2015_量子力学习题

合集下载

2015南京大学量子力学真题(word 编辑版)

2015南京大学量子力学真题(word 编辑版)

2015年南京大学物理学院博士生“申请-考核”制入学
专业课程笔试试题
考试科目: 量子力学 考试时间:三小时
本试卷共计五大题
一、基本概念题
简述量子力学的基本原理。

二、设一个质量为m 的粒子处于区域为(0, a )的一维无限深势阱中, 其状态波函数为2=sin cos x
x
a a ππψ ,试求:
1)、一维无限深势阱的本征值问题;
2)、测量到粒子处于不同能量本征态的几率。

三、设两个算子ˆA
与ˆB 满足交换关系式:ˆˆˆˆˆˆ[,]1A B AB BA =-=,试求: 1)、n 为正整数, ˆˆ[,]n A
B ; 2)、()f x 为解析函数,ˆˆ[,()]A
f B 。

四、 已知两个算子ˆa 与ˆa +满足ˆˆˆˆ1a a aa ++=-,令ˆˆˆN a a +=,且有ˆN
n n n =, 求证:n 为实数。

五、量子力学中的韦尔(Weyl)波动方程式为:
(,)(,)i r t c r t t i ψσψ∂
=⋅∇∂ ,
其中=x x y y z z e e e σσσσ++为泡利矩阵所组成的矢量,
(,)r t ψ为泡利二 分量波函数,其它为量子力学标准符号。


1)、该系统的韦尔定态方程式与力学量完全集;
2)、该系统的能量本征值并说明其物理意义;
3)、该系统的本征波函数。

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学习题

量子力学习题
∧ ∧ ∧ ∧ ( L× p + p× L) x
= Ly z − Lz y + yLz − zLy = ( Ly z − zLy ) + ( yLz − Lz y ) = [ Ly , z ] + [ y, Lz ] = 2ix = (2ir ) x
= Ly pz − Lz p y + p y Lz − pz Ly = ( Ly pz − pz Ly ) + ( p y Lz − Lz p y ) = [ Ly , pz ] + [ p y , Lz ]
① 写出Ψ(x,t); ② 求在Ψ(x,t)态中测量粒子的能量的可能值及其概率。 ③ 求 t=0 时的<x>(即坐标的平均值),并问<x>是否随时间 t 变化。
x 2 + y 2 + z 2 , k、α 是实
的正常数。求: ① 粒子的角动量是多少? ② 角动量 z 方向的分量的平均值。 ③ 若角动量的 z 分量 L z 被测量,求 L z = + 的概率有多大? ④ 发现粒子在θ、φ方向上 dΩ立体角内的概率是多少?θ、φ是通常球 坐标中的方向角。
二、 算符的本征态及力学量的测量
1、证明:若两个算符具有共同的本征态,而且这些本征态构成体系状态的完备 集,则这两个算符对易。
Axe− λ x ( x > 0) ψ ( x) (λ > 0) = 0( x < 0) 2、一维运动的粒子处在 求动量和坐标的不确定度,
并验证不确定关系
并说明算符 A、B 厄米性。 5、证明:设 A、B 都是矢量算符 F 是标量算符,证明: F , A ⋅= B F , A ×= B F , A ⋅ B + A ⋅ F , B F , A × B + A × F , B

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学考试题

量子力学考试题

量子力学考试题量子力学考试题(共五题,每题20分)1、扼要说明:(a )束缚定态的主要性质。

(b )单价原子自发能级跃迁过程的选择定则及其理论根据。

2、设力学量算符(厄米算符)∧F ,∧G 不对易,令∧K =i (∧F ∧G -∧G ∧F ),试证明:(a )∧K 的本征值是实数。

(b )对于∧F 的任何本征态ψ,∧K 的平均值为0。

(c )在任何态中2F +2G ≥K3、自旋/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为S H ??ω=∧H =ω∧z S +ν∧x S (ω,ν>0,ω?ν)(a )求能级的精确值。

(b )视ν∧x S 项为微扰,用微扰论公式求能级。

4、质量为m 的粒子在无限深势阱(0<x</x5、某物理体系由两个粒子组成,粒子间相互作用微弱,可以忽略。

已知单粒子“轨道”态只有3种:a ψ(→r ),b ψ(→r ),c ψ(→r ),试分别就以下两种情况,求体系的可能(独立)状态数目。

(i )无自旋全同粒子。

(ii )自旋 /2的全同粒子(例如电子)。

量子力学考试评分标准1、(a ),(b )各10分(a )能量有确定值。

力学量(不显含t )的可能测值及概率不随时间改变。

(b )(n l m m s )→(n’ l’ m’ m s ’)选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e →r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分(a )∧K 是厄米算符,所以其本征值必为实数。

