功率LDMOS管以及电阻电容

合集下载

LDMOS介绍

LDMOS介绍

小了漏、源两极之间的寄生电容,有利于提高频率特性。同时,漂移区在沟道和漏之间起
缓冲作用,削弱了LDMOS的短沟道效应。由于VDS的绝大部分降落在漂移区上,因此在沟
道夹断后,基本上没有沟道的长度调制效应。当VDS增大的时候,输出电阻不会降低,沟
道区也不易穿通,从而LDMOS的击穿电压不受沟道长度和掺杂水平的限制,可以进行独

九十年代中后期开始大批量生产LDMOS,作为微波低端大功率(20W以上)器
件的主流技术, 2. 4GHz以下输出峰值可达到200W以上,年产量超过4亿美元。与
传统的双极型晶体管相比, LDMOS器件在2. 4GHz以下频段时,增益、线性度、开
关性能、散热性能、价格等方面都有着明显的优势。今后LDMOS将向更高频率、
LDMOS
(Laterally Diffused Metal Oxide Semiconductor)
横向扩散金属氧化物半导体
简介

80年代以来,迅猛发展的超大规模集成电路技术给高压大电流半导体注入了
新的活力,一批新型的声控功放器件诞生了,其中最有代表性的产品就是
VDMOS声效应功率晶体管。这种电流垂直流动的双扩散MOS器件是电压控制型
立的设计。

LDMOS中的漂移区是该类器件设计的关键,漂移区的杂质浓度比较低,因此,当
LDMOS 接高压时,漂移区由于是高阻,能够承受更高的电压。图1所示LDMOS的多晶扩
展到漂移区的场氧上面,充当场极板,会弱化漂移区的表面电场,有利于提高击穿电压。
ቤተ መጻሕፍቲ ባይዱ场极板的作用大小与场极板的长度密切相关。要使场极板能充分发挥作用,一要设计好

到了90年代,由于器件结构和工艺技术的改进,使得LDMOS性能有了飞跃性的发展,

demos与ldmos工作原理

demos与ldmos工作原理

demos与ldmos工作原理在现代电子设备中,demos(Double-diffused Metal Oxide Semiconductor)和ldmos(Lateral Double-diffused MetalOxide Semiconductor)是常用的半导体器件。

它们在许多领域中都发挥着重要作用,如通信、功率放大器和射频应用。

本文将介绍这两种器件的工作原理和特点。

demos和ldmos都是金属氧化物半导体场效应晶体管(MOSFET)的变种。

它们的工作原理基于PN结和场效应晶体管的结合。

在demos中,PN结的扩散区域被双重扩散,从而形成了一个耐压区。

而在ldmos中,扩散区域是沿着晶体管表面扩散的,这种结构使得器件在导通状态下具有更低的电阻。

在demos中,PN结的双重扩散使得器件具有更高的耐压能力。

当器件处于关断状态时,PN结的扩散区域可以承受较高的电压而不会发生击穿。

这使得demos在高压应用中具有优势,如电源管理和功率放大器。

而ldmos则通过沟道扩散技术,使得器件在导通状态下具有更低的电阻,从而在功率放大器和射频应用中表现出色。

除了耐压能力和导通电阻之外,demos和ldmos还有许多其他特点。

例如,它们通常具有较高的开关速度和较低的漏电流,这使得它们在高频和低功耗应用中具有优势。

此外,它们的制造工艺相对成熟,成本较低,因此在大规模生产中具有竞争优势。

总的来说,demos和ldmos是两种在不同应用领域中发挥作用的重要器件。

它们的工作原理基于PN结和场效应晶体管的结合,具有耐压能力强、导通电阻低、开关速度快和制造成本低等特点。

随着电子技术的不断发展,相信它们将在更多领域中发挥重要作用。

功率半导体器件 LDMOS VDMOS

功率半导体器件 LDMOS VDMOS

关于功率MOSFET(VDMOS & LDMOS)的报告---时间日期:2009.11.12---报告完成人:祝靖1.报告概况与思路报告目的:让研一新同学从广度认识功率器件、了解功率器件的工作原理,起到一个启蒙的作用,重点在“面”,更深层次的知识需要自己完善充实。

