的插值极小化近似最佳逼近多项式为 Ln (x) ,若 f Ln 有界,
证明对任何 n 1,存在常数 n 、 n ,使
改用另一等价公式
ln(x x2 1) ln(x x2 1)
计算,求对数时误差有多大?
x1 1010 x2 1010 ; x1 x2 2.
14. 试用消元法解方程组
假定只用三位数计算,问结果是否可靠?
s 1 ab sin c,
0c
15. 已知三角形面积 2
n
x
k j

j1 f (xj )
0,0k n2; an1 ,k n1.
15. 证明 n 阶均差有下列性质:
i) 若 F (x) cf (x) ,则 F x0, x1,, xn cf x0, x1,, xn ;
ii) 若 F (x) f (x) g(x) ,则 F x0, x1,, xn f x0, x1,, xn g x0, x1,, xn .
5.
设 xk

x0

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析课后习题答案

数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0

1 2
0 0 0 1 1 0
1 2

1 2


1 2
1
0 0 0 1 0

1 2

1 2


0
1 2

1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3

16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5

2 A 1
1 3
1 2


2 11
22
1
5 2
1

3 21来自,所以 A12
1
2 1 1



5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6

3 2 6 4 10 7 0 7 10 7 0 7

r1r2
消元

10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623

华中科技大学出版社—数值分析第四版—课后习题及答案

华中科技大学出版社—数值分析第四版—课后习题及答案

14. 由于 x1 , x 2 , , x n 是 f ( x ) 的 n 个互异的零点,所以 f ( x) a 0 ( x x1 )( x x 2 ) ( x x n )
a 0 ( x xi ) a 0 ( x x j ) ( x xi ),
i 1 i 1 i j n n
4 7 h 3 时,取得最大值 max | l 2 ( x ) |
10 7 7 x 0 x x3 27 . k x , x , , x n 处进行 n 次拉格朗日插值,则有 6. i) 对 f ( x) x , (k 0,1, , n) 在 0 1 x k Pn ( x ) Rn ( x ) l j ( x) x k j

14.
1000000000 999999998 x1 1.000000, x2 1.000000 999999999 999999999 方程组的真解为 ,
x 1.00, x2 1.00 , 而无论用方程一还是方程二代入消元均解得 1 结果十分可 靠。 s b sin ca a sin cb ab cos cc a b c tan c c s ab sin c a b c 15.
可 得


( f1 ) ln(1
( f 2 ) ln(1

x x 1
2
) )
1 ( x x 2 1) 60 104 3 103 2 x x 1 ,
2


x x 1
2

x x 1
2

1 1 104 8.33 107 60 2

(Y100 ) 100

数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案
N +1 N
=
1 = 1.7863 × 10 − 2 。 55.982
8、当 N 充分大时,怎样求 ∫ [解]因为 ∫
N +1 N
1 dx ? 1+ x2
1 dx = arctan( N + 1) − arctan N ,当 N 充分大时为两个相近数相 1+ x2
减,设 α = arctan( N + 1) , β = arctan N ,则 N + 1 = tan α , N = tan β ,从而 tan(α − β ) = 因此 ∫
5、计算球体积要使相对误差限为 1%,问度量半径 R 允许的相对误差是多少? 4 ε * ( π (R* )3 ) 4 3 [解]由 1% = ε r* ( π ( R * ) 3 ) = 可知, 4 3 * 3 π (R ) 3 ′ 4 4 4 ε * ( π ( R * ) 3 ) = 1% × π ( R * ) 3 = π ( R * ) 3 ε * ( R * ) = 4π ( R * ) 2 × ε * ( R * ) , 3 3 3
ε * ( y n ) = 10ε * ( y n −1 ) = 10 n ε * ( y 0 ) ,
1 1 从而 ε * ( y10 ) = 1010 ε * ( y 0 ) = 1010 × × 10 − 2 = × 10 8 ,因此计算过程不稳定。 2 2 12、计算 f = ( 2 − 1) 6 ,取 2 ≈ 1.4 ,利用下列公式计算,哪一个得到的结果最 好? 1 ( 2 + 1)
* r
x= x
*
ε ( x * ) = n( x * ) n −1 2% x * = 2n% ⋅ x * ,

