物理与人类_量子力学应用举例汇总
什么叫量子力学举例说明

什么叫量子力学举例说明量子力学是一种描述微观粒子行为的科学理论,是20世纪物理学的重要分支。
在量子力学中,粒子的行为被描述为波函数的叠加和交互作用。
量子力学的一些基本原理包括波粒二象性、量子叠加原理、量子纠缠和测量不确定性原理等。
下面的例子将帮助阐述量子力学的一些关键概念。
例子1:电子的波粒二象性一个典型的量子力学例子是电子的波粒二象性。
根据经典物理学,电子应该是粒子,具有确定的位置和动量。
然而,实验结果表明,电子也具有波动性质。
例如,在双缝实验中,如果将电子通过一个缝隙投射到屏幕上,它们将形成干涉图样,显示出波的干涉效应。
这表明电子具有波的性质。
然而,当电子通过逐个排列的狭缝时,它们在屏幕上形成的痕迹是逐个狭缝的位置的集合,显示出粒子的特性。
这个例子表明电子可以在一些方面同时表现出波动性和粒子性,具有波粒二象性。
例子2:量子叠加和测量不确定性原理量子叠加是指一个量子系统的状态可以同时是多个可能状态之一,直到被观测或测量。
这是量子力学的核心原理之一、例如,假设有一个量子系统,它可以处于两个不同的状态,分别表示为“0”和“1”。
在经典物理学中,这个系统的状态只能是“0”或“1”之一、然而,在量子力学中,该系统可以处于“0”和“1”之间的叠加态,表示为,ψ⟩=a,0⟩+b,1⟩,其中a和b为复数,且,a,^2+,b,^2=1、只有在进行测量时,系统才会展现出具体的状态。
对于测量不确定性原理,考虑一个例子,一个粒子的位置和动量被称为共轭变量,根据量子力学的不确定性原理,同时精确测量一个粒子的位置和动量是不可能的。
假设我们想要精确测量一个粒子的位置,我们必须用一个非常小的光束照射它,这样我们可以获得粒子的位置信息。
然而,这样的测量会显著地改变粒子的动量,使得我们无法同时获得位置和动量的准确值。
因此,根据测量不确定性原理,我们只能以一定的不确定度同时测量这两个变量。
例子3:量子纠缠量子纠缠是量子力学中的一个奇特现象,描述了两个或多个粒子之间的相互依赖性。
量子力学通俗易懂的例子

量子力学通俗易懂的例子前言量子力学是一门复杂的物理学,对于一般人来说,往往难以理解。
但了解量子力学背后的思想,我们可以利用一些简单的例子来帮助我们更好地理解这一理论。
在本文中,我们将通过三个例子来演示量子力学的一些基本概念,包括倒置原子,量子纠缠和量子跳跃等。
一、倒置原子原子是量子力学的最小粒子。
当这些原子处于一定的能量水平时,会发生倒置,即原子的电子由原来的挥着态转变到另一个能量状态。
这是因为原子的能量只能处于有限的几个状态中。
我们可以用一个简单的实验来说明这种倒置现象。
首先,我们准备两个杯子,每个杯子中放入一种不同形状的小石头(如圆块和尖头)。
然后,我们将这两个杯子放入一个封闭的容器中,装满水,使水涨到两杯子的底部。
现在,我们可以看到,小石头像原子一样,处于挥着态,不再受力而静止不动。
当我们给这个容器倒入一些水时,原子有可能发生无穷小的力,这些力将把小石头从它原来的挥着态转变到另一个能量状态--另一种形状的石头将会上升到水面上,而另一种石头则会下沉到底部。
就好像量子力学里的倒置一样,由于原子能量只能处于有限的几个状态中,电子会从挥着态转变到另一个能量状态。
二、量子纠缠量子纠缠是指两个或更多的量子系统在处于远程关系时,他们的性质会发生相互联系的情况。
这是因为它们具有共享的基态,无论哪个量子系统被测量,另一个量子系统也会有所反应。
我们把纠缠用一个简单的例子来说明,首先我们准备两只瓶子,然后把同样的糖果放入瓶子里。
现在,我们将糖果放入一个封闭的容器中,装满水,然后把容器放置在活动的地面上来模拟量子系统的运动。
当我们把容器放在活动的地面上时,水里的两个糖果被纠缠起来。
当我们拿起一个糖果时,另一个糖果也会被拿起来,而且它们一定同时被拿起来。