报告内容:1)从耐压结构入手,说明耐压原理;2)从普通MOS结构到功率MOS结构的发展;(功率MOS其实就是普通MOS结构和耐压结构的结合);3)纵向功率MOS(VDMOS)的工作原理;4)横向功率MOS(LDMOS)的工作原理;5)功率MOSFET中的其它关键内容;(LDMOS和VDMOS共有的,如输出特性曲线)报告方式:口头兼顾板书,点到即止,如遇到问题、疑惑之处或感兴趣的地方,可以随时打断提问。

2.耐压结构(硅半导体材料)目前在我们的研究学习中涉及到的常见耐压结构主要有两种:①反向PN结②超结结构(包括);2.1 反向PN结(以突变结为例)图2.1所示的是普通PN结的耐压原理示意图,当这个PN结工作在一定的反向电压下,在PN结内部就会产生耗尽层,P区一侧失去空穴会剩下固定不动的负电中心,N区一侧会失去电子留下固定不动的正电中心,并且正电中心所带的总电量=负电中心所带的总电量,如图2.1a所示,A区就是所谓耗尽区。

图2.1b所示的是耗尽区中的电场分布情况(需熟悉了解),耗尽区以外的电场强度为零,Em称为峰值电场长度(它的位置在PN,阴影部分的面积就是此时所加在PNP区和N区共同耐压。

图2.2所示的是P+N结的情况,耐压原理和图1中的相同,但是在这种情况中我们常说N负区是耐压区域(常说的漂移区)(a)(b)图2.1 普通PN结耐压示意图(N浓度=P浓度)图2.2 P+N结耐压示意图(N浓度<<P浓度)图2.3所示的是反向电压变化情况下的耗尽层内部的电场强度的变化情况,随着N一侧的电压的上升,耗尽层在展宽(对于P+N-结来说,耗尽层展宽的区域为N区一侧,也就是耐压区一侧),峰值电场强度Em的值也在不断升高,但是当Em=Ec时,PN结发生击穿,Ec称为临界电场强度,此时加在PN结两端的电压大小就是击穿电压(BV(如表2.1所示),同种材料不同浓度的临界电场也不同,但是对于硅材料来说,在我们目前关系的浓度范围之内,浓度变化对电场强度的影响不大,因图 2.3 电场强度和电压的关系示意图 Table2.1 不同材料的临界电场2.2 超结结构(SuperJunction )(了解)除了上述所说的P+N-结结构之外,还有一种我们会接触到的耐压结构——超结结构。

LDMOS简介

LDMOS简介

什么是RF LDMOS晶体管DMOS主要有两种类型,垂直双扩散金属氧化物半导体场效应管VDMOSFET(vertical double-diffused MOSFET)和横向双扩散金属氧化物半导体场效应管LDMOSFET (lateral double-dif fused MOSFET)。

LDMOS由于更容易与CMOS工艺兼容而被广泛采用。

LDMOSLDMOS (横向扩散金属氧化物半导体)LDMOS器件结构如图1所示,LDMOS是一种双扩散结构的功率器件。

这项技术是在相同的源/漏区域注入两次,一次注入浓度较大(典型注入剂量1015cm-2)的砷(As),另一次注入浓度较小(典型剂量1013cm-2)的硼(B)。

注入之后再进行一个高温推进过程,由于硼扩散比砷快,所以在栅极边界下会沿着横向扩散更远(图中P阱),形成一个有浓度梯度的沟道,它的沟道长度由这两次横向扩散的距离之差决定。

