量子力学试题

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学期末试题及答案

量子力学期末试题及答案

(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜

2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜

2⎟

i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3

量子力学考研试题及答案

量子力学考研试题及答案

量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。

答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。

答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。

答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。

答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。

答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。

在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。

2. 描述一下量子力学中的量子态叠加原理。

答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。

这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。

3. 解释什么是量子纠缠,并给出一个实际应用的例子。

答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学期末试题

量子力学期末试题

量子力学期末试题1一. 填空(3分×5=15分)1.2)2,(h vr ψ的含义是 2.在非定态下,力学量的平均值一定随时间变化吗?3.211ˆ(,)________L Y θϕ=;2,1ˆ(,)________z L Y θϕ−= 4.坐标y 在动量表象中的矩阵元为__________________________.5.2ˆ[,]y z σσ=____ 二.证明(10分×2=20分)1.(10分)设ˆA v ,ˆB v 是与σˆv 对易的任何矢量算符, 证明:)ˆˆ(ˆˆˆ)ˆˆ)(ˆˆ(B A i B A B A v v v v v v v v v ו+•=••σσσ。

2.(10分)设力学量A 不显含时间t ,H 为体系的Hamilton 量,试证明]],,[[222H H A A dt d =−h三.计算(65分),1. (15分)求一维谐振子的坐标,x 动量ˆp及Hamilton 量ˆH 在能量表象中的矩阵表示。

(已知:1111)n n n n n x ψ+−−+=+− 2.(15分)在ˆz σ表象中,求01ˆ10x σ⎛⎞=⎜⎟⎝⎠和0ˆ0y i i σ−⎛⎞=⎜⎟⎝⎠的本征值和所属的本征函数。