这就是所谓的量子纠缠,就好像量子力学中的两个量子系统在远程关系时,它们的性质会发生相互联系的情况一样。
三、量子跳跃量子跳跃是指量子系统从一个能量水平跃过去另一个能量水平的瞬间过程。
量子力学十大应用

量子力学十大应用量子力学是物理学中的重要分支,它描述了微观粒子行为的规律。
在过去的几十年中,量子力学已经广泛应用于各个领域,带来了许多重大的突破和创新。
本文将介绍量子力学的十大应用,以生动、全面、有指导意义的方式。
一、量子计算机量子计算机利用量子力学的特性进行运算,能够在某些问题上实现超强的计算能力。
相对于经典计算机,量子计算机能够并行处理更多的计算任务,解决复杂的问题,如密码学、化学反应和模拟量子系统等。
二、量子通信量子通信利用量子力学的量子纠缠和量子隐形传态原理,实现了无法被破解的通信加密方式。
这种加密方式能够保护通信的安全性,广泛应用于银行、军事和政府等领域。
三、量子加速器量子加速器利用量子力学中的束缚态和散射态,加速带电粒子。
这种加速器相对于传统的加速器更加高效和紧凑,可以广泛应用于核物理研究、医学影像和材料科学等领域。
四、量子传感器量子传感器利用量子力学的相干性和干涉现象,实现了超高灵敏度的测量。
这种传感器可以应用于精密测量、地震监测、生物传感和环境监测等领域。
五、量子成像量子成像利用量子力学的纠缠和干涉原理,实现了超高分辨率的成像。
这种成像技术可以应用于医学影像、天文学观测和材料表征等领域,提高图像的清晰度和信息获取能力。
六、量子仿真量子仿真利用量子力学的量子叠加态和量子纠缠,模拟具有复杂动力学过程的量子系统。
这种仿真技术可以应用于材料设计、催化剂开发和药物研发等领域,加速科学研究和工程创新。
七、量子传输量子传输利用量子力学的量子隐形传态和量子纠缠原理,实现了超远距离的信息传输。
这种传输方式可以用于建立全球量子网络,实现安全的通信和分发量子数据。
八、量子光学量子光学利用量子力学的光子波粒二象性和光子纠缠,研究光的量子特性。
这种光学技术可以应用于量子计算、量子通信和量子成像等领域,推动光学科学的发展。
九、量子传感量子传感利用量子力学的精确测量和相干性,实现了超高灵敏度的测量。
这种传感技术可以应用于加速度计、陀螺仪和磁力计等领域,提高测量的准确性和敏感度。
物理与人类文明章节测试参考答案

物理与人类文明章节测试参考答案、解答及统计详情(四——十四章)物理与人类文明章节测试参考答案、解答及统计详情(四—十四章)奇妙的量子世界(一) (1)奇妙的量子世界(二) (4)奇妙的量子世界(三) (7)量子力学应用举例(一) (10)量子力学应用举例(七) (28)量子力学应用举例(八) (31)物理学与科学精神(一) (34)物理学与科学精神(二) (36)物理、文明、物理与文明(四) (54)相对论与现代时空观(一) (56)相对论与现代时空观(二) (59)相对论与现代时空观(三) (63)新引力理论广义相对论(二) (82)新引力理论广义相对论(三) (84)新引力理论广义相对论(四) (88)新引力理论广义相对论(五) (91)原子能的利用(三) (115)宇宙的起源与演化(一) (118)宇宙的起源与演化(二) (121)原子能的利用(三) (125)物理学的未来(一) (142)物理学的未来(二) (145)物理学的未来(三) (147)物理学的未来(四) (150)奇妙的量子世界(一)120世纪已经把物理学建构完成了,以后不可能取得突破了。
正确答案:×正确:245 人错误:19 人查看统计详情2狭义相对论诞生的时间是:()A、1915年B、1911年C、1905年D、1900年正确答案:C正确:220 人错误:44 人查看统计详情3原子行星模型是由哪位科学家提出的:()A、汤姆逊B、爱因斯坦C、居里夫人D、卢瑟福正确答案:D正确:219 人错误:45 人查看统计详情4提出电子轨道固定原子模型的科学家是:()A、薛定谔B、狄拉克C、海森堡D、玻尔正确答案:D正确:223 人错误:41 人查看统计详情5热力学第二定律解决的是演化的时序的问题。
