量子力学复习题

合集下载

量子力学复习题附答案

量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。

2. 描述态叠加原理的内容。

答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。

系统的态函数可以表示为这些可能状态的叠加。

3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。

4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。

5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。

6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。

7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。

8. 描述量子力学中的隧道效应。

答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。

这是量子力学中粒子波性质的体现。

9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。

10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。

量子力学复习题

量子力学复习题

3.6 算符与力学量的关系(续5)
Chap.3 The Dynamical variable in Quantum Mechanism
F Cn n C d
2 2 n
EX1 求在能量本征态 n ( x) 量和动能的平均值 Solve
L * n
2 n x sin( ) 下,动 L L
ˆx, p ˆy, p ˆ z 彼此对易,它们有共同的 Ex.1 动量算符 p
本征函数完备系 i pr 3 2 (r ) (2) p e ( r ) 描述的状态中, px , p y , pz 同时有确定值。 在 p
ˆ ,L ˆ2 ] 0 ˆ2 和 L ˆ 对易,即 [ L Ex.2 角动量算符 L z z
( 2a 0 )
2
e

e
i pr cos
r 2 sin drdd

2
(2a0 )
2i
3
2
e
0 1 2
1
r a0
e

i pr cos
r drd cos
2 i pr

p (2a0 )
3
re
0

r a0
[e

i pr
e
]dr
Chap.3 The Dynamical variable in Quantum Mechanism
思考题 (1)若两个厄米算符有共同本征态,它们是否就彼 此对易。 (2)若两个厄米算符不对易,是否一定就没有共同 本征态。 (3)若两个厄米算符对易,是否在所有态下它们都 同时具有确定值。 ˆ, B ˆ ] =常数,A ˆ 能否有共同本征态。 ˆ 和B (4)若 [ A ˆ 和L ˆ (5)角动量分量 L 能否有共同本征态。 x y

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

《量子力学》复习题参考答案

《量子力学》复习题参考答案

1 《量子力学》练习题一练习题第1套一、基本概念及简要回答1. p - 和 p- 是否相等?为什么?2.判定下列符号中,哪些是算符?哪些是数?哪些是矢量? φψ; )()(t t φψ; w v u λ; w Fu ˆ。

3.波函数的导数是否一定要连续?举例说明。

4.为什么既不能把ψ波理解为‘粒子的某种实际结构,即把波包看作粒子’, 也不把ψ波理解为‘由大量粒子分布于空间而形成的波,即把波看作由粒子构成的’?5. 设ˆˆA A +=,ˆˆB B +=,ˆˆ0A B ⎡⎤≠⎣⎦,。

试判断下列算符哪些是厄米算符,哪些不是。

(1)1ˆˆˆˆˆ()2F AB BA i=- ; (2)ˆˆˆG AB = ; (3)ˆˆˆC A iB =+ ; (4)ˆˆˆD A B =-。

二.质量为m 的粒子处于一维谐振子势场()()0,2121>=k kx x V 的基态, 若弹性系数k 突然变成k 2,即势场变成()22kx x V =,随即测量粒子的能量,求发现粒子处于新势场()x V 2基态的几率;(只列出详细的计算公式即可)三.已知二维谐振子的哈密顿算符为()22220212ˆˆy x p H ++=μωμ,在对其施加微扰xy Wˆλ-=后,利用微扰论求W H H ˆˆˆ0+=第一激发态能量至一级修正。

提示:⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ,其中, μωα=,而n ϕ为线谐振子的第n 个本征矢。

四. 已知ˆˆ[,]1αβ=,求证 1ˆˆˆˆˆn n n n αββαβ--= 五. 一个三维运动的粒子处于束缚态,其定态波函数的空间部分是实函数,求此态中的动量平均值。

六. 质量为m 的粒子作一维自由运动,如果粒子处于()kx A x 2sin =ψ的状态 上,求其动量pˆ与动能T ˆ的几率分布及平均值。

量子力学复习题及答案

量子力学复习题及答案

量子力学复习题及答案填空题1、量子力学体系中,任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ 展开:()()n n nx a x ψψ=∑,则展开式系数()()*n n a x x dx ψψ=⎰。

