数学建模实验答案_初等模型

合集下载

数学建模课后习题答案

数学建模课后习题答案

实验报告姓名:和家慧 专业:通信工程 学号:20121060248 周一下午78节实验一:方程及方程组的求解一 实验目的:学会初步使用方程模型,掌握非线性方程的求解方法,方程组的求解方法,MA TLAB 函数直接求解法等。

二 问题:路灯照明问题。

在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw的路灯,它们离地面的高度分别为5m 和6m 。

在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何?三 数学模型解:根据题意,建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数,可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=算法与编程利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1计算结果运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表:综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。

数学建模实验答案

数学建模实验答案

14.5714
第86页例3
>> c=[2;3;1];
>> a=[1,4,2;3,2,0];
>> b=[8;6];
>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
Optimization terminated.
x =
0.8066
-2.2943
rint =
-4.0390 4.0485
-3.2331 6.2555
-5.3126 1.9707
-6.5603 3.1061
-4.5773 5.0788
-0.5623 8.4132
-6.0767 3.1794
25.1698
0.0000
20.0000
14.8302
40.0000
y =
574.8302
实验报告三、 第二部分
data=[0,0.8,1.4,2.0,2.4,3.2,4.0,4.8,5.4,6.0,7.0,8.0,10.0;0,0.74,2.25,5.25,8.25,15,21.38,26.25,28.88,30.6,32.25,33,35];
b =
62.4054
1.5511
0.5102
0.1019
-0.1441
bint =
-99.1786 223.9893
-0.1663 3.2685
-1.1589 2.1792
-1.6385 1.8423
x5 = [1.62 1.79 1.51 1.60 1.61 1.31 1.02 1.08 1.02 0.82 1.03 1.08 0.92 0.79 0.86 1.27 1.10]';

数学建模与数学实验习题答案

数学建模与数学实验习题答案

数学建模与数学实验习题答案数学建模与数学实验习题答案数学建模和数学实验习题是数学学习中的重要组成部分,通过这些习题,我们可以更好地理解和应用数学知识。

本文将介绍数学建模和数学实验习题的一些答案和解题方法,帮助读者更好地掌握数学学习。

一、数学建模数学建模是将数学方法和技巧应用于实际问题的过程。

在数学建模中,我们需要将实际问题抽象为数学模型,并通过数学方法进行求解和分析。

下面是一个简单的数学建模问题和其解题过程。

问题:某工厂生产产品A和产品B,每天的产量分别为x和y。

产品A的生产成本为10x+20y,产品B的生产成本为15x+10y。

如果工厂每天的总成本不超过5000元,且产品A的产量必须大于产品B的产量,求工厂一天最多能生产多少个产品。

解题过程:首先,我们需要建立数学模型来描述这个问题。

设产品A的产量为x,产品B的产量为y,则问题可以抽象为以下数学模型:10x+20y ≤ 5000x > y接下来,我们需要解决这个数学模型。

首先,我们可以通过图像法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为直线的形式,我们可以得到以下图像:(图像略)从图像中可以看出,不等式10x+20y ≤ 5000和x > y的解集为图像的交集部分。

通过观察图像,我们可以发现交集部分的最大值为x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

除了图像法,我们还可以通过代数法来解决这个问题。

将不等式10x+20y ≤ 5000和x > y转化为等式的形式,我们可以得到以下方程组:10x+20y = 5000x = y通过求解这个方程组,我们可以得到x=250,y=125。

因此,工厂一天最多能生产250个产品A和125个产品B。

二、数学实验习题数学实验习题是通过实际操作和实验来学习数学知识和技巧的一种方式。

下面是一个关于概率的数学实验习题和其答案。

习题:一枚硬币抛掷10次,求出现正面的次数为偶数的概率。

数学建模答案(完整版)

数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。

在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。

数学建模实验答案_数学规划模型一

数学建模实验答案_数学规划模型一
选择LINGO/Options…
在出现的选项框架中,选择General Solver(通用求解器)选项卡,修改2个参数:( LINGO9 )
Dual Computations(对偶计算)设置为:Prices and Ranges(计算对偶价格并分析敏感性)
Model Regeneration(模型的重新生成)设置为:Always(每当有需要时)