3.(15分)设粒子在势场 ⎩⎨⎧><∞<<=.,0,;0,0)(a x x a x x u 中运动, 求:粒子的能量本征值和本征函数。

(15分)4.(20分)考虑耦合谐振子,H H H ′+=0,其中)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh ;21x x H λ−=′(λ为实常数,刻画耦合强度)(1).求出0H 的本征值及能级的简并度;(2).以第一激发态为例用简并微扰论计算H ′对能级的影响(一级近似)试卷1参考答案一. 填空(每题3分,共15分)1. 电子自旋向上位置在r v处的几率密度, 2. 不一定,3. ),(2112ϕθY h ;),(1,2ϕθ−−Y h , 4. )(p p p i y p p ′′−′′∂∂=′′′δh5. 0二.证明(每题10分,共20分) 1 证明原式左端)(z z y y x x A A A σσσ++=)(z z y y x x B B B σσσ++ (5分)z z z y y y x x x B A B A B A 222σσσ++=x y x y y x y x z x z x x z x z y z y z z y z y B A B A B A B A B A B A σσσσσσσσσσσσ++++++又因为1222===z y x σσσ,z x y y x i σσσσσ=−=,x y z z y i σσσσσ=−=,y z x x z i σσσσσ=−= (3分)整理得)(B A i B A vv v v v ו+•σ (2分)问题得证 2 证明对于不显含时间t 的力学量A 有hi A dt d 1=],[H A (5分) 上式两边对t 求导,则有 h h i H A i dt d A dt d 1],[122==]],,[1[H H A i h ]],,[[12H H A h−= (5分)即]],,[[222H H A A dt d =−h三.计算题 1.解:取占有数表象,由已知可得:(2分)1) 坐标x 的矩阵表示为,1,n n n n n n x ′′′+⎞=+⎟⎟⎠(3分)0000100x α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L L L L L L L L L L L L L (2分) 2) 由于ˆdpi dx=−h ,所以,1,n n n n n n p ′′′−⎤=−⎥⎦(2分)故有0000000p i α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L h L L L L L L L L L L L (2分) 3) 能量ˆ(H=1ˆ2N ω+h ,所以 ,1()2n n n n H n ωδ′′=+h (2分)故有 1000230002ˆ50002100002H n ⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟+⎜⎟⎝⎠L L L L L L L L (2分)2.解:解:(1) 先求x σ的本征值和本征函数在z σ表象中,x σ=⎟⎟⎠⎞⎜⎜⎝⎛0110,设x σ本征值为λ,本征态为⎟⎟⎠⎞⎜⎜⎝⎛b a , 则本征方程为:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛b a b a λ1001 (3分) 解得: 1±=λ (2分)x σ∴的归一化的本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=1112111121λσλσx x (4分)(2) 同理可求y σ的本征值为1±=′λ (2分)相应于y σ的归一化本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=11211121λσλσi i y y (4分)3.1 解:一维定态薛定鄂方程为222()2d u x E m dxψψψ−+=h (2分) 1) 在0x a ≤≤范围:22202d E m dxψ+=h (2分) 故 sin cos A x B x ψαα=+,1222mE α⎛⎞=⎜⎟⎝⎠h (2分) 2) 根据波函数的连续性条件:()(0)0a ψψ==,可得 sin cos 0,0A a B a B αα+==故有 sin A x ψα= (3分)由sin 0a α=可得,(1,2,3)n n aπα==L (1分)3) 由归一化条件:2||1dx ψ+∞−∞=∫,可得2220sin 1aA xdx α=∫故有A =(2分) 4) 结合1222mE α⎛⎞=⎜⎟⎝⎠h 和(1,2,3)n n a πα==L 可得 2222222222n n n E m a ma ππ==h h (2分)所以()n x x aπψ= 1,2,3n =L (1分) 4.解:)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh )212(2122122x x μωμ+∂∂−=h )212(2222222x x μωμ+∂∂−+h 表示两个独立的谐振子,它们的共同本征态为:21n n21n n =)()(212x x n n n ψψ0201)21()21(21ωωh h +++=∴n n E n nL L h 3,2,1,)1(0=+=N N ω (4分) 当N 给定时, N n L L ,2,1,01= 0,2,1,2L L −−=N N N nN+1种组合因此,能级的简并度为N+1 (4分) (2)第一激发态为N=1 能级简并度为二重00)0(12)1(ωωh h =+=N E相应的波函数为:⎩⎨⎧==),()()(),()()(21220112112110x x x x x x x x φψψφψψ (1分) ⎟⎟⎠⎞⎜⎜⎝⎛′′′′=′∴22122111φφφφφφφφνμH H H H H (2分) 01111=′=′∴φφH H , 02222=′=′∴φφH H (2分) 221122αλ−=′=′∴H H (4分) ′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−=′∴022022αλαλνμH00220)1(22)1(=′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−−−∴E E αλαλ2)1(2αλ±=∴E (2分) 0020)1(1)0(112222μωλωαλωhh h ±=±=+=∴E E E (1分)量子力学期末试题2一.填空(3分×5=15分)1 粒子处于力学量B v 的本征态)(r n vψ的迭加态,)()(41)(21)(321r C r r r n v v v v ψψψψ++=则粒子处于)(1r vψ的概率是 ,C = (取实数)2 若ˆ,FG GF ik−=,则算符F 和G 之间满足测不准关系________________ 3 在粒子数表象中,产生算符和湮灭算符满足关系式:ˆ4an ++= ;ˆ1a n += 4.一个正电子和一个负电子同时在空间运动在两粒子相遇区域是否可以将其分辨?______5 中心力场中的粒子处于定态,则角动量取确定值,对吗? 二.证明(10分×2=20分)1.(10分)设λ为常数,z σ为泡利算符,证明:cos sin zi z ei λσλσλ=+2.(10分)证明:Hermite 算符的属于不同本征值的本征函数彼此正交(假定本征值是离散的)。