2、不考虑电子的自旋,氢原子能级的简并度是 n 2___。

3、测量一自由电子的自旋角动量的X 分量,其测量值为2/ ,接着测量其Z 分量,则得到的值为2/ 的概率为 1/2 。

4、坐标表象中,动量的本征函数是__()()3/21exp 2i r p r ψπ⎛⎫=⎪⎝⎭_;动量表象中,坐标的本征函数是_____()()3/21exp 2i r p r ψπ⎛⎫=- ⎪⎝⎭____。

5、由两个全同粒子组成的体系,一个处在单粒子态1ϕ,另一个处在单粒子态2ϕ。

若粒子是波色子,则体系的波函数是_______)]1()2()2()1([212121ϕϕϕϕ+______;若粒子是费米子,则体系的波函数是____)]1()2()2()1([212121ϕϕϕϕ-____。

6、波函数满足的三个基本条件是: _单值 _; _有限__;__连续__。

7、设粒子的波函数为),(t r ψ,则相应的概率密度 ρ =_______ ()2,r t ψ ____;概率流密度j =__ ()()()()()**,,,,2i r t r t r t r t m ψψψψ-∇-∇_______。

8、角动量ˆx L 与ˆy L 的海森堡不确定关系为_____()()22224x y z L L L ∆∆≥______。

9、对于两电子体系的总自旋S 及其各分量有2,x S S ⎡⎤⎣⎦= 0 ,,x y S S ⎡⎤⎣⎦= z i S 。

10、全同玻色子的波函数应为 对称化 波函数,全同费米子的波函数应为 反对称化 波函数,全同费米子满足 泡利不相容 原理。

11、在球坐标中,粒子的波函数为),,(ϕθψr ,则在球壳()dr r r +,中找到粒子的 概率是_____⎰⎰]sin |),,(|22ϕθθϕθψd d r dr r ___;在()ϕθ,方向的立体角Ωd 中找。

量子力学复习习题

量子力学复习习题

量⼦⼒学复习习题⼀、选择题(每⼩题3分,共15分)1.⿊体辐射中的紫外灾难表明:CA. ⿊体在紫外线部分辐射⽆限⼤的能量;B. ⿊体在紫外线部分不辐射能量;C.经典电磁场理论不适⽤于⿊体辐射公式;D.⿊体辐射在紫外线部分才适⽤于经典电磁场理论。

2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒⼦的⼏率密度;B. Ψ归⼀化后,ψψ*代表微观粒⼦出现的⼏率密度;C. Ψ⼀定是实数;D. Ψ⼀定不连续。

3.对于⼀维的薛定谔⽅程,如果Ψ是该⽅程的⼀个解,则:A A. *ψ⼀定也是该⽅程的⼀个解;B. *ψ⼀定不是该⽅程的解;C. Ψ与*ψ⼀定等价;D.⽆任何结论。

4.与空间平移对称性相对应的是:BA. 能量守恒;B.动量守恒;C.⾓动量守恒;D.宇称守恒。

5.如果算符∧A、∧B对易,且∧Aψ=Aψ,则:BA. ψ⼀定不是∧B的本征态;B. ψ⼀定是∧B的本征态;C. *ψ⼀定是∧B的本征态;D. ∣Ψ∣⼀定是∧B的本征态。

1、量⼦⼒学只适应于CA.宏观物体B.微观物体C.宏观物体和微观物体D.⾼速物体2、算符F的表象是指CA.算符F是厄密算符B.算符F的本征态构成正交归⼀的完备集C.算符F是⼳正算符D.算符F的本征值是实数3、中⼼⼒场中体系守恒量有BA.只有能量B.能量和⾓动量C.只有⾓动量D.动量和⾓动量4、Pauli算符的x分量的平⽅2σ的本征值为(B)A 0B 1C iD 2i5、证明电⼦具有⾃旋的实验是AA.史特恩—盖拉赫实验B.电⼦的双缝实验C.⿊体辐射实验D.光电效应实验1、量⼦⼒学只适应于CA.宏观物体B.微观物体C.宏观物体和微观物体D.⾼速物体2、在与时间有关的微扰理论问题中,体系的哈密顿算符由两部分组成,即()H t H H=+,,其中H和H,应满⾜的条件是(B)AH与时间⽆关, H,与时间⽆关B 0H与时间⽆关, H,与时间有关CH与时间有关, H,与时间有关D 0H与时间有关, H,与时间⽆关3、⾃旋量⼦数S的值为(D )A 1/4B 3/4C /2D 1/25、证明电⼦具有⾃旋的实验是AA.史特恩—盖拉赫实验B.电⼦的双缝实验C.⿊体辐射实验D.光电效应实验⼆、简答(每⼩题5分,共15分)1. 什么叫光电效应?光的照射下,⾦属中的电⼦吸收光能⽽逸出⾦属表⾯的现象。