为了增加击穿电压,在有源区和漏区之间有一个漂移区。

LDMOS中的漂移区是该类器件设计的关键,漂移区的杂质浓度比较低,因此,当LDMOS 接高压时,漂移区由于是高阻,能够承受更高的电压。

图1所示LDMOS的多晶扩展到漂移区的场氧上面,充当场极板,会弱化漂移区的表面电场,有利于提高击穿电压。

场极板的作用大小与场极板的长度密切相关[6]。

要使场极板能充分发挥作用,一要设计好SiO2层的厚度,二要设计好场极板的长度。

LDMOS元件具有基底,基底中形成有源极区与漏极区。

在源极与漏极区之间的一部分基底上提供了一个绝缘层,以便在绝缘层与基底表面之间提供一个平面介面。

然后在绝缘层的一部分之上形成绝缘构件,在部分绝缘构件与绝缘层之上形成栅极层。

通过使用此结构,发现存在有平直的电流通道,使之能减少接通电阻,同时维持高击穿电压。

LDMOS与普通MOS管主要有两点区别:1,采用LDD结构(或称之为漂移区);2,沟道由两次扩散的横向结深控制。

LDMOS 的优势• 卓越的效率,可降低功率消耗与冷却成本• 卓越的线性度,可将信号预校正需求降到最低• 优化超低热阻抗,可缩减放大器尺寸与冷却需求并改善可靠度• 卓越的尖峰功率能力,可带来最少数据错误率的高3G 数据率• 高功率密度,使用较少的晶体管封装• 超低感抗、回授电容与串流闸阻抗,目前可让LDMOS 晶体管在双载子器件上提供7 bB 的增益改善• 直接源极接地,提升功率增益并免除BeO 或AIN 隔离物质的需求• 在GHz 频率下拥有高功率增益,带来更少设计步骤、更简易更具成本效益的设计(采用低成本、低功率驱动晶体管)• 绝佳的稳定性,由于负漏极电流温度常数,所以不受热散失的影响• 比双载子更能忍受较高的负载未匹配现象(VSWR),提高现场实际应用的可靠度• 卓越的射频稳定度,在栅极与漏极间内置隔离层,可以降低回授电容• 在平均无故障时间(MTTF) 上有相当好的可靠度LDMOS主要的缺点1.功率密度低;2.容易受到静电的破坏。

ldmos工作原理

ldmos工作原理

ldmos工作原理LDMOS工作原理。

LDMOS(Laterally Diffused Metal Oxide Semiconductor)是一种常见的功率MOSFET(金属氧化物半导体场效应晶体管),在射频和微波功率放大器中得到广泛应用。

