湖北省武昌实验中学2018年九年级分配生综合测试数学试卷( PDF版,无答案)
2018年武汉市中考数学试卷和答案解析Word版

2018年武汉市初中毕业生数学考试试卷及答案W解o r析d版、一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是()A.3℃B.-3℃C.11℃D.-11℃1在实数范围内有意义,则实数x 的取值范围是()2.若分式x 2A.x>-2 B.x<-2 C.x=-2 D.x≠-2 2-x2 的结果是()3.计算3x2 C.2x D.4x2A.2 B.2x4.五名女生的体重(单位:k g)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.计算(a-2)( a+3)的结果是()2-6 B.a2+a-6 C.a2+6 D.a2-a+6 A.a6.点A(2,-5)关于x 轴对称的点的坐标是()A.(2,5) B.(-2,5) C.(-2,-5) D.(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3B.4C.5D.68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.569.将正整数 1 至2018 按一定规律排列如下表:1 2 3 4 5 6 7 89 10 11 12 13 14 15 1617 18 19 20 21 22 23 2425 26 27 28 29 30 31 32,,平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.2013⌒10.如图,在⊙O 中,点 C 在优弧AB⌒上,将弧BC 沿BC 折叠后刚好经过A B 的中点D.若⊙O 的半径为 5 ,AB=4,则BC 的长是()A.2 3 B.3 25 3C.D.2 65 2二、填空题(本大题共6个小题,每小题3分,共18分)11.计算( 3 2) 3 的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000成活数m 325 1336 3203 6335 8073 12628 成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1)13.计算m 12 1 2m 1 m的结果是___________14.以正方形ABCD 的边AD 作等边△ADE,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是32y 60t t .在飞机着陆滑行中,最后 4 s滑行的距离是___________m216.如图,在△ABC 中,∠ACB=60°,AC=1,D 是边AB 的中点, E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8 分)解方程组:x2xyy101618.(本题8 分)如图,点E、F 在BC 上,BE=CF,AB=DC,∠B=∠C,AF 与DE 交于点G,求证:GE=GF19.(本题8 分)某校七年级共有500 名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表学生读书数量扇形图阅读量/本学生人数1 152 a3 b4 5(1) 直接写出m、a、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8 分)用 1 块A 型钢板可制成 2 块C 型钢板和 1 块D 型钢板;用 1 块B 型钢板可制成 1 块C 型钢板和 3 块D 型钢板.现准备购买A、B 型钢板共100 块,并全部加工成C、D 型钢板.要求 C 型钢板不少于120 块,D 型钢板不少于250 块,设购买 A 型钢板x 块(x 为整数)(1) 求A、B 型钢板的购买方案共有多少种?(2) 出售 C 型钢板每块利润为100 元,D 型钢板每块利润为120 元.若童威将C、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8 分)如图,P A是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB、PC,PC 交AB 于点E,且PA=PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC=3∠BPC,求P ECE的值22.(本题10 分)已知点A(a,m)在双曲线y 为B 8x上且m<0,过点 A 作x 轴的垂线,垂足(1) 如图1,当a=-2 时,P(t,0)是x 轴上的动点,将点 B 绕点P 顺时针旋转90°至点 C①若t=1,直接写出点 C 的坐标②若双曲线y 8x经过点C,求t 的值(2) 如图2,将图 1 中的双曲线y 8x(x>0)沿y 轴折叠得到双曲线y8x(x<0),将线段OA 绕点O 旋转,点 A 刚好落在双曲线y 8x(x<0)上的点 D (d,n)处,求m 和n的数量关系23.(本题10 分)在△ABC 中,∠ABC=90°、(1) 如图1,分别过A、C 两点作经过点 B 的直线的垂线,垂足分别为M、N,求证:△ABM ∽△BCN2 5,求tanC 的值(2) 如图2,P 是边B C 上一点,∠BAP=∠C,tan∠PAC=5(3) 如图3,D 是边C A 延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=3,5AD 2 ,AC 5直接写出tan∠CEB 的值2+bx+c 经过点A(0,1),与它的对称轴直线x=1 交24.(本题12 分)抛物线L:y=-x于点 B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y=kx-k+4(k<0)与抛物线L 交于点M、N.若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点 C 作y 轴的垂线交抛物线L1 于另一点D.F 为抛物线L1 的对称轴与x 轴的O C 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有 2 个,求交点,P 为线段m 的值及相应点P 的坐标2018年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10A DB D B AC CD B提示:9.设中间的数为x,则这三个数分别为x-1,x,x+1∴这三个数的和为3x,所以和是 3 和倍数,又2019÷3=671,673 除以8 的余数为1,∴2019 在第 1 列(舍去);2016÷3=672,672 除以8 的余数为0,∴2016 在第8 列(舍去);2013 ÷3-671,671 除以8 的余数为7,∴2013 在第7 列,所以这三数的和是是2013,故选答案 D.10.连AC、DC、OD,过 C 作CE⊥AB 于E,过O 作OF⊥CE 于F,∵BC 沿BC 折叠,∴∠CDB =∠H,∵∠H+∠A=180°,∴∠CDA +∠CDB =180°,∴∠A=∠CDA,∴CA=CD,∵CE⊥AD,∴AE=ED=1,∵OA 5 ,AD=2,∴OD =1,∵OD⊥AB,∴OFED 为正方形,∴OF =1,OC 5,∴C F=2,CE=3,∴CB 3 2 .CCHEOFOAE D BF BA D法一图法二图法二第10题作D 关于BC 的对称点E,连A C、CE,∵AB=4,AE 2AO 2 5 ,∴BE=2,由对称性知,∠ABC=∠CBE=45°,∴AC =C E,延长BA 至F,使FA=B E,连F C,易证△FCA≌△BCE,∴∠FCB =90°,∴2 2BC FB AB BE 3 2 .2 2二、填空题11. 