(b )∧F ψ=λψ,ψ∧F =λψ K =ψ∧K ψ=i ψ∧F ∧G -∧G ∧F ψ =i λ{ψ∧G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧F 2+∧G 2-∧Kψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧F -i ∧G )ψ︱2≥0 ∴<∧F 2+∧G 2-∧K >≥0,即2F +2G ≥K 3、(a),(b)各10分(a) ∧H =ω∧z S +ν∧x S =2 ω[1001-]+2 ν[0110]=2 [ωννω-]∧H ψ=E ψ,ψ=[b a ],令E =2λ,则[λωννλω---][b a ]=0,︱λωννλω---︱=2λ-2ω-2ν=0 λ=±22νω+,E 1=-2 22νω+,E 2=222νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+2 22ων)=ω+ων22E 1≈-2 [ω+ων22],E 2 =2[ω+ων22](b )∧H =ω∧z S +ν∧x S =∧H 0+∧H’,∧H 0=ω∧z S ,∧H ’=ν∧x S∧H 0本征值为ω 21±,取E 1(0)=-ω 21,E 2(0)=ω 21相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ]则∧H ’之矩阵元(S z 表象)为'11H =0,'22H =0,'12H ='21H =ν 21E 1=E 1(0)+'11H +)0(2)0(12'21E E H-=-ω 21+0-ων2241=-ω21-ων241 E 2=E2(0)+'22H +)0(1)0(22'12E E H -=ω 21+ων2414、E 1=2222ma π,)(1x ψ=0sin 2a xa π a x x a x ≥≤<<,00x =dx x a ?021ψ=2sin 202a dx a x x a a=?π x p =-i ?=a dx dx d011ψψ-i ?=aa x d a 020)sin 21(2π x xp =-i ??-=aaa x d a x x a i dx dx d x 0011)(sin sin 2ππψψ =-a a x xd a i 02)(sin 1π =0sin [12a a x x a i π --?adx a x 02]sin π=0+?=ai dx ih 02122 ψ 四项各5分5、(i ),(ii )各10分(i )s =0,为玻色子,体系波函数应交换对称。

量子力学作业及参考答案

量子力学作业及参考答案

15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。

答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。

答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。

答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。

答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。

答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。

求该粒子在基态时的能量和波函数。

答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。

2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。

求该粒子的能级和相应的波函数。

答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波长变长--------------1 分
10: 1/ 3 ----------------3 分
11: 0.0549----------------3 分
12: 粒子在 t 时刻在(x,y,z)处出现的概率密度-------------2 分
单值、有限、连续---------------------------------------------1 分
0 得:
B
=
k 0;
=
nπ a

n
= 1、2、3……
ψn
所以有:
(x)
=
A
sin
⎛ ⎜⎝
nπ a
⎞ ⎟⎠

n
= 1、2、3……
∫ ∫ ∫ +∞ψ (x) 2 dx = a ψ (x) 2 dx = a A2 sin 2 ⎜⎛ nπ ⎟⎞dx = 1
归一化条件: −∞
0
0
⎝a⎠
A=
所以:
2 a
ψn
,即:
的状态跃迁到上述定态时,所发射的光子的能量为
(A) 2.56 eV
(B) 3.41 eV
(C) 4.25 eV
(D) 9.95 eV


6: 若α粒子(电荷为 2e)在磁感应强度为 B 均匀磁场中沿半径为 R 的圆形轨道运动,
则α粒子的德布罗意波长是
(A) h /(2eRB)
(B) h /(eRB)
(2) 由上一问可得 v = 2eRB / mα
对于质量为 m 的小球:
λ= h mv
= h ⋅ mα 2eRB m
= mα m
⋅ λα =6.64×10-34 m-----------3 分
2:解:先求粒子的位置概率密度:
ψ (x) 2 = (2 / a) sin 2 (πx / a) = (2 / 2a)[1 − cos(2πx / a)] --------------------2 分
(A) 25 cm


(B) 50 cm
(C) 250 cm
(D) 500 cm
10:将波函数在空间各点的振幅同时增大 D 倍,则粒子在空间的分布概率将
(A) 增 大 D2 倍
(B) 增 大 2D 倍
(C) 增 大 D 倍
(D) 不 变


11:下列各组量子数中,哪一组可以描述原子中电子的状态?
(A)
2μE / h 2
d 2ψ ,则方程为: dx2
+ k 2ψ
=0
通解为: ψ (x) = Asin kx + B cos kx
由波函数的连续性可知,在 x = 0 、 x = a 处 ψ (x) = 0 ,即:
ψ (x) = ψ (x) =
Asin 0 + B cos 0 = 0
Asin(ka) + B cos(ka) =
R 的圆周运动,那末此照射光光子的能量是:
hc (A) λ0
(B)
hc λ0
+ (eRB)2 2m
(C)
hc λ0
+ eRB m
hc (D) λ0 + 2eRB