数值分析课后习题答案4

数值分析课后习题答案4

第一章题12给定节点01x =−,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项:(1)(1)3()432f x x x =−+(2)(2)43()2f x x x =−解(1)(4)()0f x =,由拉格朗日插值余项得(4)0123()()()()()()()04!f f x p x x x x x x x x x ξ−=−−−−=;(2)(4)()4!f x =由拉格朗日插值余项得01234!()()()()()()4!f x p x x x x x x x x x −=−−−−(1)(1)(3)(4)x x x x =+−−−.题15证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差01210()()()max ()8x x x x x f x p x f x ≤≤−′′−≤.证由拉格朗日插值余项得01()()()()()2!f f x p x x x x x ξ′′−=−−,其中01x x ξ≤≤,010101max ()()()()()()()()2!2!x x x f x f f x p x x x x x x x x x ξ≤≤′′′′−=−−≤−−01210()max ()8x x x x x f x ≤≤−′′≤.题22采用下列方法构造满足条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x :(1)(1)用待定系数法;(2)(2)利用承袭性,先考察插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x .解(1)有四个插值条件,故设230123()p x a a x a x a x =+++,2123()23p x a a x a x ′=++,代入得方程组001231123010231a a a a a a a a a =⎧⎪+++=⎪⎨=⎪⎪++=⎩解之,得01230021a a a a =⎧⎪=⎪⎨=⎪⎪=−⎩23()2p x x x ∴=−;(2)先求满足插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x ,由0为二重零点,可设2()p x ax =,代入(1)1p =,得1a =,2()p x x ∴=;再求满足插值条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x ,可设22()(1)p x x bx x =+−,2()22(1)p x x bx x bx ′=+−+∵,代入(1)1p ′=,得1b =−,2223()(1)2p x x x x x x ∴=−−=−.题33设分段多项式323201()2112x x x S x x bx cx x ⎧+≤≤=⎨++−≤≤⎩是以0,1,2为节点的三次样条函数,试确定系数,b c 的值.解由(1)2S =得212b c ++−=,1b c ∴+=;223201()6212x x x S x x bx c x ⎧+<<′=⎨++<<⎩,由(1)5S ′=得625b c ++=,21b c ∴+=−;联立两方程,得2,3b c =−=,且此时6201()12212x x S x x b x +<<⎧′′=⎨+<<⎩,(1)8(1)S S −+′′′′==,()S x 是以0,1,2为节点的三次样条函数.题35用最小二乘法解下列超定方程组:24113532627x y x y x y x y +=⎧⎪−=⎪⎨+=⎪⎪+=⎩.解记残差的平方和为2222(,)(2411)(353)(26)(27)f x y x y x y x y x y =+−+−−++−++−令00f x f y ∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得3661020692960x y x y −−=⎧⎨−+−=⎩,解之得83027311391x y ⎧=⎪⎪⎨⎪=⎪⎩.题37用最小二乘法求形如2y a bx =+的多项式,使与下列数据相拟合:x1925313844y19.032.349.073.397.8解拟合曲线中的基函数为0()1x ϕ=,20()x x ϕ=,其法方程组为0001010001(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎞⎛⎞⎛⎞=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,其中00(,)5ϕϕ=,0110(,)(,)5327ϕϕϕϕ==,11(,)7277699ϕϕ=,0(,)271.4f ϕ=,1(,)369321.5f ϕ=,解之得5320.97265472850.055696a b ⎧==⎪⎪⎨⎪==⎪⎩,20.97260.05y x ∴=+.第二章题3确定下列求积公式中的待定参数,使其代数精度尽量地高,并指明求积公式所具有的代数精度:(2)10120113()(()()424f x dx A f A f A f ≈++∫(2)从结论“在机械求积公式中,代数精度最高的是插值型的求积公式”出发,11000013()(224()11133()()4244x x A l x dx dx −−===−−∫∫,11110013()()144()11133()()2424x x A l x dx dx −−===−−−∫∫,11220011()242()31313()4442x x A l x dx dx −−===−−∫∫,10211123()()()(343234f x dx f f f ∴≈−+∫,当3()f x x =时,有左边=113001()d d 4f x x x x ==∫∫,右边=3332111232111231()()()()()()3432343432344f f f −+=⋅−⋅+⋅=,左边=右边,当4()f x x =时,有左边=114001()d d 5f x x x x ==∫∫,右边=44421112321112337()()()()()()343234343234192f f f −+=⋅−⋅+⋅=,左边≠右边,所以该求积公式的代数精度为3.题8已知数据表x 1.11.3 1.5xe3.00423.66934.4817试分别用辛甫生法与复化梯形法计算积分 1.51.1x e dx∫.解辛甫生法1.51.1xe dx ∫()1.5 1.13.00424 3.66934.4817 1.477546−≈+×+=;复化梯形法1.51.1xe dx ∫()0.23.00422 3.66934.4817 1.482452≈+×+=.题17用三点高斯公式求下列积分值12041dxx π=+∫.解先做变量代换,设)(1+21=t x ,则1204d 1x x +∫=112112418d d 124(1)1(1)4t t t t −−⋅=++++∫∫()2225888589994014141≈×+×+×++⎛⎞⎞++⎜⎟⎟⎝⎠⎠3.141068=.第三章用欧拉方法求解初值问题y ax b ′=+,(0)0y =:(1)试导出近似解n y的显式表达式;解(1)其显示的Euler 格式为:11111(,)()n n n n n n y y hf x y y h ax b −−−−−=+=+⋅+故122()n n n y y h ax b −−−=+⋅+⋯⋯100()y y h ax b =+⋅+将上组式子左右累加,得0021()n n n y y ah x x x nhb−−=+++++⋯(02(2)(1))ah h h n h n h nhb =+++−+−+⋯2(1)/2ah n n nhb=−+题10选取参数p 、q ,使下列差分格式具有二阶精度:1111(,)n n n n y y hK K f x ph y qhK +=+⎧⎨=++⎩.