输入的模型:
!文件名:p97.lg4;
max=290*x11+320*x12+230*x13+280*x14
+310*x21+320*x22+260*x23+300*x24
+260*x31+250*x32+220*x33;
x11+x12+x13+x14<100;
x21+x22+x23+x24<120;
@for(wu(i):@sum(cang(j):x(i,j))<w(i));
@for(cang(j):@sum(wu(i):x(i,j))<WET(j));
@for(cang(j):@sum(wu(i):v(i)*x(i,j))<VOL(j));
@for(cang(j):
@for(cang(k)|k#GT#j:!#GT#是大于的含义;

4.1 奶制品的生产与销售
例1 加工奶制品的生产计划
结果分析
例2 奶制品的生产销售计划
结果分析
4.2 自来水输送与货机装运
例1 自来水输送问题
例2 货机装运
b=50 60 50;
m1=30 70 10 10;

数学建模第二章 初等模型

数学建模第二章   初等模型

第二章 初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。

通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。

需要强调的是,衡量一个模型的优劣完全在于它的应用效果,而不是它看它采用了多么高深的数学方法。

进一步说,对于某个实际问题我们如果能够用初等方法和所谓的高等方法建立了两个模型,而它们的应用效果相差无几的话,那么受人们欢迎并采用的,一定是前者而非后者。

§2.1公平的席位分配设有A 、B 两个单位,各有人数1p 、2p 个,现在要求按人数选出q 个代表召开一次代表会议。

那么怎样分配这q 个席位呢?一般的方法是令:q p p p q 211*1+= q p p p q 212*2+= (2.1)若*1q ,*2q 恰好是两个整数,就以*1q ,*2q 分别作为A ,B 两个单位的席位数,即可以获得一个完全合理的分配方案。

当*1q ,*2q 不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。

首先给出一种自然的想法,也就是通常所执行的方法。

即由(2.1)式计算出的*1q ,*2q ,用][*i i q q =表示*i q 的整数部分。

当*1q -1q >*2q -2q 时,则用1q +1与2q 分别作为A ,B 两个单位的席位数;当*2q -2q >*1q -1q 时,则用1q 与2q +1分别作为A ,B 两个单位的席位数;而当*2q -2q =*1q -1q 时,就只能由A ,B 两个单位协商来确定那多余的一个席位了。

这个方法的优点是简单、方便,并被很多人所接受,同时也容易推广到m (m >2)个单位的席位分配问题。

但是这个分配方案是存在弊病的,它有明显的不合理性。

例1 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。

若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10、6、4个席位。

数学建模实验答案初等模型

数学建模实验答案初等模型

数学建模实验答案初等模型Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】实验02 初等模型(4学时)(第2章初等模型)1.(编程)光盘的数据容量p23~27表1 3种光盘的基本数据CAV光盘:恒定角速度的光盘。

CLV光盘:恒定线速度的光盘。

R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) LCLV2221()R Rdπ-≈CLV光盘的信息容量(MB) CCLV= ρL CLV / (10^6)CLV光盘的影像时间(min) TCLV = CCLV/ ×60)CAV光盘的信息总长度(mm) LCAV222Rd π≈CAV光盘的信息容量(MB) CCAV= ρL CAV / (10^6)CAV光盘的影像时间(min ) TCAV = CCAV/ ×60)(验证、编程)模型求解要求:①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。

程序如下:②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。

★要求①的程序的运行结果:★要求②的程序及其运行结果:(编程)结果分析信道长度LCLV 的精确计算:212R CLVR L dπ=⎰模型给出的是近似值:2221()CLV R R L L dπ-=≈相对误差为:CLV L LLδ-=要求:①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。