2 12.0.9 13.1m 114.30°或150°15.24 16.32揭示:第15 题3y t2220 600当t=20 时,滑行到最大距离600m 时停止;当t=16 时,y=576,所以最后4s滑行24m.第16题延长BC 至点F,使CF= A C,∵DE 平分△ABC 的周长,AD =B C,∴AC +C E= B E,∴BE= C F+ C E= E F ,∴DE ∥AF ,DE= 12AF ,又∵∠ACF=120 °,AC=CF ,∴AF 3AC 3 ,∴3 DE .2FCCEEFGAD BA BD第16 题法一答图第16 题法二答图法二第16 题解析作BC 的中点F,连接D F,过点 F 作FG⊥DE 于G,设CE= x,则BE=1+ x ,∴BE=1+ x ,∴BC=1+2 x ,∴1CF x ,∴21EF CF CE ,而21 1DF AC ,且∠C=60°,∴∠DFE =120°,∴∠FEG =30°,∴2 21 1 GF EF ,2 4∴3EG ,∴43DE 2EG .2三、解答题17、解析:原方程组的解为xy64AB DC18.证明:∵B E=CF,∴BE +EF =CF +EF,∴BF=CE,在△ABF 和△DCE 中 B C,∴BF CE△ABF ≌△DCE(SASA),∴∠DEC =∠AFB ,∴GE=GF .19.解析(1)m=50,a=10,b=20(2)115 2 10 3 20 4 550500 1150(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150 本.20.解析:(1)设 A 型钢板x 块,则B型钢板有(100-x)块.2x 100 x 120x 3 100 x 250,解得20 x 25 .X=20 或21 或22 或23 或24 或25,购买方案共有 6 种.(2)设总利润为W 元,则w 100 2x 100 x 120 x 3 100 x 140x 46000X=20 时,W max 140 20 46000 43200 元.获利最大的方案为购买A 型20 块,B 型80 块.OA OB21.(1)证明:如图①,连接OB,OP,在△OAP 和△OBP 中,OP OP,∴△OAP≌AP BP△OBP(SSS),∴∠OBP =∠OAP,∵P A是⊙O 的切线,∴∠OBP =∠OAP=90°,∴PB 是⊙O 的切线.A AHO OP PE EC B C B图②图①⑵如图②,连接BC,AB 与OP 交于点H∵∠APC=3∠BPC,设∠BPC=x,则∠APC=3x,∠APB =x+3x=4x由⑴知∠APO=∠BPO=2x,∴∠OPC=∠CPB=x∵AC 是⊙O 的直径,∴∠ABC =90°∵易证OP⊥AB ,∴∠AHO =∠ABC =90°,即OP∥BC∴∠OPC=∠PCB=∠CPB=x,∴CB=BP易证△OAH ∽△CAB ,∴OHCB =OAAC=12,设OH=a,∴CB=BP=2a易证△HPB∽△BPO,∴H PBP =BPOP,∴设HP=ya,∴y a2a=2aa ya1 17解得y1 (舍)或y22 1 172∵OP∥CB,易证△HPE∽△BCE,∴PECE=H PCB=y a2a=117422、解:⑴将x A=-2 代入y=8x中得:y A=82=-4 ∴A( -2,-4),B( -2,0)①∵t=1 ∴P(1,0),BP=1-(-2)=3∵将点 B 绕点P 顺时针旋转90°至点 C ∴x C=x P=t PC=BP=3 ∴C(1,3)②∵B(-2,0),P(t,0)第一种情况:当 B 在P 的右边时,BP=-2-t∴x C=x P=t PC1=BP=-2-t ∴C1(t,t+2)第二种情况:当 B 在P 的左边时,BP=2+t∴x C=x P=t PC2=BP=2+t ∴C2(t,t+2)综上:C 的坐标为(t,t+2)∵C 在y=8x上∴t(t+2)=8 解得t=2 或-4yyyCD 2E 2D 1E1P BBBxxOOPOxACAA⑵作 DE ⊥ y 轴交 y 轴于点 E ,将 y A =m 代入 y =8 x 得: x A = 8 m ,∴ A( 8 m ,m) ∴AO 2=OB 2+AB 2=28 2 m +m 2, 2, 将 y D =n 代入y =8 x 得: x D = 8 n ,∴ D( - 8 n ,n) ∴DO 2=DE 2+OE 2=8 n 2 +n 2, 2, ∴ 2 8 2 m +m 2= 2= 8 n 2 +n 2, 2, 2 8 2 m - 2 8 2 n=n 2-m 2, 2-m 2, 2 2 64( n m ) 2 2 m n=n 2-m 2, 2-m 2, 22)(n 2-m 2)=0(64-mn①当 n2-m 2=0 时, n 2=m 2,∵ m < 0,n >0∴m +n =02n 2=0 时, m 2n 2=64,∵ m <0,n >0∴mn =- 8②当 64- m 综合得: m +n =0,或 mn =- 8A 23、证明:⑴∵∠ ABC =90°1C∴∠ 3+∠ 2= 180°-∠ ABC = 180°-90°= 90°又∵ AM ⊥MN ,CN ⊥ MN ∴∠ M =∠ N =90°,∠ 1+∠ 3=90° ∴∠ 1=∠ 232 MBN∴△ ABM ∽△ BCNA⑵方法一:过P 点作 PN ⊥AP 交 AC 于 N 点, 过N 作 NM ⊥BC 于 M 点 N∵∠ BAP +∠ APB =90°,∠ APB +∠ NPC =90°C∴∠ BAP =∠ NPC ,△ BAP ∽△ MPBPM∴A P BA BP PN MP MN又∵tan PAC PNPA2 55设M N 2 5a ,PM 2 5b,则B P 5a ,AB 5b又∵BAP BCA ,∴NPC BCA ,∴NP NC ,PC 2PM 4 5b又△ BAP ∽△ BCA , B A BC BPBA,∴2BA BP BC ,25b5a 5a 4 5b ,解得:5 ab , 5∴tan CM N 2 5a a 5 MCb b52 5方法二: 过点 C 作 CE AP 的延长线交于 E 点,过 P 作 PF AC 交 AC 于点 F ∵ ABCCEP 90 , BPA EPC ,∴ BAP ECPACB∵tan2 5 PAC ,∴设C E 2 5m ,则A E 5m5由勾股定理得:AC 3 5m ,∵ ACPECP ,∴ PF PE ∴SAC AP APCSCEPECPE3 2∵ AE 5m ,∴ PE 2m∴tan ECPtan ACBP E EC25 52 5 方法三:作AP 的垂直平分线交 AB 于 D 点,连D P设CBAPx , PACy ,∴ 2x y 90BDP BAP DPA 2xDPB 902x y PAC∵tan2 5 PAC ,令 BD2a , BP 5a5由勾股定理得: DP 3aAD∴tan C tan BAPB P AB5 5(3)过 A 作 AH EB 交 EB 于 H ,过 C 作 CKEB 交 EB 的延长线于 K∵ AEAB ∴ EHHB ,易知△ AHB ∽△ BKC ,E HDA HKAC2 5设C K 3x ,∵△ AHB ∽△ BKC ,∴A BHB BC CK,∴ HBEH4x∴5EH 20x HK10x ,∴ 22tan CEB C K EK 31424.解析:(1)221y x x(2)∵直线y kx k4k0,则y k x14∴直线M N过定点P(1,4)y kx k4联立2y x2x1,得2230x k x k∴x M x N2k,x M x N3k∴S S SBMN EBN EBM111EB x1EB x12x x1N M N M222∵24224328 x x x x x x k k kN M M N M N∴281k∴k3∵k0∴k3(3)设L1为:22y x x t∴m t1且C(0,t),D(2,t),F(1,0),设P(0,a)①△PCD∽△POF时,∴足条件C D CPOF OP,∴21t aa,∴t3a,此时必有一点P满②△DCP∽△POF时,∴∵符合条件的点P恰有两个,∴第一种情况:C D CPOP OF,∴2at a1,∴220a at220a at有两个相等的实数根0,∴t22∵t0∴t22,∴m1221将t22代入t3a得:22a∴P1(0,13223)将t22代入220a at得:a22∴P2(0,2)第二种情况:220a at有两个不相等的实数根,且其中一根为t3a的解∴0,将t3a代入220a at得:23220a a∴a1∵a0∴a1,∴t3,m22将t3代入220a at得:a31,∴P3(0,1);a42,∴P4(0,2)综上所述:当m1221时,P(0,223)或P(0,2),当m22时,P(0,1)或P(0,2)。