量子力学复习题

量⼦⼒学复习题量⼦⼒学复习题(2013)⼀、填空题1. 在空间发现粒⼦的概率密度为_________;概率流密度为_______________。

2. 波尔的量⼦化条件为。

3. 坐标和动量的测不准关系是___________________________。

4. 德布罗意关系为。

5. 对氢原⼦,不考虑电⼦的⾃旋,能级的简并度为________________,考虑⾃旋但不考虑⾃旋与轨道⾓动量的耦合时,能级的简并度为________________,如再考虑⾃旋与轨道⾓动量的耦合,能级的简并度为__________________。

6. ⽤来解释光电效应的爱因斯坦公式为。

7.σ为泡利算符,2σ= ,2,z σσ??=?? ,,x y σσ?= 。

8. 波函数的统计解释为。

9. 隧道效应是指__________________________________。

10. 波函数的标准化条件为。

11. ()(,)nlm nl lm R r Y ψθ?=为氢原⼦波函数,,,n l m 的取值范围为。

12. 表⽰⼒学量的算符应满⾜的两个性质是。

13. 乌伦贝克和哥德斯密脱关于⾃旋的两个基本假设是 _____________________。

14. 厄⽶算符的本征函数具有,其本征值为,不同本征值对应的本征函数。

15.[],x x p = ,,y x L L ??=?? ,[],x L y = 。

16. 在z σ表象中,x σ的矩阵表⽰为,x σ的本征值为,对应的本征⽮为。

17. 若两⼒学量,A B 有共同本征函数完全集,则[],A B = 。

18. ⾃旋⾓动量与⾃旋磁矩的关系为。

19. 在定态的条件下,守恒的⼒学量是。

20. 原⼦电偶极跃迁的选择定则为。

21. 设体系处在|ψ?态,在该态下测量F 有确定值λ,则表⽰该⼒学量的算符?F与态⽮量|ψ?的关系为。

22. 轨道磁矩与轨道⾓动量的关系为,⾃旋磁矩与⾃旋⾓动量的关系为。

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学复习题

量子力学复习题量子力学复习题 ?简答题1得布罗意关系是什么?若电子被V 伏电势加速,其德布罗意波长是多少?有哪些实验证实德布罗意假说的正确性?2.以电子的双缝干涉为例解释几率波正确地把物质粒子的波动性和粒子性统一起来。

3.波函数是用来描述什么的?归一化条件的物理意义?波函数的标准条件?4.与自由粒子相联系的波是什么波?表达式?坐标和动量的不确定度?5.写出,dxdydz t z y x t z y x 22,,,(,,,,(ψψ的物理意义用球坐标表示,粒子波函数表为()?θψ,,r ,写出粒子在立体角Ωd 中被测到的几率。

写出粒子在球壳()dr r r +,中被测到的几率6. 写出坐标表象的动量算符、能量算符、角动量算符;写出含时薛定谔方程,定态薛定谔方程。

7.写出几率流密度的表达式以及粒子数守恒定律.8.什么是定态?束缚态、非束缚态?简并、简并度?氢原子简并度?9 写出一维谐振子、氢原子的能级表达式,注意量子数的取值范围。

10、一个力学量Q 守恒的条件是什么11物理上可观测量对应什么样的算符?为什么?12证明厄密算符的本征值必为实数。

13证明厄密算符属于不同本征值的两个本征函数,彼此正交。

14证明在任何状态下,厄密算符的平均值都是实数。

15坐标x 与动量 p x 对易关系是什么? 并写出两者的不确定性关系。

16对一个量子体系进行某一力学量的测量值,测量结果与表示力学量算符有什么关系?两个力学量同时具有确定值的条件是什么?17量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=n n n x c x )()(ψψ写出展开式系数n c 的表达式。