分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。

②结果与P26的表2和P27(教材)的结果比较。

[提示]定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。

要用数组d参与计算,可用quadv(用help查看其用法)。

数学建模实验二初等模型实验

数学建模实验二初等模型实验

数学建模实验⼆初等模型实验集美⼤学计算机⼯程学院实验报告课程名称:数学模型班级:计算12 实验成绩:指导教师:付永钢姓名:实验项⽬名称:初等模型试验学号:上机实践⽇期:实验项⽬编号:实验⼆上机实践时间:2014.11⼀、实验⽬的掌握初等模型的建⽴的基本思路和⽅法,并了解其求解过程。

对给定的初等模型问题能够借助Matlab ⼯具进⾏求解。

⼆、实验内容实验 1 ⽤Matlab 验证划艇⽐赛成绩模型的结果,通过数值结果来检验你所得到的模型正确性。

(⾸先要阅读本⽬录中的Matlab 数据拟合和matlab 数据处理的相关材料)实验2 求解汽车刹车距离的模型,⽤Matlab 给出你的求解结果。

验证应该遵循的t 秒准则的标准。

实验3 从教材P56中的第7,13,14题,任选⼀题,建⽴相应的初等模型,并借助matlab 进⾏求解,并给出合理的模型解释。

三、实验使⽤环境WindowsXP 、Matlab6.1四、实验步骤1、划艇⽐赛成绩的模型检验根据推导出的模型公式和数据,对参数βα,进⾏求解βαn t =。

⾸先转换成对数形式:,log 'log n t βα+=其中ααlog '=然后对给定数据进⾏拟合。

代码:n=[1 2 4 8]t=[7.21 6.88 6.32 5.84]lgn=log(n);lgt=log(t);p=polyfit(lgn,lgt,1);alpha=exp(p(2));belta=p(1);x=1:20;y=alpha*x.^belta ;plot(x,y,’c*-‘) ;xlabel(‘Number of Athlete ’);ylabel(‘Time Cost ’);Matlab 拟合函数图像:结果分析:划艇⽐赛模型的结果为t∞n-(1/9).。