LDMOS器件具有低电阻、高电压和高频特性,因此在无线通信、广播、雷达和其他射频应用中具有重要作用。

本文将介绍LDMOS的工作原理,以便更好地理解其在功率放大器中的应用。

LDMOS的结构。

LDMOS器件通常由N型衬底上的P型沟道和N型扩散层组成。

在P型沟道区域,有一层金属氧化物绝缘层(MOS结构),用于控制沟道中的电子流。

P型沟道和N型扩散层之间的结构使得LDMOS器件具有较高的耐压能力,适合用于高电压应用。

LDMOS的工作原理。

当在LDMOS器件的门极上施加正向电压时,形成的电场使P型沟道中的电子被吸引到N型扩散层,从而形成导通通道。

当信号电压施加在沟道上时,电子将在沟道中形成连续的电流,从而实现信号的放大。

在LDMOS器件中,电子的主要流动路径是沿着P型沟道和N型扩散层的界面。

由于P型沟道的电阻较低,电子在沟道中的移动速度较快,因此LDMOS器件能够实现较高的电流传输能力。

同时,N型扩散层的结构使得LDMOS器件能够承受较高的电压,适合用于功率放大器等高压应用。

LDMOS的优势。

与其他功率MOSFET相比,LDMOS器件具有较低的电阻和较高的耐压能力,适合用于高频、高功率的射频应用。

同时,LDMOS器件的制造工艺成熟,成本相对较低,因此在市场上得到了广泛的应用。

总结。

LDMOS器件是一种常见的功率MOSFET,具有较低的电阻、较高的耐压能力和较高的频率特性。

其工作原理是通过在P型沟道和N型扩散层之间形成导通通道,实现信号的放大。

在射频和微波功率放大器中,LDMOS器件具有重要作用,广泛应用于无线通信、广播、雷达等领域。

通过本文的介绍,相信读者对LDMOS器件的工作原理有了更深入的理解,能够更好地应用于实际工程中。

LDMOS介绍教学提纲

LDMOS介绍教学提纲

1992年研制出了高效率的靠电池供电移动通信用的低压MO栅LDMOS,其沟道长度为
0.8µm,在6v工作时 1.5GHz下输出2w,增益5dB,漏极效率达65%,功率附加效率为
55%。1994年又研制出了在1.SGHz下连续波输出35W,增益13dB,漏极效率50%的微波
功率LDMOS。到1996年,Motorola的Alan Wood等人研制出了2GHz下连续波输出60w的
LDMOS由于更容易与CMOS工艺兼容而被广泛采用。1971年Y.Tarui等人提出了横向
双扩散MOS的结构。1976年M.J.Declerq和J.D.Plummer采用这种方案,做出了第一个
LDMOS。
LDMOS器件结构如图1所示,LDMOS是一种双扩散结构的功率器件。这项技术是在
相同的源/漏区域相继两次进行硼磷扩散,一次注入浓度较大(典型注入剂量 1015cm-2)
高频率、更大功率方向发展。
LDMOS。80年代末,研究者们利用RESURF原理,对LDMOS进行优化设计,出现了
LDMOS的不同结构。其努力的方向是降低Ron及CGs,CGD,CDs,提高击穿电压BVDSS,
并分析研究了栅电阻对器件微波性能的影响。在LDMOS的研究过程中,研究者们发现,
限制器件增益和效率的主要因素是沟道长度、源极接地电感和栅电阻。
LDMOS介绍
LDMOS( Laterally Diffused Metal Oxide Semiconductor;横向扩散金属氧化物半导体)是 为900MHz蜂窝电话技术开发的,蜂窝通信市场的不断增长保证了LDMOS晶体管的应用, 也使得LDMOS的技术不断成熟,成本不断降低,因此今后在多数情况下它将取代双极型 晶体管技术。与双极型晶体管相比,LDMOS管的增益更高,LDMOS管的增益可达14dB以 上,而双极型晶体管在5~6dB,采用LDMOS管的PA模块的增益可达60dB左右。这表明对于 相同的输出功率需要更少的器件,从而增大功放的可靠性。 LDMOS能经受住高于双极型晶体管3倍的驻波比,能在较高的反射功率下运行而没有 破坏LDMOS设备;它较能承受输入信号的过激励和适合发射数字信号,因为它有高级的 瞬时峰值功率。LDMOS增益曲线较平滑并且允许多载波数字信号放大且失真较小。 LDMOS管有一个低且无变化的互调电平到饱和区,不像双极型晶体管那样互调电平高且 随着功率电平的增加而变化。这种主要特性允许LDMOS晶体管执行高于双极型晶体管二 倍的功率,且线性较好。LDMOS晶体管具有较好的温度特性温度系数是负数,因此可以 防止热耗散的影响。这种温度稳定性允许幅值变化只有0.1dB,而在有相同的输入电平的 情况下,双极型晶体管幅值变化从0.5~0.6dB,且通常需要温度补偿电路。

功率半导体器件(LDMOS VDMOS)