解将1K 在点(,)n n x y 处作一次泰勒展开,得11(,)n n K f x ph y qhK =++21(,)(,)(,)()n n x n n y n n f x y phf x y qhK f x y O h =+++()221(,)(,)(,)(,)(,)()(,)()n n x n n n n x n n y n n y n n f x y phf x y qh f x y phf x y qhK f x y O h f x y O h =++++++2(,)(,)(,)(,)()n n x n n n n y n n f x y phf x y qhf x y f x y O h =+++代入,得()21(,)(,)(,)(,)()n n n n x n n n n y n n y y h f x y phf x y qhf x y f x y O h +=++++2231(,)(,)(,)(,)()n n n n x n n n n y n n y y hf x y ph f x y qh f x y f x y O h +=++++而231()()()()()()2n n n n n h y x y x h y x hy x y x O h +′′′=+=+++23()(,())(,())(,())(,())()2n n n x n n n n y n n h y x hf x y x f x y x f x y x f x y x O h ⎡⎤=++++⎣⎦考虑其局部截断误差,设()n n y y x =,比较上两式,当12p =,12q =时,311()()n n y x y O h ++−=.第四章题2证明方程1cos 2x x=有且仅有一实根;试确定这样的区间[,]a b ,使迭代过程11cos 2k kx x +=对一切0[,]x a b ∈均收敛.解设1()cos 2f x x x=−,则()f x 在区间(,)−∞+∞上连续,且11(0)cos 0022f =−=−<,1(cos 022222f ππππ=−=>,所以()f x 在[0,]2π上至少有一根;又1()1sin 02f x x ′=+>,所以()f x 单调递增,故()f x 在[0,]2π上仅有一根.迭代过程11cos 2k k x x +=,其迭代函数为1()cos 2g x x=,[0,]2x π∀∈,110()cos 222g x x π≤=≤≤,()[0,]2g x π∴∈;1()sin 2g x x ′=−,1()12g x ′≤<,由压缩映像原理知0[0,2x π∀∈,11cos 2k kx x +=均收敛.注这里取[,]a b 为区间[0,]2π,也可取[,]a b 为区间(,)−∞+∞等.题5考察求解方程1232cos 0x x −+=的迭代法124cos 3k kx x +=+(1)(1)证明它对于任意初值0x 均收敛;(2)证明它具有线性收敛性;证(1)迭代函数为2()4cos 3g x x=+,(,)x ∀∈−∞+∞,()(,)g x ∈−∞+∞;又22()sin 133g x x ′=−≤<,由压缩映像原理知0x ∀,124cos 3k k x x +=+均收敛;(2)***1*2lim ()sin 03k k k x x g x x x x +→∞−′==−≠−(否则,若*sin 0x =,则*,x m m Z π=∈,不满足方程),所以迭代124cos 3k kx x +=+具有线性收敛速度;题7求方程3210x x −−=在0 1.5x =附近的一个根,证明下列两种迭代过程在区间[1.3,1.6]上均收敛:(1)(1)改写方程为211x x =+,相应的迭代公式为1211k k x x +=+;(2)(2)改写方程为321x x =+,相应的迭代公式为1k x +=解(1)3232211011x x x x x x −−=⇔=+⇔=+,迭代公式为1211k k x x +=+,其迭代函数为21()1g x x =+[1.3,1.6]x ∀∈,2221111.3 1.3906111 1.5917 1.61.6 1.3x ≤≈+≤+≤+≈<,()[1.3,1.6]g x ∴∈;又32()g x x ′=−,333222-0.9103==-0.48831.3 1.6x −−−≤≤,()0.91031g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1211k k x x +=+均收敛;(2)3232101x x x x x −−=⇔=+⇔=1k x +=其迭代函数为()g x =[1.3,1.6]x ∀∈,1.3 1.3908 1.5269 1.6≤≈≤≤≈<,()[1.3,1.6]g x ∴∈;又()g x ′=,00.4912≤≤≤=,()0.49121g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1k x +=均收敛.题5分别用雅可比迭代与高斯-塞德尔迭代求解下列方程组:1231231235325242511x x x x x x x x x +−=⎧⎪−+=⎨⎪+−=−⎩(2)其雅可比迭代格式为(1)()()123(1)()()213(1)()()312253512221121555k k k k k k k k k x x x x x x x x x +++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散;其高斯-塞德尔迭代格式为(1)()()123(1)(1)()213(1)(1)(1)312253512221121555k k k k k k k k k x x x x x x x x x ++++++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散.第六章题2用主元消去法解下列方程组)12312312323553476335x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩解(2)对其增广矩阵进行列主元消元得23553476347634763476235501/31/3105/32/331335133505/32/3301/31/31⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟→→→⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠347605/32/33001/52/5⎛⎞⎜⎟→⎜⎟⎜⎟⎝⎠回代求解上三角方程组1232333476523331255x x x x x x ⎧⎪++=⎪⎪+=⎨⎪⎪=⎪⎩得321214x x x =⎧⎪=⎨⎪=−⎩,所以412x −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( ) 代入,得 yn+1 = yn + h f (xn , yn ) + phfx (xn , yn ) + qhf (xn , yn ) f y (xn , yn ) + O(h2 )
yn+1 = yn + hf (xn , yn ) + ph2 fx (xn , yn ) + qh2 f (xn , yn ) f y (xn , yn ) + O (h3 )