2018年武汉市中考数学试卷及答案解析

2018年武汉市中考数学试卷及答案解析(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 、 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42D .42、405.计算(a -2)(a +3)的结果是( ) A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41 B .21 C .43D .65 9.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32B .23C .235 D .265二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m 325 1336 3203 6335 807312628 成活的频率(精确到)由此估计这种幼树在此条件下移植成活的概率约是___________(精确到) 13.计算22111m m m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图阅读量/本 学生人数1 152 a3 b4 5(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值(2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52=AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P 的坐标2018年武汉中考数学参考答案与解析一、选择题12345678910A DB D B AC CD B提示:9.设中间的数为x,则这三个数分别为x-1,x,x+1∴这三个数的和为3x,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013,故选答案D.10.连AC、DC、OD,过C作CE⊥AB于E,过O作OF⊥CE于F,∵BC沿BC折叠,∴∠CDB=∠H,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA,OA=AD=2,∴OD=1,∵OD⊥AB,∴∴CA=CD,∵CE⊥AD,∴AE=ED=1,∵5OFED为正方形,∴OF=1,5CB=.OC,∴CF=2,CE=3,∴32OHFEDCBAOFEDCBA法一图 法二图 法二 第10题 作D 关于BC 的对称点E ,连AC 、CE ,∵AB =4,2AE AO ==BE =2,由对称性知,∠ABC =∠CBE =45°,∴AC =CE ,延长BA 至F ,使FA =BE ,连FC ,易证△FCA ≌△BCE ,∴∠FCB =90°,∴)22BC FB AB BE ==+=二、填空题11m - °或150°揭示: 第15题 ()23206002y t =--+ 当t =20时,滑行到最大距离600m 时停止;当t =16时,y =576,所以最后4s 滑行24m .第16题 延长BC 至点F ,使CF =AC ,∵DE 平分△ABC 的周长,AD =BC ,∴AC +CE =BE ,∴BE =CF +CE =EF ,∴DE ∥AF ,DE =12AF ,又∵∠ACF =120°,AC =CF ,∴AF =,∴DE =.FEDCB ABD第16题法一答图 第16题法二答图法二 第16题 解析 作BC 的中点F ,连接DF ,过点F 作FG ⊥DE 于G ,设CE =x ,则BE =1+x ,∴BE =1+x ,∴BC =1+2x ,∴12CF x =+,∴12EF CF CE =-=,而1122DF AC ==,且∠C =60°,∴∠DFE =120°,∴∠FEG =30°,∴1124GF EF ==,∴4EG =,∴22DE EG ==. 三、解答题17、解析:原方程组的解为64x y =⎧⎨=⎩18.证明:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DCE (SASA ),∴∠DEC =∠AFB ,∴GE =GF . 19.解析 (1)m =50,a =10,b =20 (2)11521032045500115050⨯+⨯+⨯+⨯⨯=(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150本. 20.解析(1)设A 型钢板x 块,则B 型钢板有(100-x )块.()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得2025x ≤≤. X =20或21或22或23或24或25,购买方案共有6种.(2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦X =20时,max 140204600043200W =-⨯+=元. 获利最大的方案为购买A 型20块,B 型80块.21.(1)证明:如图①,连接OB ,OP ,在△OAP 和△OBP 中,OA OBOP OP AP BP =⎧⎪=⎨⎪=⎩,∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵PA 是⊙O 的切线, ∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线.