功率半导体器件(LDMOS VDMOS)
随后,有人提出将器件做成纵向器件(Vertical device),因为当时高低压集成并不是考虑的主要因素,目 的是高压分立器件。如图 3.1b 所示。(这个图是本人猜想图)
1974 年,VVMOS(Vertical V-groove MOS)诞生,如图 3.1c 所示,此结构缺点:1)靠腐蚀形成 V-Groove, 不易工艺控制;2)V 形槽底部为尖峰,曲率大,电场较大,容易击穿,可靠性差等。
就会产生耗尽层,P 区一侧失去空穴会剩下固定不动的负电中心,N 区一侧会失去电子留下固定不动的正 电中心,并且正电中心所带的总电量=负电中心所带的总电量,如图 2.1a 所示,A 区就是所谓耗尽区。
图 2.1b 所示的是耗尽区中的电场分布情况(需熟悉了解),耗尽区以外的电场强度为零,Em 称为峰 值电场长度(它的位置在 PN 结交界处,原因可以从高斯原理说明),阴影部分的面积就是此时所加在 PN 结两端的电压大小。从以上的分析我们可以称这个结构的耐压部分为 P 区和 N 区共同耐压。图 2.2 所示的 是 P+N 结的情况,耐压原理和图 1 中的相同,但是在这种情况中我们常说 N 负区是耐压区域(常说的漂移 区),耐压大小由 N 区的浓度决定。
S
G
S
S
G
S
N
N
P
P
N
N
P
P
NN
D
图 4.1 处于关断状态下的 VDMOS
NN
D
图 4.2 处于导通状态下的 VDMOS
4.2 VDMOS 中的导通电阻 y在 VDMOS 中,顺着电子流的方向,整个导通电阻包括:沟道电阻、积累层电阻、寄生 JFET 电阻、 扩散电阻、外延层电阻、衬底电阻和金属导线电阻。(每个电阻在不同的耐压情况下所占总的导通 电阻的比例也使不同的,在低压的器件中,沟道电阻是主要的,在高压器件中,外延层的电阻是主 要的<取决于外延层的电阻率和厚度>,) y沟道电阻:取决于沟道长度、栅氧化层的厚度、载流子浓度、阈值电压和栅电压 VG . 一定的栅电压下,沟道电阻随着栅氧化层厚度的减小而减小 y积累层电阻:当器件导通后,栅下的 N-区会形成一层积累层,形成一层电阻很低的电子通道,这些 电子是从沟道出来的 y寄生 JFET 电阻:离开积累层的电子会垂直进入到硅体内(可以看成是一个 N 沟的 JFET),这个电 阻是随着源漏电压的变化而变化的,降低这个电阻的方法可以增加 P 井之间的距离,但是这样会影 响到集成度的提高。 y扩散电阻:当电子再往下走时,电子开始向下扩散流动(也有可能进入到其他的元胞中),由这些 电流流过的漂移区的电阻称为扩散电阻。 y外延层电阻:器件的耐压值决定了外延层的电阻率和厚度,高压器件中这个电阻很重要。外延层的 厚度一般由器件的耐压水平决定。 y衬底电阻:衬底电阻只在耐压值低于 50V 的情况中才比较明显。 y金属线和引线电阻:器件在和外部引脚相连的导线,在一般器件中,此电阻大概有几毫欧。

LDMOS简介及其技术详解

LDMOS简介及其技术详解

LDMOS简介及其技术详解LDMOS(Laterally Diffused Metal Oxide Semiconductor)横向扩散金属氧化物半导体)是为900MHz蜂窝电话技术开发的,蜂窝通信市场的不断增长保证了LDMOS 晶体管的应用,也使得LDMOS的技术不断成熟,成本不断降低,因此今后在多数情况下它将取代双极型晶体管技术。

与双极型晶体管相比,LDMOS管的增益更高,LDMOS管的增益可达14dB以上,而双极型晶体管在5~6dB,采用LDMOS管的PA模块的增益可达60dB左右。

这表明对于相同的输出功率需要更少的器件,从而增大功放的可靠性。

LDMOS能经受住高于双极型晶体管3倍的驻波比,能在较高的反射功率下运行而没有破坏LDMOS设备;它较能承受输入信号的过激励和适合发射数字信号,因为它有高级的瞬时峰值功率。