18、写出动量本征函数、线性谐振子及氢原子能量本征函数的正交归一化性质。

19、写出坐标与动量的基本对易关系以及测不准关系。

20、若两算符不对易,写出两算符的测不准关系。

21 力学量算符在自身表象中的矩阵是什么形式?22设一个二能级体系的两个能量本征值分别为E 1 和E 2,相应的本征矢量为|n 1 > 和|n 12 > 。

量子力学复习题汇总

概念简答题 (每小题2分,2*8=16分) 1、何为束缚态?2、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

3、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示?4、简述定态微扰理论。

5、Stern —Gerlach 实验证实了什么?6、简述波函数的统计解释;7、对“轨道”和“电子云”的概念,量子力学的解释是什么?8、力学量Gˆ在自身表象中的矩阵表示有何特点? 9、简述能量的测不准关系;10、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。

20、厄米算符有那些特性?23.描述氢原子状态需要几个量子数?量子数目取决于什么? 1. 微观实物粒子的波粒二象性 1. Bohr 的原子量子论 3. 态迭加原理4. 波函数的标准条件5. 定态 6 .束缚态 7. 几率波8 归一化波函数 9. 几率流密度矢量10. 线性谐振子的零点能 11. 厄密算符 12. 简并度13. 力学量的完全集合 14. 箱归一化 15. 函数的正交性 16. 角动量算符17. 力学量算符的本征函数的正交归一性 18. 表象19. 希耳伯特空间 20. 幺正变换单项选择题(每小题2分)2*10=20分1.能量为100ev 的自由电子的De Broglie 波长是 A. 1.2A 0. B. 1.5A 0. C. 2.1A 0. D. 2.5A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量为( ,2,1,0=n )A.E n n = ω.B.E n n =+()12ω.C.E n n =+()1 ω.D.E n n =2 ω. pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性. 10.Davisson 和Germer 的实验证实了 A. 电子具有波动性. B. 光具有波动性. C. 光具有粒子性. D. 电子具有粒子性.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为 A.c c 112222ψψ+.B. c c 112222ψψ++2*121ψψc c .C. c c 112222ψψ++2*1212ψψc c .D. c c 112222ψψ++c c c c 12121212****ψψψψ+. 15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数)19.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c . D.ψ1与ψψ21=c 描写粒子的状态相同. 23.几率流密度矢量的表达式为A.J =∇ψ-2μ()**ψψ∇ψ. B.J i =∇ψ-2μ()**ψψ∇ψ. C.J i =-∇ψ2μ()**ψ∇ψψ. D.J =-∇ψ2μ()**ψ∇ψψ. 24.质量流密度矢量的表达式为A.J =∇ψ-2()**ψψ∇ψ.B. J i =∇ψ-2()**ψψ∇ψ.C.J i =-∇ψ2()**ψ∇ψψ.D.J =-∇ψ2()**ψ∇ψψ.25. 电流密度矢量的表达式为A.J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C.J iq =-∇ψ2μ()**ψ∇ψψ. D.J q =-∇ψ2μ()**ψ∇ψψ. 26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量. 32.在一维无限深势阱中运动的粒子,其体系的 A.能量是量子化的,而动量是连续变化的. B.能量和动量都是量子化的. C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为 A.(/),(,,,...)n n +=12123 ω. B.(),(,,,....)n n +=1012 ω.C.(/),(,,,...)n n +=12012ω. D.(),(,,,...)n n +=1123 ω. 35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是A.[]-+= 222222212μμωψψd dx x E . B.[]--= 22222212μμωψψd dx x E .C.[] 22222212μμωψψd dx x E -=-. D.[] 222222212μμωψψd dx x E +=-. 37.氢原子的能级为A.- 2222e n s μ.B.-μ22222e n s .C.242ne sμ -. D. -μe n s 4222 . 38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.r r R nl )(2. B.22)(r r R nl .C.rdr r R nl )(2.D.dr r r R nl 22)(.39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为 A.),(ϕθlm Y . B. 2),(ϕθlm Y . C. Ωd Y lm ),(ϕθ. D. Ωd Y lm 2),(ϕθ.40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是 A.ψφτφψτ*** Fd F d =⎰⎰. B.ψφτφψτ**( )F d F d =⎰⎰. C.( ) **F d F d ψφτψφτ=⎰⎰. D. ***F d F d ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FGGF ( )+必为厄密算符. D. i FGGF ( )-必为厄密算符. 