正确答案:√正确:221 人错误:43 人查看统计详情6现代科技的两大支柱什么?A、光学和相对论B、量子力学和相对论C、量子力学和光学D、光学和波动学正确答案:B正确:243 人错误:21 人查看统计详情7激光是在20世纪什么时候正式诞生的?A、60年代B、50年代C、40年代D、30年代正确答案:A正确:215 人错误:49 人查看统计详情8物理学中的“巨磁阻效应,原子激光”等重大突破都是在1900年到1909年之间完成的。
量子力学原理及其在现代科技上的应用举例

量子力学原理及其在现代科技上的应用举例量子力学是研究微观领域中最基本的物理定律之一,它描述了微粒在微观尺度上的行为。
自从量子力学的提出以来,它的应用深刻地影响了现代科技的发展,使我们能够实现一些以前无法想象的创新。
本文将简要介绍量子力学的原理,并探讨其在现代科技领域的应用。
量子力学最核心的概念是量子态和量子叠加原理。
根据量子力学原理,物质粒子可以同时处于多个状态,称为量子叠加态。
只有当我们对它进行观测时,才会结束叠加态并得到一个确定的状态。
这个观测结果的概率与不同状态的叠加系数的平方成比例。
这种不确定性和概率性质是传统物理学所不具备的。
量子力学还包括了量子纠缠、测量不确定性原理、波粒二象性等重要概念。
量子力学的应用之一是在通信领域。
量子力学允许我们利用量子纠缠现象实现安全的量子通信,即量子密钥分发。
传统的加密方法可以被破解,因为使用的是预先共享的密钥,而安全的量子通信可以实现在传输过程中创建一个安全的密钥。
这是通过使用量子纠缠对两个被通信方之间的传输信息进行加密。
由于量子纠缠的特殊性质,如果有人试图拦截通信并对其进行观测,纠缠态会被破坏,并且通信双方可以意识到这个干扰,从而保证了通信的安全性。
量子力学还在计算机科学领域具有巨大的潜力。
经典计算机使用二进制位(比特)来存储和处理信息,而量子计算机利用了量子位(量子比特或qubit)。
量子位不仅可以表示0和1这两种状态,还可以处于叠加态,即同时处于0和1的状态。
这个特性使得量子计算机具备并行计算的能力,能够在一次计算中处理多个可能的结果,从而加快计算速度。
例如,量子计算机可以在多项式时间内解决经典计算机无法解决的复杂数学问题,如因子分解和离散对数问题。
除此之外,量子力学还在材料科学、光学、生物学等领域展示出了潜力。
举例来说,量子力学原理被用于开发新型材料,如碳纳米管和石墨烯等,这些材料具有独特的电学和光学性质,对电子器件和传感器的发展具有重要意义。
在光学领域,量子力学被应用于量子光学,使得可以实现精密的光学测量和通信技术。
量子论在生活中的应用

量子论在生活中的应用
量子理论是描述微观世界中粒子行为的物理理论,尽管量子理论最初是在物理学领域中提出和发展的,但它在科学和技术领域的应用已经逐渐拓展到其他领域,包括生活中的多个方面。
以下是一些量子理论在生活中的应用:
1. 信息技术和通信领域:
•量子计算:量子计算利用量子位(量子比特)的特殊性质,可提供比传统计算更高效、更快速的计算能力。
这对于加密、模拟和数据处理等领域有重要应用。
•量子通信:量子密码学技术利用量子纠缠和量子态的不可伪造性来实现更安全的通信,保障信息传输的隐私性和安全性。
2. 医疗和生物科学:
•核磁共振成像(MRI):MRI利用量子物理学的原理来获取人体内部结构的影像,提供了一种无创、高分辨率的诊断工具。
•药物开发:量子力学模拟可用于预测分子相互作用、药物构效关系和分子设计,有助于加速新药物的开发和研究。
3. 材料科学和能源领域:
•纳米技术:量子效应在纳米尺度下的应用有助于开发新型材料和纳米结构,改善材料性能和生产技术。
•太阳能电池:量子点太阳能电池利用量子效应来改进太阳能转换效率,提高光伏电池的性能。
4. 其他领域:
•量子传感器:利用量子效应,可以开发更精确和灵敏的传感器,用于测量时间、距离、光谱和场强等。
•量子艺术:一些艺术家也将量子物理学的概念融入到创作中,通过艺术作品展现量子世界的抽象和奇异性。
虽然量子理论在日常生活中的直接应用可能不太明显,但它的发展和应用已经深刻地影响了科学、技术和工程领域的许多方面,为未来的创新和发展提供了巨大的潜力。
j量子力学在实际生活中的应用
量子力学在实际生活中的应用引言量子力学是描述微观物理世界的重要理论,它给出了微观粒子行为的概率描述,而非确定性的经典力学。
量子力学的发展和应用,极大地推动了科学技术的进步和人类社会的发展。
本文将详细描述量子力学在实际生活中的应用情况,包括应用背景、应用过程和应用效果等。
量子通信1.应用背景–传统的通信方式受到了信息波束扩散、窃听和黑客攻击等问题的限制。
–量子力学提供了安全的通信手段,通过量子纠缠和量子隐形传态,可以实现信息的安全传输。
2.应用过程–量子密钥分发:量子力学的纠缠态可实现信息的安全传输和加密。
–量子远程传态:将一个量子态传输到远距离的地点,实现分布式量子网络。
3.应用效果–量子通信比传统通信更安全,可以有效抵御窃听和黑客攻击。
–量子通信的发展给云计算、物联网等领域带来了巨大的发展空间。
量子计算1.应用背景–传统计算机在面对某些复杂问题时,往往需要耗费大量时间和资源。
–量子计算利用量子态的并行运算特性,能够快速解决某些复杂问题。
2.应用过程–量子比特:量子计算机利用量子比特(qubit)进行计算,其具有超级叠加态和纠缠态的特性。
–量子门操作:通过对量子比特进行幺正变换实现量子计算,如Hadamard门、CNOT门等。
–量子算法:例如Shor算法可以实现快速分解大整数,Grover算法可以实现快速搜索。
3.应用效果–量子计算机的运算速度远超过传统计算机,能够快速解决某些复杂问题,如因子分解、优化问题等。
–量子计算的发展有望在化学模拟、基因测序、人工智能等领域带来革命性的突破。
量子传感1.应用背景–传统的传感技术在测量精度和灵敏度上有一定局限性。
–量子传感利用量子态的特性,能够实现更高精度和更快速的测量。
2.应用过程–量子测量:利用量子纠缠和量子干涉等现象,提高测量的灵敏度和精确度。
–量子显微镜:利用单光子状况,实现超分辨显微镜技术。
–量子钟:利用原子的量子态,实现更稳定和准确的时间测量。
日常生活中的量子物理学实例
日常生活中的量子物理学实例量子力学是一门公认的与其它任何科学不一样、相当奇特的科学,它描写微观世界的事物。
在许多人看来,抽象和违反直觉的的量子物理是可望而不可及。
实际上许多量子物理学的实例就在你身边!下面仅举几个日常生活中的量子物理学实例,其中有的往往并没有被意识到是量子力学的事例。
烧烤很多人喜欢吃烧烤,熊熊的烧烤炭火燃烧,加热发着红光而烤熟东西。
炽热的物体会发光是一种人们司空见惯的现象:加热物体时会先发出红色,温度再高时变成黄色,然后温度再高时变成白色。
具体的颜色不取决于是什么物质,只要是足够地热就够了,也不取决于如何加热,仅取决于温度。
将一块玻璃和一块铁放在相同的高温下,尽管它们的物理性质非常不同,但它们发出完全相同的光谱。
几百年来科学家们一直想认知这是为什么。
直到1900年,量子力学的奠基人之一普朗克正确地解释了这一现象。
他指出,光只能以离散的能量块,即以一个小小的常数乘以频率的整数倍地发射,从而提出了“量子“的假设,量子力学因此得名,这个小小的常数被称为普朗克常数,揭开了量子力学的序幕。
有人可能会感到惊讶,在烧烤里竟还隐含着量子力学的起源。
荧光灯无论是夜晚还是白天,你到处都可以看到省电的荧光灯;你现在计算机或手机屏幕上看信息,所使用的光是荧光的;你打开平板电视,所使用的是被称为发光二极管的LED荧光的背光显示器。
老式的白炽灯泡通过使一根电线发热到足以发出明亮的白光的方式来发光,就如上面烧烤发光一样,所以白炽灯泡会很热。