图②图①⑵如图②,连接BC ,AB 与OP 交于点H∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x 由⑴知 ∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ∵AC 是⊙O 的直径,∴∠ABC =90°∵易证OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC ∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP易证△OAH∽△CAB ,∴OH CB =OA AC =12,设OH =a ,∴CB =BP =2a 易证△HPB∽△BPO ,∴HP BP =BP OP ,∴设HP =ya ,∴2yaa=2a a ya +解得 1y =(舍)或2y =∵OP ∥CB ,易证△HPE∽△BCE ,∴PE CE =HP CB =2ya a22、解:⑴将x A =-2代入y =8x 中得:y A =82-=-4 ∴A(-2,-4),B(-2,0)①∵t =1 ∴P(1,0),BP =1-(-2)=3∵将点B 绕点P 顺时针旋转90°至点C ∴x C =x P =t PC =BP =3 ∴C(1,3)②∵B(-2,0),P(t ,0)第一种情况:当B 在P 的右边时,BP =-2-t∴x C =x P =t PC 1=BP =-2-t ∴C 1(t ,t +2)第二种情况:当B 在P 的左边时,BP =2+t∴x C =x P =t PC 2=BP =2+t ∴C 2(t ,t +2) 综上:C 的坐标为(t ,t +2) ∵C 在y =8x上 ∴t(t +2)=8 解得 t =2或-4⑵作DE ⊥y 轴交y 轴于点E ,将y A =m 代入y =8x 得:x A =8m ,∴A(8m ,m) ∴AO 2=OB 2+AB 2=228m+m 2,将y D =n 代入y =8x 得:x D =8n ,∴D(-8n ,n) ∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2, (64-m 2n 2)(n 2-m 2)=0①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0 ∴m +n =0 ②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0 ∴mn =-8 综合得:m +n =0,或 mn =-823、证明:⑴∵∠ABC =90°∴∠3+∠2=180°-∠ABC =180°-90°=90°又∵AM ⊥MN ,CN ⊥MN∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2∴△ABM ∽△BCN ⑵方法一:过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点∵∠BAP +∠APB =90°,∠APB +∠NPC =90°∴∠BAP =∠NPC ,△BAP ∽△MPN AP BA BP PN MP MN == 又∵25tan 5PN PAC PA ∠== 设25MN a =,25PM b =,则5BP a =,5AB b =又∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,245PC PM b ==又△BAP ∽△BCA ,BA BC BP BA=,∴2BA BP BC =⋅, ()()255545b a a b =⋅+,解得:55a b =, ∴255tan 525MN a a C MC b b ∠==== 方法二:过点C 作CE AP ⊥的延长线交于E 点,过P 作PF AC ⊥交AC 于点F ∵90ABC CEP ∠=∠=︒,BPA EPC ∠=∠,∴BAP ECP ACB ∠=∠=∠ ∵25tan 5PAC ∠=,∴设25CE m =,则5AE m = 由勾股定理得:35AC m =,∵ACP ECP ∠=∠,∴PF PE = ∴32APC CPE S AC AP S CE PE ∆∆=== ∵5AE m =,∴2PE m =∴25tan tan 525PE ECP ACB EC ∠=∠===方法三:作AP 的垂直平分线交AB 于D 点,连DP设C BAP x ∠=∠=,PAC y ∠=,∴290x y +=︒2BDP BAP DPA x ∠=∠+∠=902DPB x y PAC ∠=︒-==∠∵25tan 5PAC ∠=,令2BD a =,5BP a = 由勾股定理得:3DP a AD ==∴5tan tan 5BP C BAP AB ∠=∠== (3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC == 设3CK x =,∵△AHB ∽△BKC ,∴AB HB BC CK=,∴4HB EH x == ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==24. 解析:(1)221y x x =-++(2)∵直线()40y kx k k =-+<,则()14y k x =-+ ∴直线MN 过定点P (1,4)联立2421y kx k y x x =-+⎧⎨=-++⎩, 得()2230x k x k +--+=∴2M N x x k +=-,3M N x x k ⋅=-∴BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-= ∵()()()22242438N M M N M N x x x x x x k k k -=+-=---=-1= ∴3k =±∵0k < ∴3k =-(3)设1L 为:22y x x t =-++ ∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a )①△PCD ∽△POF 时, ∴CD CP OF OP =, ∴21t a a -=, ∴3t a =,此时必有一点P 满足条件②△DCP ∽△POF 时, ∴CD CP OP OF =, ∴21t a a -=, ∴220a at -+= ∵符合条件的点P 恰有两个,∴第一种情况: 220a at -+=有两个相等的实数根0∆=,∴t =±∵0t > ∴t =, ∴11m =将t =3t a =得:13a = ∴1P (0,3)将t =220a at -+=得:2a ∴2P (0第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解 ∴0∆>, 将3t a =代入220a at -+=得:22320a a -+= ∴1a =± ∵0a > ∴1a =, ∴3t =, 22m = 将3t =代入220a at -+=得:31a =, ∴3P (0,1); 42a =, ∴4P (0,2)综上所述:当11m =时,P (0)或P (0 当22m =时,P (0,1)或P (0,2)。
武汉市2018年初中毕业生考试数学试卷及详细答案(word版)

2018年武汉市初中毕业生考试数学试卷、一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃ 2.若分式21 x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 2 4.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )A .2、40B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( ) A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5) B .(-2,5) C .(-2,-5)D .(-5,2) 7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表: 12 34 5 6 7 8 9 10 1112 13 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019 B .2018C .2016D .2013 10.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000 成活数m 325 13363203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.891 0.915 0.905 0.