42.已知算符 x x =和 pi xx =- ∂∂,则 A. x 和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符. D. xp p x x x -必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是 A. 库仑场特有的. B.中心力场特有的. C.奏力场特有的. D.普遍具有的.56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12k .64.对易关系[, ]x px 等于 A.i . B. -i . C. . D. - .66. 对易关系[, ]L zy 等于 A.-i x. B. i x . C. x . D.- x . 68. 对易关系[, ]x py 等于 A. . B. 0. C. i . D. - . 70. 对易关系[ , ]L L x z等于 A.i L y . B. -i L y . C. L y . D. - L y. 72. 对易关系[ , ]LL x2等于 A. L x . B. i L x . C. i L L z y( )+. D. 0. 74. 对易关系[, ]L px y 等于 A.i L z. B. -i L z . C. i p z . D. -i p z . 76. 对易关系[ , ]Lp zy等于 A.-i p x . B. i p x . C. -i L x . D. i L x . 80. .对易式[ ,]Fc 等于(c 为任意常数) A.cF. B. 0. C. c . D. F ˆ. 81.算符 F和 G 的对易关系为[ , ] F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥. B. ( )( )∆∆F G k 2224≥.C. ( )( )∆∆F G k 2224≥.D. ( )( )∆∆F G k 2224≥. 82.已知[ , ]xp i x = ,则 x 和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ . B. ( )( )∆∆x p 2224≥ .C. ( )( )∆∆x p x 222≥ . D. ( )( )∆∆x p x 2224≥ .84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze rE s.B. []-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze rE s.D.[]-∇-= 22222μψψze rE s.85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222. B. -μ224222z e n s .C.-μze n s 2222 .D. -μz e n s 24222 .91.一维自由粒子的能量本征值 A. 可取一切实数值. B.只能取不为负的一切实数. C.可取一切实数,但不能等于零. D.只能取不为正的实数.99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'e x p (21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -. B.δ(')x x +. C.δ()x . D.δ(')x . 106.力学量算符在自身表象中的矩阵表示是 A. 以本征值为对角元素的对角方阵. B. 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x ∂∂. B.i p x∂∂. C.-i p x 2∂∂. D.i p x 2∂∂.109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是A. ±1.B. 0.C. ±i .D. 1±i . 110.111.幺正矩阵的定义式为A.S S +-=.B.S S +=*.C.S S =-.D.S S *=-.113.算符 ()( )/ax ip =+μωμω212 ,则对易关系式[ , ]a a +等于 A. [ , ]aa +=0. B. [ , ]a a +=1. C. [ , ]aa +=-1. D. [ , ]a a i +=. 115. 非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '. B.H nn '. C.-H nn '. D.H nm '. 119.非简并定态微扰理论的适用条件是A.H E E mk km'()()001-<<. B.H E E mk km'()()001+<<.C. H mk '<<1.D. E E k m ()()001-<<.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.124.用变分法求量子体系的基态能量的关键是 A. 写出体系的哈密顿. B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.126. S 为自旋角动量算符,则[ , ]SS yx等于 A.2i . B. i . C. 0 .D. -i S z . 127. σ为Pauli 算符,则[ , ]σσxz等于 A.-i y σ. B. i y σ. C.2i y σ. D.-2i y σ. 129.单电子的Pauli 算符平方的本征值为 A. 0. B. 1. C. 2. D. 3.143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的. B.是反对称的. C.具有确定的对称性. D.不具有对称性. 填空题,每小题2分,8*2=16分pton 效应证实了 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学练习题做题时应注意的几个问题:1.强调对量子力学概念、知识体系的整体理解。