3: 在康普顿效应实验中,若散射光波长是入射光波长的 1.2 倍,则散射光光子能量ε
与反冲电子动能 EK 之比ε / EK 为
(A) 2
(C) 1/(2eRBh)
(D) 1/(eRBh)


7:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的
(A) 动 量 相 同
(B) 能 量 相 同
(C) 速 度 相 同
(D) 动 能 相 同


ψ (x) = 1 ⋅ cos 3πx
8:已知粒子在一维矩形无限深势阱中运动,其波函数为:
a
解粒子的归一化波函数和粒子的能量。
一、选择题 1:D 2:B 3:D 4:C 5:A 6:A 7:A 8:A 9:C 10:D 11:B
二、填空题 1: 2.5---------------------2 分; 4.0×1014-----------2 分 2: 1.5×1019 ------------3 分 3: 1.5 --------------------3 分 4: 不变-----------------1 分; 变长----------------1 分; 5: -0.85---------------2 分; -3.4----------------2 分 6: 6----------------------2 分; 973----------------2 分 7: 10.2-------------------3 分 8: 1-----------------------2 分; 2----------------2 分 9: 6.56×1015 Hz-------3 分
最大动能为_________eV。
4:某一波长的 X 光经物质散射后,其散射光中包含波长________和波长__________的
两种成分,其中___________的散射成分称为康普顿散射。
5:在氢原子发射光谱的巴耳末线系中有一频率为 6.15×1014 Hz 的谱线,它是氢原子从
能级 En =__________eV 跃迁到能级 Ek =__________eV 而发出的。 6:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射的各谱线组成的谱线系)的
一、选择题
1:已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV,而钠的红限波长
是 5400 Å,那么入射光的波长是
(A) 5350 Å


(B) 5000 Å
(C) 4350 Å
(D) 3550 Å
2:在均匀磁场 B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有 电子放出,有些放出的电子(质量为 m,电荷的绝对值为 e)在垂直于磁场的平面内作半径为
动。(1) 试计算其德布罗意波长;(2) 若使质量 m = 0.1 g 的小球以与α粒子相同的速率运动。 则其波长为多少?(α粒子的质量 mα =6.64×10-27 kg,普朗克常量 h =6.63×10-34 J·s,基本 电荷 e =1.60×10-19 C)
2:已知粒子在无限深势阱中运动,其波函数为 ψ (x) = 2 / a sin(πx / a) (0≤x≤a),求
由题可知α 粒子受磁场力作用作圆周运动: qvB = mαv 2 / R , mαv = qRB
又 q = 2e 则: mαv = 2eRB ----------------4 分
故:
λα = h /(2eRB) = 1.00 ×10−11 m = 1.00 ×10−2 nm -------------3 分
2a ( -
a≤x≤a ),那么粒子在 x = 5a/6 处出现的概率密度为
(A) 1/(2a)


(B) 1/a
(C) 1/ 2a
(D) 1/ a
9:波长λ =5000 Å 的光沿 x 轴正向传播,若光的波长的不确定量Δλ =10-3 Å,则利用不
确定关系式 Δpx Δx ≥ h 可得光子的 x 坐标的不确定量至少为:
ms
n = 2,l = 2,ml = 0,
=
1 2
(B)
n
=
3,l
=
1,ml
ms
=-1,
=
−1 2
(C)
n
=
1,l =
2,ml
=
m
1,
s
=
1 2
(D)
n
=
1,l
=
0,ml
=
m
1,
s
=
−1 2




二、填空题
1:当波长为 3000 Å 的光照射在某金属表面时,光电子的能量范围从 0 到 4.0×10-19 J。
能量为 E2 的概率为
2
2
P2 =
1 10
+
2 10
=3 10 ---------------------1 分
能量为 =3 10 ---------------------1 分
能量的平均值为: E = P1E1 + P2 E2 + P3E3 -----------------------2 分
速,h 为普朗克常量)。当电子的动能等于它的静止能量时,它的德布罗意波长是λ =______λc。 11:在戴维孙——革末电子衍射实验装置中,自热
阴极 K 发射出的电子束经 U = 500 V 的电势差加速后投射到晶
体上。这电子束的德布罗意波长λ =___________nm。
K
φ G
φ
U
Ψ (rv1,2t:) 须设满描足述的微条观件粒是子_运__动_的__波__函__数__为___Ψ__(_rv_,_t)_,;则其Ψ归Ψ一*化表条示件__是________________________________________。;
8:被激发到 n =3 的状态的氢原子气体发出的辐射中,
有______条可见光谱线和_________条非可见光谱线。
9:当一个质子俘获一个动能 EK =13.6 eV 的自由电子组成一个基态氢原子时,所发出的 单色光频率是______________。
10:令 λc = h /(mec) (称为电子的康普顿波长,其中 me 为电子静止质量,c 为真空中光
其中: E1 = 13.6eV 、 E2 = −3.4eV 、 E3 = −1.51eV -----------------3 分
2
2
2
相关文档
最新文档