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1)13.计算22111m m m ---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________ 15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表 学生读书数量扇形图阅读量/本学生人数 115 2a 3b 4 5(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE 的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线x y 8=经过点C ,求t 的值(2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线x y 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52 AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。
武昌2018年中考数学训练题(二)(word版)

2018武昌中考数学训练题(二)一、选择题(共10小题,每小题3分,共30分) 1.-2的倒数是( ) A .21-B .21 C .2 D .-22.式子x -3有意义,则x 的取值范围是( ) A .x ≥3B .x ≤3C .x ≥-3D .x ≤-3 3.下列各式计算正确的是( ) A .2a 2+3a 3=5a 5B .a 3·a 2=a 5C .(a 7)2=a 9D .2x -x =24.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12B .9C .4D .3 5.把多项式x 3-6x 2+9x 分解因式正确的是( ) A .x (x 2-6x +9)B .x (x +3)(x -3)C .x (x -9)2D .x (x -3)26.如图,线段AB 的两个端点坐标分别为A (1,-1)、B (2,-1),以原点O 为位似中心,将线段AB 放大后得到线段CD .若CD =2,则端点C 的坐标为( ) A .(2,-2) B .(2,-4) C .(-2,2)D .(-4,2)7.如图是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是( )8则在这次活动中,该班同学捐款金额的众数和中位数是( )A .55、55B .60、55C .60、50D .50、509.意大利著名数学家裴波那契在研究兔子繁殖问题时,发现有这样一组数:0、1、2、3、5、8、13、……,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图,再分别依次从左到右取2个、3个、4个、5个正方形拼成如下长方形并记为①、②、③、④,相应长方形的周长如下表所示:若按此规律继续作长方形,则序号为⑩的长方形周长是( ) A .388B .402C .466D .49910.如图,P A 、PB 切⊙O 于AB 两点,CD 切⊙O 于点E 交P A 、PB 于C 、D .若△PCD 的半径为3r ,则tan ∠APB 的值为( )A .12135 B .512C .5133D .3132 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算28-的结果是___________ 12.计算11122++-x x 的结果是___________ 13.从一副54张牌的扑克牌中任取一张,它是梅花的概率是___________14.如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作□CDEB .当AD =___________,四边形CDEB 为菱形15.如图,要在底边BC =160 cm ,高AD =120 cm 的铁皮余料上,截取一个面积为3600 cm 2的矩形EFGH ,使点H 在AB 上,点G 在AC 上,点E 、F 在BC 上,AD 交HG 于点M ,则EH 的长为___________cm16.已知二次函数y =(x -h )2-h +2,当自变量x 的取值在0≤x ≤2的范围中时,函数有最小值h ,则h 的值为___________ 三、解答题(共8题,共72分)17.(本题8分)解方程:⎩⎨⎧=+=+832152y x y x18.(本题8分)如图,∠ACB =90°,AC =BC ,BE ⊥CE 于E , AD ⊥CE 于D ,求证:AD =DE +BE19.(本题8分)某校为了增强学生体质,决定开设以下体育课外活动项目:A .篮球B .乒乓球C .羽毛球D .足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结构绘制成了两幅不完整的统计图,请回答下列问题:(1) 这些被调查的学生共有___________人 (2) 请你将条形统计图(2)补充完整(3) 全校1800名学生最喜欢哪项体育活动?由上述调查数据请估计全校有多少学生喜欢该项体育运动20.(本题8分)某移动通讯公司开设了两种通讯业务:“方式A ”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“方式B ”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为y 1元和y 2元 (1) 写出y 1、y 2与x 之间的函数关系式(2) 一个月内通话多少分钟,两种通讯方式的费用相同?(3) 如果小童一个月的通话时间不超过150分钟,小郑一个月的通话时间不低于300分钟,请你分别为他们选一种便宜的通讯方式21.(本题8分)如图,P 是⊙O 的直径AB 延长线上一点,C 为⊙O 上一点,连接PC ,作PM 平分∠APC 交AC 于点M ,∠PMC =45° (1) 求证:PC 是⊙O 的切线 (2) 若AB =7,52=AM CM ,求CM 的长22.(本题10分)如图所示,某双曲线xky =(k >0,x >0)上三点A 、B 、C 的横坐标分别为1、2、3 (1) 若A 点的纵坐标为5,则B 点的纵坐标是___________ (2) 若AB =2BC ,该双曲线的解析式(3) 将点A 绕点B 顺时针旋转90°到点D ,连接BD 、CD ,若△BCD 是直角三角形,直接写出满足条件的k 值23.(本题10分)已知,Rt △ABC 中,∠BAC =90°,AH ⊥BC 于H ,P 是AB 上一动点,AD ⊥CP ,BE ⊥CP ,HD 与BE 两延长线交于点F(1) 当AB =AC 时,求∠BFH 的度数(2) 当∠ABC =30°时,探求BF 与CD 的数量关系,说明理由 (3) 当∠ABC =α时,直接用α的代数式表示BFCD的值24.(本题12分)在平面直角坐标系xOy中,已知抛物线C1:y=ax2-2ax+a+4(a<0)过第一象限内的定点P(1) 直接写出点P的坐标(2) 直线y=kx-k(k≠0)与抛物线c1相交于A、B两点,P A、PB分别交x轴于C、D.若△CPD为直角三角形,求a(3) 若有抛物线c2:y=(c+1)x2+(2a+3)x+c也过定点P,在c2上任取一点M,过M作x轴的垂线交c1于N,Q为MN的中点.当M在c2上运动时,求点Q的运动轨迹所形成的图形的解析式。
2018年湖北武汉市中考数学试卷及答案解析

(1)直接写出 m、a、b 的值;
(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?