A0
f
( )+ 4
A1
f
( )+ 2
A2
f
() 4
(2)从结论“在机械求积公式中,代数精度最高的是插值型的求积公式”出发,
∫ ∫ A0 =
1
0 l0 (x)dx =
1
(x

1 )( x 2

3) 4
dx
=
2
0 (1 − 1)( 1 − 3) 3
4 24 4

∫ ∫ A1 =
1
0 l1(x)dx =
= ah2n(n −1) / 2 + nhb
题 10
⎧ yn+1 = yn + hK1
选取参数
p

q
,使下列差分格式具有二阶精度:
⎨ ⎩
K1
=
f
( xn
+
ph, yn
+ qhK1) .
解 将 K1 在点 (xn , yn ) 处作一次泰勒展开,得
K1 = f (xn + ph, yn + qhK1) = f (xn , yn ) + phfx (xn, yn) + qhK1 f y ( xn, yn) + O(h2)

f
(x)
=
x

1 2
cos
x
,则
f
(x)
在区间 (−∞, +∞)
上连续,
f (0) = − 1 cos 0 = − 1 < 0
f
π (
)=
π
1 −
π cos
=
π
>0

2
2 , 2 22 2 2 ,
π
所以
f
(x)
[0,

] 2 上至少有一根;

f
′(x)
=1+
1 2
sin
x
>
0
,所以
f
(x)
单调递增,故
题 33
⎧x3 + x2
0≤ x≤1
设分段多项式
S
(x)
=
⎨ ⎩2
x3
+
bx2
+
cx
−1
1 ≤ x ≤ 2 是以 0,1, 2 为节点的三次样条
函数,试确定系数 b, c 的值.
解 由 S (1) = 2 得 2 + b + c −1 = 2 ,∴b + c = 1;
⎧3x2 + 2x
0< x <1
− 1)( x
− 3)( x
− 4)
.
题 15 证 明 : 对 于 f (x) 以 x0 , x1 为 节 点 的 一 次 插 值 多 项 式 p(x) , 插 值 误 差
f (x) − p(x) ≤ (x1 − x0 )2 max f ′′(x)
8
x0 ≤ x≤ x1
.