但荧光灯比白炽灯更高效,因为能量主要直接参与发光,而不是加热灯丝。
因此,荧光灯的热量更低、能源效率更高且使用寿命更长。
荧光灯正是基于量子物理原理。
早在1800年代初期,物理学家注意到元素周期表中的每个元素都有一个独特的光谱:如果原子被加热后成蒸气发散,它们会以少量离散频率发光,每种元素的模式都不同。
这些“光谱线”被迅速用来识别未知物质的成分,甚至发现先前未知元素的存在,例如,氦首先被检测为来自太阳光的先前未知光谱线。
量子力学在物理学其他领域中的应用
量子力学在物理学其他领域中的应用引言:量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。
自从20世纪初量子力学的诞生以来,它已经在物理学的许多领域中得到了广泛的应用。
本文将重点介绍量子力学在几个重要的物理学领域中的应用,包括量子计算、量子通信和量子传感。
一、量子计算量子计算是利用量子力学原理进行计算的一种新型计算方法。
相比于传统的二进制计算,量子计算利用了量子叠加和量子纠缠的特性,可以在同一时间进行多个计算,从而大大提高计算速度。
例如,量子计算的一个重要应用是在密码学领域中的破解密码。
传统的计算机需要耗费大量的时间和资源来破解复杂的密码,而量子计算机可以利用量子并行性质,在较短的时间内完成破解。
此外,量子计算还被广泛应用于模拟量子系统、优化问题和量子化学等领域。
二、量子通信量子通信是一种基于量子力学原理的安全通信方式。
传统的通信方式容易受到黑客攻击和信息窃取的威胁,而量子通信利用了量子纠缠和量子隐形传态的特性,可以实现绝对安全的通信。
量子通信的一个重要应用是量子密钥分发。
在传统的密钥分发中,密钥需要通过公开信道传输,容易被黑客截获。
而量子密钥分发利用了量子纠缠的特性,可以实现密钥的安全传输,从而保证通信的安全性。
此外,量子通信还被广泛应用于量子远程控制和量子网络等领域。
三、量子传感量子传感是利用量子力学原理进行精密测量的一种新型传感技术。
传统的传感技术受到量子力学的限制,无法达到更高的测量精度。
而量子传感利用了量子叠加和量子干涉的特性,可以实现超高灵敏度的测量。
例如,量子传感在地理勘探中的应用。
传统的地理勘探技术需要进行大量的勘探工作和数据处理,而量子传感可以通过测量微弱的地磁场变化,实现对地下资源的高精度探测。
此外,量子传感还被广泛应用于生物医学、环境监测和无损检测等领域。
结论:量子力学作为一门重要的物理学理论,已经在物理学的许多领域中得到了广泛的应用。
量子计算、量子通信和量子传感等领域的发展,不仅推动了物理学的进步,也为其他学科的发展提供了新的思路和方法。
大学物理中的量子力学应用案例分析
大学物理中的量子力学应用案例分析量子力学是一门研究微观世界中原子、分子和基本粒子行为的物理学科。
在大学物理课程中,学习量子力学的应用是不可或缺的一部分。
本文将通过分析几个量子力学应用案例,展示这门学科在现实生活中的重要作用。
以下是三个量子力学应用案例的分析。
案例一:原子能级和能带理论在半导体材料中的应用量子力学中的原子能级和能带理论对于解释半导体材料行为起着重要作用。
半导体是一种在特定条件下既能导电又能绝缘的材料。
在半导体中,原子或分子的能级会形成能带结构,这对于电子行为具有关键性影响。
通过量子力学的原子能级理论,我们可以解释半导体中电子的能量分布和导电性质。
当外界施加电压或温度变化时,电子会从一个能带跃迁到另一个能带,导致电导率的变化。
这种现象被广泛应用于半导体器件,如二极管、晶体管和集成电路等。
案例二:量子隧穿效应在扫描隧道显微镜中的应用量子隧穿效应是一种经典物理学无法解释的量子现象。
根据量子力学,当微观粒子遇到高于其能量的势垒时,尽管经典上它们应无法通过,但量子粒子却存在隧穿的可能性。
扫描隧道显微镜是一种基于量子隧穿效应原理的成像技术。
通过将探测器和样品之间保持纳米级的距离,电子可以通过量子隧穿效应穿越势垒,形成局部电流。