3
2018 年湖北武汉市中考数学试卷及答案解析
20.(8 分)用 1 块 A 型钢板可制成 2 块 C 型钢板和 1 块 D 型钢板;用 1 块 B 型钢板可制成 1 块 C 型钢板和 3 块 D 型钢板.现准备购买 A、B 型钢板共 100 块,并全部加工成 C、D 型钢 板.要求 C 型钢板不少于 120 块,D 型钢板不少于 250 块,设购买 A 型钢板 x 块(x 为整数) (1)求 A、B 型钢板的购买方案共有多少种? (2)出售 C 型钢板每块利润为 100 元,D 型钢板每块利润为 120 元.若童威将 C、D 型钢板 全部出售,请你设计获利最大的购买方案. 21.(8 分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接 PB、PC,PC 交 AB 于点 E,且 PA=PB. (1)求证:PB 是⊙O 的切线; (2)若∠APC=3∠BPC,求 的值.
m.
2
2018 年湖北武汉市中考数学试卷及答案解析
16.(3 分)如图.在△ABC 中,∠ACB=60°,AC=1,D 是边 AB 的中点,E 是边 BC 上一点.若 DE 平分△ABC 的周长,则 DE 的长是 .
三、解答题(共 8 题,共 72 分) 17.(8 分)解方程组:
18.(8 分)如图,点 E、F 在 BC 上,BE=CF,AB=DC,∠B=∠C,AF 与 DE 交于点 G,求 证:GE=GF.
C.x=﹣2
D.x≠﹣2
3.(3 分)计算 3x2﹣x2 的结果是( )
A.2
B.2x2
C.2x
D.4x2
(完整)2018年湖北省武汉市中考数学试卷含答案,推荐文档

湖北省武汉市2018年中考数学试卷一、单项选择题<共10小题,每小题3分,共30分)1. <3分)<2018?武汉)在实数-2, 0, 2, 3中,最小的实数是<)A 1 •-2B 0C 2D 31 • 1 • 1 •考点实数大小比较分析根据正数大于0, 0大于负数,可得答案.解答解:- 2v0v2v3,最小的实数是-2, 故选:A.点评:本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.2. <3分)<2018?武汉)若在实数范围内有意义,则x的取值范围是< )A x>0B x>3C x>3D x< 3考点.二7 八、、•一次根式有意义的条件.分析:先根据一次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:T使在实数范围内有意义,x —3^0,解得x >3. 故选C.点评:本题考查的是二次根式有意义的条件,即被开 方数大于等于0.3. <3分)<2018?武汉)光速约为3000 000千M/秒,将数字300000用科学记数 法表示为< )b5E2RGbCAPA 3X 1041 •B 3X 105C 3X 106D 30X 1041 • 1 •1 •考点. 二7 八、、科学记数法表示较大的数分析: 科学记数法的表示形式为a x 10n 的形式,其中 1< |a|<10, n 为整数.确定n 的值时,要看把 原数变成a 时,小数点移动了多少位,n 的绝对 值与小数点移动的位数相同.当原数绝对值〉 1 时,n 是正数;当原数的绝对值< 1时,n 是负 数.解答:解:将300 000用科学记数法表示为:3X 105.故选B.点评:此题考查科学记数法的表示方法.科学记数法 的表示形式为a x 10n 的形式,其中1< |a| < 10, n 为整数,表示时关键要正确确定 a 的值以 及n 的值.4. <3分)<2018?武汉)在一次中学生田径运动会上,参加跳高的 15名运动员的成绩如表: 那么这些运动员跳高成绩的众数是)可.解答: 解:A 、<x3) 2=x6,原式计算错误,故本选项 错误;B、<2x) 2=4x2,原式计算错误,故本选项错误;C、x3?x2=x5,原式计算正确,故本选项正确;D <x+1) 2=x2+2x+1,原式计算错误,故本选项错误;故选C.点评:本题考查了幕的乘方与积的乘方、同底数幕的运算,掌握各部分的运算法则是关键.6. <3分)<2018?武汉)如图,线段AB两个端点的坐标分别为A<6, 6), B<8, 2),以原点0为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为< ) p1Ea nqFDPwA <3, 3)B <4, 3)C <3, 1)D <4, 1)考占.p 八、、位似变换;坐标与图形性质分析:利用位似图形的性质结合两图形的位似比进而得出坐标.C点解答:解:•••线段AB的两个端点坐标分别为A<6, 6), B<8,2),以原点0为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD二端点C的坐标为:<3, 3). 故选:A.点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7. <3分)<2018?武汉)如图是由4个大小相同的正方体搭成的几何体,其俯视图是< )8 <3分)<2018?武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量<单位:辆),将统计结果绘制成如下折线统计图:DXDiTa9E3d由此估计一个月<30天)该时段通过该路口的汽车数量超过200辆的天数为<)A 9B 10C 12D 15I •I ••I •考点:折线统计图;用样本估计总体分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.解答:解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:=0.4 ,所以估计一个月<30天)该时段通过该路口的汽车数量超过200辆的天数为:30 X0.4=12<天).故选C.点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.9. <3分)<2018?