由拉格朗日插值余项得
f (x) − p(x) =

y( xn+1)
=
y( xn
+ h)
=
y( xn ) + hy′(xn ) +
h2 2
y′′(xn ) + O(h3 )
=
y(xn ) + hf
(xn ,
y(xn )) +
h2 2
⎡⎣
fx (xn ,
y(xn )) +
f
(xn , y (xn )) f y
(xn , y (xn
))⎤⎦
+ O (h3 )
1
(x

1 4
)(x

3) 4
dx
=

1
01 1 1 3 ( − )( − )
3
2 42 4

∫ ∫ A2 =
1
0 l2 (x)dx =
1
(x

1 )( x 4

1) 2
dx
=
2
0 ( 3 − 1)( 3 − 1) 3
4 44 2

1
∴ ∫0
f (x)dx

2 3
f
11 ( )− 43
f
1 ( )+ 2
y
19.0
32.3
49.0
73.3
97.8
解 拟合曲线中的基函数为ϕ0 (x) = 1,ϕ0(x) = x2 ,
⎛ (ϕ0,ϕ0 )
其法方程组为
⎜ ⎝
(ϕ1
,ϕ0
)
(ϕ0 (ϕ0
,ϕ1 ,ϕ0
) )
⎞ ⎟ ⎠
⎛ ⎜ ⎝
a b
⎞ ⎟ ⎠
=
⎛ ⎜ ⎝
( (
f f
,ϕ0 ,ϕ1
) )
⎞ ⎟ ⎠

其中 (ϕ0,ϕ0 ) = 5 , (ϕ0,ϕ1) = (ϕ1,ϕ0 ) = 5327 , (ϕ1,ϕ1) = 7277699 , ( f ,ϕ0 ) = 271.4 ,
= f (xn , yn ) + phfx (xn , yn )
( ) +qh f (xn, yn ) + phf x (xn , yn ) + qhK1 f y (xn , yn ) + O(h2 ) f y (xn , yn ) + O (h2 )
= f (xn , yn ) + phfx (xn, yn) + qhf ( xn, yn) f y( xn, yn) + O(h2)

a0 = 0
⎪⎪a0 + a1 + a2 + a3 = 1
⎨ ⎪
a1 = 0
代入得方程组 ⎪⎩ a1 + 2a2 + 3a3 = 1
⎧a0 = 0
⎪ ⎪
a1
=
0
⎨⎪a2 = 2
解之,得 ⎪⎩a3 = −1
∴ p(x) = 2x2 − x3; (2)先求满足插值条件 p(0) = p′(0) = 0 , p(1) =1 的插值多项式 p(x) ,由 0 为二重零点, 可设 p(x) = ax2 ,代入 p(1) = 1 ,得 a = 1,∴ p(x) = x2 ; 再求满足插值条件 p(0) = p′(0) = 0 , p(1) = p′(1) = 1的插值多项式 p(x) ,可设 p(x) = x2 + bx2 (x −1) ,∵ p′(x) = 2x + 2bx(x −1) + bx2 ,代入 p′(1) = 1,得 b = −1, ∴ p(x) = x2 − x2 (x −1) = 2x2 − x3 .
yn = yn−1 + hf ( xn−1, yn−1) = yn−1 + h ⋅ (axn−1 + b)
故 yn−1 = yn−2 + h ⋅ (axn−2 + b) ⋯⋯
y1 = y0 + h ⋅ (ax0 + b)
将上组式子左右累加,得
yn = y0 + ah(x0 + ⋯ + xn−2 + xn−1 ) + nhb = ah(0 + h + 2h⋯+ (n − 2)h + (n −1)h) + nhb
.
题 22 采用下列方法构造满足条件 p(0) = p′(0) = 0 , p(1) = p′(1) = 1 的插值多项式 p(x) :
(1) (1) 用待定系数法;
(2) (2) 利用承袭性,先考察插值条件 p(0) = p′(0) = 0 , p(1) =1 的插值多项式 p(x) .
解 (1)有四个插值条件,故设 p(x) = a0 + a1x + a2 x2 + a3x3 , p′(x) = a1 + 2a2 x + 3a3 x2 ,
f
′′(ξ 2!
)
(
x

x0
)(
x

x1
)
,其中
x0
≤ξ
≤ x1 ,
f (x) − p(x) =
f
′′(ξ ) (x − 2!
x0 )(x −
x1 )

max f ′′(x)
x0 ≤ x≤ x1
2!
( x − x0 )( x − x1)
≤ (x1 − x0 )2 max f ′′(x)
8
x0 ≤ x≤ x1

⎧ ∂f
⎪⎪ ∂x
⎨ ⎪
∂f
⎪⎩ ∂y
= =
0 0
,得
⎧36x ⎨⎩−6x
− +
6y −102 92y − 96
= =
0 0
,解之得
⎧⎪⎪x ⎨ ⎪y ⎪⎩
= =
830 273 113 91
.
题 37 用最小二乘法求形如 y = a + bx2 的多项式,使与下列数据相拟合:
相关文档
最新文档