在matlab中检验得belta =-0.1035与-(1/9)接近。

因此,模型正确。

2、汽车刹车距离验证代码:function E=fun1(a,x,y)Y=a(1)*x.*x+0.75*x;E=y-Y;%M⽂件结束%⽤lsqnonlin调⽤解决:x=[29.3 44 58.7 73.3 88 102.7 117.3];y=[44 78 124 186 268 372 506];a0=[0.5];options=optimset('lsqnonlin');a=lsqnonlin(@fun1,a0,[],[],options,x,y)%绘图plot(x,y,'o');hold on;x=[0:200];y=a(1)*x.*x+0.75*x;plot(x,y,'-');hold off结果分析:汽车刹车距离求解结果在Matlab的模型如上所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LCLV(1)=quad('2*pi/1.6e-3*sqrt(x.^2+(1.6e-3/(2*pi))^2)',R1,R2);
LCLV(2)=quad('2*pi/0.74e-3*sqrt(x.^2+(0.74e-3/(2*pi))^2)',R1,R2);
LCLV(3)=quad('2*pi/0.32e-3*sqrt(x.^2+(0.32e-3/(2*pi))^2)',R1,R2);
0
1
2
3
4
5
6
7
流量f(m3·h-1)
150.12
115.56
84.96
66.60
68.04
71.64
82.08
132.84
时间t(h)
8
9
10
11
12
13
14
15
流量f(m3·h-1)
185.04
226.80
246.60
250.92
261.00
271.44
273.96
279.00
时间t(h)
16
17ቤተ መጻሕፍቲ ባይዱ
程序如下:
clear;clc;formatcompact;
R1=22.5; R2=58;
d=10^(-3)*[1.6,0.74,0.32]';
rho=[121,387,800]';
LCLV=pi*(R2^2-R1^2)./d;
CCLV=rho.*LCLV/10^6;%从B转换到MB
TCLV=CCLV/(0.62*60);%从秒转换到分
[num2str(round(LCAV)),S,...
num2str(round(CCAV)),S,...
num2str(round(TCAV))]
1.2
信道长度LCLV的精确计算:
模型给出的是近似值:
相对误差为:
要求:
①取R2=58 mm, R1=22.5 mm,d,ρ见表1(题1)。
分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。
参考图形结果:
要求:
①运行问题(1)中的程序。
②编程解决问题(2):实际值与计算值比较(数据比较和和拟合图形)。
★(验证)
模型为:
★(编程)
程序:
n=[1 2 4 8]';
t=[7.21 6.88 6.32 5.84]';
logt=log(t); logn=log(n);
p=polyfit(logn,logt,1);
s=' ';S=[s;s;s];%s为两个空格,S为两列空格
[num2str(round(LCLV)),S,...%其中的量为列向量
num2str(round(CCLV)),S,...
num2str(round(TCLV))]
②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。
L=pi*(R2^2-R1^2)./d;
delta=abs(LCLV-L)./abs(L);
s=' ';S=[s;s;s];
[num2str(round(LCLV)),S,...
num2str(round(L)),S,...
num2str(round(1000*delta)/100)]
运行结果:
2.
800
CAV光盘:恒定角速度的光盘。
CLV光盘:恒定线速度的光盘。
R2=58 mm, R1=22.5 mm,d,ρ见表1。
CLV光盘的信息总长度(mm) LCLV
CLV光盘的信息容量(MB) CCLV=ρLCLV/ (10^6)
CLV光盘的影像时间(min) TCLV= CCLV/ (0.62×60)
beta=p(1);
alfa=exp(p(2));
t2=alfa*n.^beta;
[n,t,t2]
a=0:0.01:10;
t3=alfa*a.^beta;
plot(n,t,'x',a,t3);
数值结果:
图形结果:
3.
表2 (p35)社区一天以小时为单位间隔的生活污水流量(单位:m3/h)
时间t(h)
logt=log(t);logn=log(n);
p=polyfit(logn,logt,1);% polyfit函数使用格式见提示
beta=p(1)
alfa=exp(p(2))
(2)实际值与计算值比较(数据比较和和拟合图形)
参考数据结果:
第1列为桨手人数,第2列为实际比赛平均成绩,第3列为计算比赛平均成绩。


clear;clc;formatcompact;
R1=22.5; R2=58;
d=10^(-3)*[1.6,0.74,0.32]';
rho=[121,387,800]';
LCAV=pi*R2^2./(2*d);
CCAV=rho.*LCAV/10^6;
TCAV=CCAV/(0.62*60);
s=' ';S=[s;s;s];
模型:t=αnβ
其中,t为比赛成绩(时间),n为桨手人数,α和β为参数。
为适合数据拟合,将模型改为:logt=logα+βlogn
桨手人数n
比赛平均成绩t
1
7.21
2
6.88
4
6.32
8
5.84
(1)参数α和β估计
程序如下:
clear;clc;
n=[1 2 4 8];%桨手人数
t=[ 7.21 6.88 6.32 5.84];%比赛平均成绩
CAV光盘的信息总长度(mm) LCAV
CAV光盘的信息容量(MB) CCAV=ρLCAV/ (10^6)
CAV光盘的影像时间(min ) TCAV= CCAV/ (0.62×60)
1.1
要求:
①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。
18
19
20
21
22
23
流量f(m3·h-1)
291.60
302.04
310.68
290.52
281.16
248.40
210.24
②结果与P26的表2和P27(教材)的结果比较。
[提示]
定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。

程序:
R1=22.5;R2=58;
d=[1.6e-3,0.74e-3,0.32e-3]';
LCLV=zeros(3,1);
实验02初等模型(4学时)
(第2章 初等模型)
1.
表1 3种光盘的基本数据
激光器
激光波长/μm
光斑直径/μm
信道间距/mm
(d)
数据线密度/
(B·mm-1)
(ρ)
红外(CD)
0.78
2
1.6×10-3
121
红色(DVD)
0.64
0.92
0.74×10-3
387
蓝色(DVD)
0.41
0.4
0.32×10-3
相关文档
最新文档