武汉)观察下列一组图形中点的个数,其中第1个图中共有4 个点,第2个图中共有10个点,第3个图中共有19个点,…RTCrpUDGiT 按此规律第5个图中共有点的个数是<)A 311 •B 461 •C 51•D•66考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1+1X 3=4个点,第2个图中共有1 + 1X 3+2X 3=10个点,第3个图中共有1+1X3+2X3+3X 3=19个点,…由此规律得出第n个图有1 + 1 X 3+2X 3+3X 3+…+3n 个点.解答:解:第1个图中共有1 + 1X 3=4个点,第2个图中共有1+1X 3+2X 3=10个点,第3个图中共有1+1X 3+2X 3+3X 3=19个点,第n个图有1+1X 3+2X 3+3X 3+…+3n个点.所以第5个图中共有点的个数是1 + 1 X 3+2X 3+3X 3+4X 3+5X 3=46.故选:B.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.10. <3分)<2018?武汉)如图,PA PB切O O于A、B两点,CD切O O于点E, 交PA PB 于C, D.若O O的半径为r, △ PCD的周长等于3r,则tan / APB的值是<)5PCzVD7HxAA BCD考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义分析:<1)连接OA OB OP延长BO交PA的延长线于点F.利用切线求得CA=CE DB=DE PA=PB再得出PA=PB=.利用Rt △BFP^ RT A OAF得出AF= FB,在RT^ FBP中,利用勾股定理求出BF,再求tan / APB的值即可.解答:解:连接OA OB OP延长BO交PA的延长线于点F.v PA PB切O O于A B两点,CD切O O于点E•••/ OAP h OBP=90 , CA=CE DB=DE PA=PB•••△PCD的周长二PC+CE+DE+PD二PC+AC+PD+DB二PA+PB=3r• PA=PB=在Rt△ BFP和Rt△ OAF中,••• Rt △ BF3 RT\ OAF••• AF=FB, 在Rt△ FBP中,v PF2- PB2=FB2• vPA+AF 2 - PB2=FB2< r+BF) 2- < )2=BF2解得BF= r,故选:B.点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.二、填空题<共6小题,每小题3分,满分18分)11. <3分)<2018?武汉)计算:-2+v-3)= - 5.考点:P八、、・有理数的加法分析:根据有理数的加法法则求出即可.解答:解: <- 2) +<-3) =-5, 故答案为:-5.点评:本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.12. <3分)<2018?武汉)分解因式:a3- a= a<a+1) <a- 1)考占.<7 提公因式法与公式法的综合运用分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解: a3 - a,=a<a2- 1),=a<a+1) <a- 1). 故答案为:a<a+1) <a- 1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13. <3分)<2018?武汉)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置<指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为考点.<7 概率公式分析:由一个转盘被分成7个相冋的扇形,颜色分为红、黄、绿二种,红色的有3个扇形,直接利用概率公式求解即可求得答案..jLBHrnAlLg解答:解:•一个转盘被分成7个相冋的扇形,颜色分为红、黄、绿二种,红色的有3个扇形,二指针指向红色的概率为:故答案为:点评: 此题考查了概率公式的应用.注意用到的知识点为:概率二所求情况数与总情况数之比.14. <3分)<2018?武汉)一次越野跑中,当小明跑了 1600M 时,小刚跑了 1400M 小明、小刚在此后所跑的路程 y<M 与时间tv 秒)之间的函数关系如 图,则这次越野跑的全程为 2200M . XHAQX74J0X一次函数的应用设小明的速度为aM/秒,小刚的速度为bM/秒,由行程考占. <7 八、、问题的数量关系建立方程组求出其解即可.解:设小明的速度为aM/秒,小刚的速度为bM/秒,由 题意,得 解得: •••这次越野跑的全程为:1600+300X 2=2200M 故答案为:2200. 本题考查了行程问题的数量关系的运用,二元一次方程 组的解法的运用,解答时由函数图象的数量关系建立方 程组是关键.解答: 点评:15. <3分)<2018?武汉)如图,若双曲线y与边长为5的等边△ AOB勺边OA AB分别相交于C, D两点,且0C=3B,则实数k 的值为.LDAYtRyKfE考点:反比例函数图象上点的坐标特征;等边三角形的性质分析:过点C作CELx轴于点E,过点D作DF丄x轴于点F,设OC=3x则BD=x分别表示出点C点D的坐标,代入函数解读式求出k,继而可建立方程,解出x的值后即可得出k的值.解答:解:过点C作CEL x轴于点E,过点D作DF L x轴于点F,设OC=3x 贝S BD=x在Rt△ OCE中, Z COE=60 ,则0E二CE=则点C坐标为<x), 在Rt△ BDF中,BD=x / DBF=60 ,则BF=DF=x,则点D的坐标为<5 -x), 将点C的坐标代入反比例函数解读式可得:k= x2,将点D的坐标代入反比例函数解读式可得:x2= k=x2,x2,解得:x1 = 1, x2=0<舍去),故故答案为:k= XI 2=点评:本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.16. <3 分)<2018?