量子力学练习题

量子力学练习题

量子力学练习题随着科学技术的不断进步,量子力学作为近代物理学的基石,在我们生活中扮演着越来越重要的角色。

量子力学的概念和理论模型不仅用于解释微观世界的现象,还应用于信息处理、材料科学等领域。

为了加深对量子力学的理解,本文将为读者提供一些量子力学练习题,请认真思考并尽力解答。

题目一:平面上的单粒子态考虑一个二维平面上的单粒子,其波函数为Ψ(x, y)。

假设该波函数可以展开为以下形式:Ψ(x, y) = A(xe^(-λx) + ye^(-λy))其中,A和λ均为实常数。

1. 请计算波函数Ψ(x, y)的归一化常数A。

2. 求解波函数Ψ(x, y)对应的概率密度函数|Ψ(x, y)|^2。

3. 计算算符x和y对该波函数的期望值<x>和<y>。

题目二:自旋1/2粒子的测量考虑一个自旋1/2粒子,其自旋算符的本征态为|+⟩和|-⟩,对应自旋向上和向下的状态。

现在进行如下测量:1. 如果对该粒子的自旋以z方向为测量方向,求测量得到自旋向上状态的概率。

2. 假设在z方向上测量得到自旋向上状态后,立即进行对z方向自旋的再次测量,求再次测量得到自旋向上状态的概率。

3. 如果对该粒子的自旋以任意方向为测量方向,求测量得到自旋向上状态的概率。

题目三:简谐振子的能量本征态考虑一个一维简谐振子,其能量本征态可由波函数Ψ_n(x)表示,n 为非负整数。

波函数Ψ_n(x)的表达式为:Ψ_n(x) = N_n H_n(x) e^(-x^2/2)其中,N_n为归一化常数,H_n(x)为Hermite多项式。

1. 请计算波函数Ψ_0(x)的归一化常数N_0。

2. 求解波函数Ψ_1(x)对应的薛定谔方程解,并给出其归一化常数N_1。

3. 计算简谐振子的能量本征值E_n,其中n = 0, 1, 2。

题目四:双缝干涉实验考虑一个双缝干涉实验,光源发射频率为f,波速为v。

光通过双缝后形成干涉条纹,条纹之间的间距为d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国海洋大学命题专用纸(首页)
2005-2006学年第 2 学期试题名称:量子力学(A卷)共 2 页第 1 页
中国海洋大学命题专用纸(附页)
中国海洋大学命题专用纸(首页)
2005-2006学年第 2 学期试题名称:量子力学(B卷)共 2 页第 1 页
中国海洋大学命题专用纸(附页)
中国海洋大学命题专用纸(首页)
06-07学年第 2 学期试题名称:量子力学(A卷) 共 2 页第 1 页
1)写出在t >0时刻的波函数;
(2)在t >0时刻振子能量的可能测值及其相应的概率是多少?能量平均值是多少?
11. 设()θϕθϕθcos ,sin sin ,cos sin =n 是(ϕθ,)方向的单位矢量,则n ⋅σ是自旋σ
在该方向的分量,z y x σσσ,,是它的三个特例。

(1)写出n ⋅σ在z σ表象中的矩阵表示;
(2)求n
⋅σ的本征态。

12.有一个电子受到沿x 方向的均匀磁场的作用,不考虑轨道运动,Hamilton 量表为
x mc
eB H σ2
=
,设t =0时电子自旋向上(2/ +=z s )
, (1)由Schrodinger 方程求出t 时刻的自旋波函数;
(2)t 时刻电子自旋是否一定向上?自旋向上的概率是多少? 13.把传导电子限制在金属内部的是金属内的一种平均势,对于下列一维模型(如图):
⎩⎨⎧><-=0,
00
,)(0
x x V x V 试计算接近金属表面的传导电子(能量E >0)的反射率。

学年第 2 学期试题名称:量子力学(B卷) 共 2 页第 1 页
中国海洋大学2007-2008学年第2学期期末考试试卷
ψ
连续否?其一阶导数'(x
r t的结构。

,)
的测值如何?
中国海洋大学 2007-2008学年 第2学期 期末考试试卷 信息科学与工程 学院《量子力学》课程试题(B 卷) 共 2 页 第 1 页
时刻氢原子的波函数、平均能量、能量为)r 为定态波函数,其对应的能量为分别为电子的轨道角动量和自旋角动量,的共同本征态为φ两种情况分别求出其相应的本征值。

.有一个电子受到沿x 方向的均匀磁场的作用,不考虑轨道运动,=0时电子自旋向上(。

相关文档
最新文档