2.注重量子力学基本原理的理解及其简单的应用,如:无限深势阱、谐振子和氢原子等重要问题的求解及其结论,并与其对应的经典理论进行比较,力争把量子力学理论融汇贯通。

3.数学手段上,应多看示例,尽量避免陷入过多的、繁难的数学计算中。

4.通过完成练习题,使自己加深对理论内容的理解,通过把实际物理过程用数学模型求解,培养自己独立解决实际问题的能力。

1.能量为100ev 的自由电子的De Broglie 波长是2.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的De Broglie 波长是 pton 效应证实了4.Davisson 和Germer 的实验证实了5. 设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为 A.δ()x . B.δ()x dx . C.δ2()x . D.δ2()x dx .6. 设粒子的波函数为 ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为7.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为A.c c 112222ψψ+.B. c c 112222ψψ++2*121ψψc c .C. c c 112222ψψ++2*1212ψψc c .D. c c 112222ψψ++c c c c 12121212****ψψψψ+. 8.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 9.有关微观实物粒子的波粒二象性的正确表述是A.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性. 10.已知波函数ψ1=-+u x i Et u x i Et ()exp()()exp() , ψ21122=-+u x i E t u x i E t ()e x p ()()e x p (),ψ312=-+-u x i Et u x iEt ()exp()()exp() , ψ41122=-+-u x i E t u x i E t ()e x p ()()e x p ().其中定态波函数是11.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数) 12.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c . D.ψ1与ψψ21=c 描写粒子的状态相同. 13 电流密度矢量的表达式为A. J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C. J iq =-∇ψ2μ()**ψ∇ψψ. D. J q =-∇ψ2μ()**ψ∇ψψ. 14. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子的能级为A.πμ22222 n a , B.πμ22224 n a , C.πμ22228 n a , D.πμ222216 n a. 15. 在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22222 n b ,B.πμ2222 n b , C.πμ22224 n b , D.πμ22228 n b .16. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是17.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.18线性谐振子的第一激发态的波函数为ψαα()exp()x N x x =-122122,其位置几率分布最大处为19.线性谐振子的能量本征方程是A.[]-+= 222222212μμωψψd dx x E .B.[]--= 22222212μμωψψd dx x E . C.[] 22222212μμωψψd dx x E -=-. D.[] 222222212μμωψψd dx x E +=-. 20.在极坐标系下,氢原子体系在dr 球壳内找到电子的几率为 A.r r R nl )(2. B.22)(r r R nl . C.rdr r R nl )(2. D.dr r r R nl 22)(. 21. 在极坐标系下,氢原子体系在Ωd 方向上找到电子的几率为A.),(ϕθlm Y .B. 2),(ϕθlm Y . C. Ωd Y lm ),(ϕθ. D. Ωd Y lm 2),(ϕθ.22. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FG GF ( )+必为厄密算符. D. i FGGF ( )-必为厄密算符. 23.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π 24.角动量Z 分量的归一化本征函数为A.12πϕexp()im . B. )exp(21r k i ⋅π. C.12πϕexp()im . D.)exp(21r k i⋅π.25.波函数)exp()(cos )1(),(ϕθϕθim P N Y m l lm m lm -=A. 是 L 2的本征函数,不是 L z 的本征函数.B.不是 L 2的本征函数,是 L z 的本征函数. C 是 L 2、 L z 的共同本征函数. D. 即不是 L 2的本征函数,也不是 L z的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为26.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为27.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为. 28.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze r E s .B. []-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze r E s . D.[]-∇-= 22222μψψze rE s.29.如果力学量算符 F和 G 满足对易关系[ , ]F G =0, 则 A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.30.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 31.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数. 32.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是33.在( , L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 34.算符 Q只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x∂∂在 Q 表象中的矩阵元的表示是A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂.B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i x u x dx mn n m =⎰()(,)()* ∂∂. D.F u x F x i xu x dx mn m n =⎰()(,)()*∂∂. 35.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿. B 选取合理的尝试波函数.C 计算体系的哈密顿的平均值.D 体系哈密顿的平均值对变分参数求变分. 36 .Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋. 129.单电子的Pauli 算符平方的本征值为A. 0.B. 1.C. 2.D. 3. 37 .Pauli 算符的三个分量之积等于 A. 0. B. 1. C. i . D. 2i .38在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A. ,-.B. /,2.C. /,/22-.D. ,/-2.39 .全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性. 40 .分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是 41.束缚态的特点是 。

42证明厄密算符的本征值为实数。

43.证明对于非简并情况,厄密算符属于不同本征值的本征函数相互正交。

44.已知 ()()F x x n n nφλφ=,则算符 F 在归一化波函数ψ()x 中的平均值为F x F x dx =⎰ψψ*() (),证明F x F x dx c n n n==⎰∑ψψλ*() ()2,其中 c x x dx n n =⎰φψ*()()。

相关文档
最新文档