武汉)如图,在四边形 ABCD 中, AD=4 CD=3 / ABC 2 ACB W ADC=45,贝卩 BD 的长为.Zzz6ZB2Ltk全等三角形的判定与性质;勾股定理;等腰直角三角形 根据等式的性质,可得/ BAD 与/ CAD 的关系,根据 SAS 可得△ BAD W^ CAD 的关系,根据全等三角形的性 质,可得BD 与 CD 的关系,根据勾股定理,可得答案.解:作AD 丄AD AD =AD 连接CD , DD ,如图:, VZ BAC y CAD h DAD +Z CAD 即/ BAD Z CAD , 在厶BAD W^ CAD 中,考点. <7 八、、•分析:•••△BAD^A CAD <SAS , ••• BD=CD . / DAD =90°由勾股定理得DD =/ D‘ DA吃ADC=90由勾股定理得CD =••• BD=CD=故答案为:点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.三、解答题<共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17. <6分)<2018?武汉)解方程:考占.<7 八、、解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x - 6, 解得:x=6,经检验x=6是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想,把分式方程转化为整式方程求解.解分式方程疋注意要验根.18. <6分)<2018?武汉)已知直线y=2x-b经过点<1,- 1),求关于x的不等式2x- b>0 的解集.dvzfvkwMI1考点:一次函数与一元一次不等式分析:把点<1,- 1 )代入直线y=2x- b得到b的值,再解不等式.解:把点<1,- 1 )代入直线y=2x- b得,-1=2- b,解得,b=3.函数解读式为y=2x- 3.解2x - 3》0得,x》.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解读式.19. <6分)<2018?武汉)如图,AC和BD相交于点O, 0A=0, 0B=0D 求证:DC/ AB考占.P 八、、全等三角形的判定与性质;平行线的判定专题:证明题.分析:根据边角边定理求证△ OD QA OBA可得/ C=Z A< 或者/ D=Z B),即可证明DC// AB.解答:解答:证明:•••在厶。
(完整版)2018年武汉市中考数学试卷及答案解析,推荐文档

)
A. 1 4
B. 1 2
C. 3 4
D. 5 6
9.将正整数 1 至 2018 按一定规律排列如下表:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
…… 平移表中带阴影的方框,方框中三个数的和可能是( )
A.2019
B.2018
C.2016
17.(本题 8 分)解方程组: 2x y 16
18.(本题 8 分)如图,点 E、F 在 BC 上,BE=CF,AB=DC,∠B=∠C,AF 与 DE 交于点 G,求证:GE=GF
19.(本题 8 分)某校七年级共有 500 名学生,在“世界读书日”前夕,开展了“阅读助我成
长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取 m 名学生,调
建议收藏下载本文,以便随时学习! 型钢板.要求 C 型钢板不少于 120 块,D 型钢板不少于 250 块,设购买 A 型钢板 x 块(x 为整 数) (1) 求 A、B 型钢板的购买方案共有多少种? (2) 出售 C 型钢板每块利润为 100 元,D 型钢板每块利润为 120 元.若童威将 C、D 型钢板全 部出售,请你设计获利最大的购买方案
A.a2-6
B.a2+a-6
C.a2+6
D.a2-a+6
6.点 A(2,-5)关于 x 轴对称的点的坐标是( )
A.(2,5)
(完整版)2018年武汉市中考数学试卷及答案解析,推荐文档

(3) 如图 3,D 是边 CA 延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= 3 , AD 2 ,直 5 AC 5
接写出 tan∠CEB 的值
24.(本题 12 分)抛物线 L:y=-x2+bx+c 经过点 A(0,1),与它的对称轴直线 x=1 交于点 B (1) 直接写出抛物线 L 的解析式 (2) 如图 1,过定点的直线 y=kx-k+4(k<0)与抛物线 L 交于点 M、N.若△BMN 的面积等 于 1,求 k 的值 (3) 如图 2,将抛物线 L 向上平移 m(m>0)个单位长度得到抛物线 L1,抛物线 L1 与 y 轴交于 点 C,过点 C 作 y 轴的垂线交抛物线 L1 于另一点 D.F 为抛物线 L1 的对称轴与 x 轴的交点,P 为线段 OC 上一点.若△PCD 与△POF 相似,并且符合条件的点 P 恰有 2 个,求 m 的值及相 应点 P 的坐标
获利最大的方案为购买 A 型 20 块,B 型 80 块.
OA OB 21.(1)证明:如图①,连接 OB,OP,在△OAP 和△OBP 中, OP OP ,
AP BP
∴△OAP≌△OBP(SSS),∴∠OBP=∠OAP,∵PA 是⊙O 的切线, ∴∠OBP=∠OAP=90°,∴PB 是⊙O 的切线.
BF CE
∴△ABF≌△DCE(SASA),∴∠DEC=∠AFB,∴GE=GF.
19.解析 (1)m=50,a=10,b=20
(2) 115 210 3 20 4 5 500 1150 (本) 50
答:该年级全体学生在这次活动中课外阅读书箱的总量大约是 1150 本.
20.解析
(1)设 A 型钢板 x 块,则 B 型钢板有(100-x)块.
D.2013