LDMOS增益曲线较平滑并且允许多载波数字信号放大且失真较小。

LDMOS 管有一个低且无变化的互调电平到饱和区,不像双极型晶体管那样互调电平高且随着功率电平的增加而变化。

这种主要特性允许LDMOS晶体管执行高于双极型晶体管二倍的功率,且线性较好。

LDMOS晶体管具有较好的温度特性温度系数是负数,因此可以防止热耗散的影响。

这种温度稳定性允许幅值变化只有0.1dB,而在有相同的输入电平的情况下,双极型晶体管幅值变化从0.5~0.6dB,且通常需要温度补偿电路。

LDMOS由于更容易与CMOS工艺兼容而被广泛采用。

LDMOS器件结构如图1所示,LDMOS是一种双扩散结构的功率器件。

这项技术是在相同的源/漏区域注入两次,一次注入浓度较大(典型注入剂量1015cm-2)的砷(As),另一次注入浓度较小(典型剂量1013cm-2)的硼(B)。

注入之后再进行一个高温推进过程,由于硼扩散比砷快,所以在栅极边界下会沿着横向扩散更远(图中P阱),形成一个有浓度梯度的沟道,它的沟道长度由这两次横向扩散的距离之差决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源SPIC—TOP223
2019/5/25
17/84
偏置电路
当发生欠压时,偏置电压1调节锯齿波发生器输出频率 由之前正常工作的100kHz减小为3kHz,减小功耗。
电路控制 电压
C1 R1
M3 偏置电压1
M1
M2
Q1
Q2
Q3 Q4
M6
M7
M5
偏置电压2
M4
Q5
C2
R3
R4
Q6 R2
欠欠压压保保 护护输输入出
2019/5/25
12/84
TOP223芯片管脚
DRAIN:输出管MOSFET的漏极。在启动时,通过一个内部 开关控制的高压电流源提供内部偏置电流。
CONTROL:作为占空比控制时,是误差放大器和反馈电流的 输入端。也用做内部电路和自动重启动/补偿电容的连接点。
SOURCE:Y型封装时,是输出MOSFET的源极,作为高压电 源的回路。原边控制电流的公共参考点。
2019/5/25
13/84
TOP223封装
2019/5/25
14/84
TOP223性能参数
极限参数 漏极电压:-0.3V到700V; 漏极电流增加速度(ΔID/每100ns): 0.1×ILIMIT(MAX) 控制脚电压:-0.3V到9V 控制脚电流:100mA 储存温度:-65到125℃ 工作结温度:-40到150℃
Q6、Q7的栅电压互反,控制C1的充放电
2V
0.7V
2019/5/25
锯齿波输出
偏置 方波脉冲
偏置
21/84
锯齿波电路仿真图
2019/5/25
频率为100KHz
22/84
PWM比较器
2019/5/25
23/84
PWM比较器仿真图
2019/5/25
24/84
驱动电路
偏置电 压
Q1
Q5
栅控电 压 Q4
第七章 智能功率集成电路的设计
2019/5/25
1
主要内容
SPIC设计考虑 PWM开关电源SPIC设计实例 荧光灯驱动SPIC设计实例
2019/5/25
2/84
SPIC设计考虑
工艺流程选择 功率器件关键参数确定 关键工艺参数设计
2019/5/25
3/84
智能功率集成电路SPIC
反馈电流小于2mA,电路以最大占空比67%工作; 反馈电流在2~6mA,电路工作占空比67%~1%工作; 反馈电流大于6mA,电路以最小占空比1%工作;
2019/5/25
PMOS宽长比很大, 实现旁路分流的作用
误差放大器输出
19/84
误差放大84
锯齿波发生器电路
2019/5/25
15/84
TOP223性能参数