这种局部电流的变化可以被测量,并用于生成显微镜图像。
扫描隧道显微镜在材料科学、生物科学和纳米技术领域发挥着重要作用。
案例三:量子纠缠在量子通信中的应用量子纠缠是量子力学中最为神奇和难以理解的现象之一。
它描述了当两个或多个粒子发生纠缠后,它们之间的状态将无论距离多远都保持相关。
这种关联可以用于实现安全的量子通信。
量子通信是一种基于量子纠缠的加密技术。
通过利用量子纠缠的特性,发送方可以将信息编码为纠缠态,并将其发送给接收方。
由于量子纠缠的非常规属性,任何对纠缠态的测量都会立即改变其状态。
因此,一旦有人试图窃取信息,量子通信系统会立即发出警报。
这使得量子通信成为一种安全可靠的通信方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、氢原子的电子轨道的半径是多大? (2.00分)
• A.0.50?
•.
• C.0.63?
• D.0.60?
2、光缆的原理是什么? (2.00分)
• A.光的衍射
• B.光的折射
• C.光的干涉
•
3、人类第一支激光器诞生是在哪一年: (2.00分)
• A.1956年
•.1960年
• C.1976年
• D.1990年
4、海森堡测不准原理是指对于哪种粒子测不准? (2.00分)
• A.一群电子
•
• C.单个粒子
• D.分子
正确答案:C
5、在激光诞生之前作为长度基准的单色性最好的是什么? (2.00分)
• A.氩灯
•
• C.氙灯
• D.氦灯
6、超导是指电子在运动的过程中什么保持不变? (2.00分)
• A.动量
•
• C.速率
• D.振幅
正确答案: A
7、曾作为长度基准的单色性最好的氪灯(Kr86)的谱线宽度为: (2.00分)
• A.6544
• B.6328
•.6057
• D.6133
8、人类历史上第一次触及到了宇宙的一个极限原理是什么? (2.00分)
• A.波粒二象性
•
• C.电磁感应
• D.测不准原理
正确答案:D
9、Tc超过多少,首次突破液氮温度77 K: (2.00分)
• A.23K
• B.50K
•.
• D.100K
10、将超导温度几乎同时实现90K的实验室分别是哪几个国家的? (2.00分)
• A.中国,美国,英国
• B.中国、英国、日本
•
• D.中国,荷兰,英国
11、常用氦氖激光器所发出的光颜色是: (2.00分)
• A.蓝色
• B.绿色
• C.黄色
•
12、人类第一支激光器诞生于哪一年? (2.00分)
• B.1950年
• C.1970年
• D.1980年
13、超导体的特征包括:() (2.00分)
• A.约瑟夫森效应
• B.迈斯特效应
• C.零电阻
•D.以上说法都正确
14、第一类超导体和第二类超导体的差异是:() (2.00分)
• A.临界温度差异显著
• B.磁力线是否能够穿透超导体
• C.电阻差异很大
•D.以上说法都正确
正确答案:B
15、常用氦氖激光器所发波长: (2.00分)
• A.6544
•.6328
• C.6057
• D.6133
16、现代科技的支柱除了量子力学还有哪门学科? (2.00分)
• B.宇宙大爆炸
• C.牛顿力学
• D.微积分
17、我们一般生活中的铜线中一平方毫米内有多少安培? (2.00分)
• A.3000
• B.300
• C.30
•D.3
18、下列哪一项不能说明成就和环境的关系:() (2.00分)
• A.曹雪芹与《红楼梦》
• B.贝多芬与《命运交响曲》
• C.《二泉映月》的创作
•D.中国虽然条件艰苦,但具备发明激光的条件,却没有成为最先发明激光国家19、牛顿力学的能量和动量守恒定理被什么所打破? (2.00分)
• B.电磁学
• C.工程力学
• D.物理化学
20、钚可以通过中子轰击什么来获得? (2.00分)
• A.U235
•.