电学参数 最大功率:50W(单一值电压输入)
30W(宽范围电压输入) *TO-220(Y)封装
导通电阻:7.8Ω (ID=100mA,Tj=25℃) 保护电流:1.00A(Tj=25℃) 最大占空比:67%
2019/5/25
16/84
LDMOS、VDMOS和IGBT等功率器件是SPIC 的核心,一 般功率器件约占整个芯片面积的1/2~2/3。
设计性能良好的功率器件是整个智能功率集成电路设计的 关键,其中耐压和导通电阻是SPIC的重要指标。
2019/5/25
7/84
功率器件的主要技术参数
击穿电压:源漏击穿电压BVDS、栅源击穿电压BVGS; 静态特性参数:阈值电压、IV特性、栅特性和特征
26/84
组合逻辑电路
2019/5/25
最大占空比不超过67% 最小导通时间(占空比
1%) 综合处理各种保护信号
2019/5/25
9/84
PWM开关电源SPIC设计实例
开关电源原理及开关电源SPIC 开关电源SPIC模块电路 开关电源SPIC的BCD工艺流程 开关电源SPIC的版图设计
2019/5/25
10/84
开关电源原理
311V
t
2t
3t
4t
311V
t
2t
3t
4t
2019/5/25
TOP223
1:8
Q8
Q7
R5
M8
Q9 基准电压
R6 Q10
IR5=(VBE6-VBE7)/R5=Vtln(IS6/IS7)/R5 ; IE9= IE5=2Vtln(IS6/IS7)/R5 ;
2019/5/25
VOUT=VE9=VBE10+2R6Vtln(IS6/IS7)/R5
18/84
误差放大器
反馈电流输入
一般包括: 功率控制 检测 / 保护 接口电路
目标
尽可能少的工艺步骤, 实现最佳功率器件性能
2019/5/25
4/84
工艺流程选择
SPIC一般实现方案:
在已有的CMOS或者BiCMOS工艺上进行改造,增加若干个 工艺步骤而实现。
工艺改造的好处:
一方面可以减小工艺成本和实现难度,另一方面也提高工艺 的稳定性。
11/84
开关电源TOP223
TOP223芯片是一个自我偏置、自我保护的用线性电流控制占空 比转换的开关电源。主要包括: 主电路部分
偏置电路、分流调整器/误差放大器电路、锯齿波发生器电路、 PWM比较器电路、最小导通时间延迟、驱动电路、组合逻辑电路 辅助保护电路部分
温度保护电路、过流保护电路、欠压保护电路、8分频复位延时 电路、高压充电电路
2019/5/25
5/84
SPIC基本工艺流程
SPIC工艺主要可分为外延层结构工艺和无外延层结构工艺。 这两种工艺技术各有特点,根据电路、器件、特性等方面不
同的要求,其最恰当的兼容工艺方式也大不相同。相比而言, 目前无外延层结构工艺较为普遍。
2019/5/25
6/84
功率器件关键参数确定
导通电阻等; 动态特性参数:栅电容、导通时间、关断时间和开关
频率等; 器件安全工作区(SOA)。
2019/5/25
8/84
关键工艺参数的设计
在改造工艺上调整有限的工艺参数使得功率器件性能最 佳是SPIC工艺必须要考虑的问题。
要确定这些最佳工艺参数,可以采用理论推导和TCAD 仿真相结合的方式。
Q2 Q3
偏置电 压 Q11
Q6
Q8
Vc Drain
Q12
Q16
Q7
Q19 Q21 Q23
Q25
Q13
Q14 Q17
C1 Q9 Q10
R1
Q15 Q18
Q22 Q24 Q20
0
2019/5/25
25/84
最小导通时间延迟模块
2019/5/25
• 增加这个电路其实就是加 了一个反馈,利用环路延迟, 使得当误差信号逐步增大到 大于锯齿波信号时,保持一 个最小的占空比。
相关文档
最新文档