• C.U236
• D.U237
21、贝多芬在耳聋之后创作的交响乐是什么? (2.00分)
• A.《致爱丽丝》
•
• C.《征服天堂》
• D.《第七交响曲》
22、“受激辐射”的预言是由下列哪位科学家提出的:() (2.00分)
• A.波尔兹曼
• B.开尔文
•
• D.普朗克
23、激光是由哪个国家首先制备成功的? (2.00分)
• B.英国
• C.法国
• D.德国
24、激光相干长度比普通光长大概多少倍? (2.00分)
• A.500倍
•B.1000倍
• C.1500倍
• D.2000倍
25、在物理学科学发展中什么是第一位的? (2.00分)
•
• B.成就大小
• C.思想
• D.导师水平
正确答案:C
26、超导的发现者是:() (2.00分)
• B.普利高津
• C.普利策
• D.邓稼先
27、高能级的电子向低能级跃迁会发生什么现象。
(2.00分)
• A.吸收光子
• B.发射电子
• C.吸收电子
• D.发射光子
•未作答!
正确答案:D
28、原子中的每一个量子状态只能容纳几颗电子: (2.00分)
• B.2
• C.1
• D.随意
正确答案:C
29、元素周期表中有多少种元素超导? (2.00分)
• A.20
• B.30
• C.40
•.50
30、1986年到1911年Tc上升的速率是: (2.00分)
• B.01.35K/年
• C.0.15K/年
• D.0.45K/年
判断题(40分)
1、我国保存的最早的拱桥距今有1400年。
(2.00分)
是否
2、目前,已经可以实现常温下的超导了。
(2.00分)
是否
3、磁场可以诱导电场,但是电场不能诱导磁场。
(2.00分)
是否
4、激光的方向性要比手电筒的差。
(2.00分)
是否
5、激光的工作物质不包括三能级系统。
(2.00分)
是否
6、牛顿的因果律叫做一一对应的决定论的因果律。
(2.00分)
是否
7、第一类超导体超导内部磁场B不等于0 (2.00分)
是否
8、单科微观粒子的运动也符合能量、动量守恒定理。
(2.00分)
是否
9、中国人强调写意,欧洲人强调写实。
(2.00分)
是否
10、当温度T降到Tc以下,通过各自和原子的相互作用,电子与电子之间可形成具有吸引力的电子对(Cooper pairs)。
导体就会变成超导体。
(2.00分)
正确答案:是
11、常温下,大部分粒子处于基态,很少粒子处于激发态和亚稳态。
(2.00分)
是否
12、条件好坏与成就大小之间虽然有重要关系,但没有必然关系。
(2.00分)
是否
13、超导体在任何温度下的电阻都为零。
(2.00分)
是否
14、量子力学和牛顿力学在不确定问题上是不矛盾的。
(2.00分)
正确答案:是
15、激光的相干长度比普通光长1000倍左右或以上。
(2.00分)
是否
16、激光有些光学指标不是所有光源中最高的。
(2.00分)
正确答案否
17、常温下,原子大部分都处在激发态。
(2.00分)
是否
18、德布罗意关系:谱线宽度越小,动量不确定性越大。
(2.00分)
正确答案:否
19、第一类超导体:超导内部磁场B=0。
(2.00分)
是否
20、相对于普通光,激光容易发生衍射。
(2.00分)
是。