北师大版八年级数学上册教案《函数》教学设计
数学八年级上册《函数》教案

基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。
学的活动1观看洋葱数学有关函数的数学史。
活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。
举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。
北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。
本节内容是学生学习数学的基础知识,对于学生理解数学的本质,培养学生的逻辑思维能力具有重要意义。
本节内容主要介绍了函数的概念、函数的表示方法以及函数的性质。
通过本节内容的学习,学生能够理解函数的基本概念,掌握函数的表示方法,理解函数的性质。
二. 学情分析学生在学习本节内容之前,已经学习了有理数、代数式等基础知识,对于数学的基本概念和逻辑思维能力有一定的掌握。
但是,对于函数这一概念,学生可能比较陌生,需要通过具体的教学活动来帮助学生理解和掌握。
三. 教学目标1.知识与技能:理解函数的基本概念,掌握函数的表示方法,理解函数的性质。
2.过程与方法:通过具体的教学活动,培养学生的逻辑思维能力,提高学生的问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,提高学生的自我表达能力。
四. 教学重难点1.重点:函数的概念、函数的表示方法、函数的性质。
2.难点:函数的概念的理解,函数的性质的推导。
五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解函数的概念,激发学生的学习兴趣。
2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。
3.启发式教学法:通过提问,引导学生思考,培养学生的逻辑思维能力。
六. 教学准备1.教学素材:函数的实例、函数的图片、函数的性质的推导过程。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)通过具体的生活实例,如气温、身高、体重等,引导学生理解函数的概念。
2.呈现(10分钟)介绍函数的表示方法,如解析式、图像等,并通过多媒体展示函数的图像,帮助学生理解函数的表示方法。
3.操练(10分钟)让学生通过小组合作学习,探讨函数的性质,如单调性、奇偶性等,并展示小组讨论的结果。
4.巩固(10分钟)通过提问和回答的方式,巩固学生对函数的概念、表示方法和性质的理解。
北师大版八年级数学上册:4.1《函数》教案1

北师大版八年级数学上册:4.1《函数》教案1一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。
本节课的主要内容是让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。
通过本节课的学习,使学生能够理解生活中的一些现象和问题,培养学生的数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了代数的基础知识,对一些数学概念和符号有一定的理解。
但部分学生可能对生活中的实际问题与数学知识的联系还不够明确,对函数的概念和性质的理解可能存在一定的困难。
三. 教学目标1.让学生了解函数的概念,理解函数的性质,掌握函数的表示方法。
2.培养学生运用数学知识解决生活中问题的能力。
3.培养学生合作交流、积极思考的学习习惯。
四. 教学重难点1.函数的概念和性质。
2.函数的表示方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极思考,培养学生的数学思维能力。
六. 教学准备1.课件、教案。
2.与生活相关的函数实例。
3.小组讨论的准备。
七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、海拔等,引导学生思考这些现象与数学知识的联系,激发学生的学习兴趣。
2.呈现(10分钟)通过课件展示函数的概念和性质,让学生初步了解函数的定义,以及函数的表示方法。
3.操练(10分钟)让学生通过自主学习,理解函数的概念和性质,学会用函数表示一些实际问题。
4.巩固(10分钟)学生分组讨论,分析生活中的实际问题,运用函数的知识解决问题,巩固所学内容。
5.拓展(10分钟)引导学生思考函数在其他领域的应用,如经济学、物理学等,拓宽学生的知识视野。
6.小结(5分钟)对本节课的主要内容进行总结,使学生明确函数的概念、性质和表示方法。
7.家庭作业(5分钟)布置一些有关函数的练习题,巩固所学知识,提高学生的应用能力。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
教学过程中每个环节所用的时间如上所示,供您参考。
北师大版数学八年级上册1《函数》教学设计2

北师大版数学八年级上册1《函数》教学设计2一. 教材分析北师大版数学八年级上册1《函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用的初步认识。
本节课的内容主要包括函数的定义、函数的性质和函数图像等。
通过本节课的学习,学生可以对函数有更深入的了解,为后续学习更复杂的函数知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对抽象的函数概念和性质可能较难理解和掌握,需要通过具体例子和实际应用来加深理解。
三. 教学目标1.理解函数的定义,掌握函数的性质。
2.学会用函数的性质解决实际问题。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.函数的定义和性质。
2.函数图像的绘制和分析。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,用实际案例让学生理解函数的性质,小组合作学习法让学生在讨论中加深对知识的理解。
六. 教学准备1.准备相关案例和实际问题。
2.准备函数图像的绘制工具。
3.准备小组讨论的问题和任务。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,如“某商场举行打折活动,商品的原价和折扣价之间是否存在某种关系?”引导学生思考函数的定义和作用。
2.呈现(10分钟)呈现函数的定义和性质,用PPT或板书展示。
同时,用具体案例来说明函数的性质,如“一次函数的图像是一条直线”,“二次函数的图像是一个抛物线”等。
3.操练(10分钟)让学生通过绘制函数图像来加深对函数性质的理解。
可以分组进行,每组选择一个函数,绘制其图像,并分析图像的性质。
4.巩固(10分钟)通过一些练习题来巩固对函数性质的理解。
可以设置一些选择题、填空题或解答题,让学生在解答过程中运用所学知识。
5.拓展(10分钟)引导学生思考函数在实际生活中的应用,如“如何利用函数模型来描述某种现象?”让学生举例说明,并进行讨论。
北师大版数学八年级上册《1 函数》教学设计1

北师大版数学八年级上册《1 函数》教学设计1一. 教材分析北师大版数学八年级上册《1 函数》是学生在初中阶段首次接触函数概念和性质的重要内容。
本节内容是在学生已经掌握了初中数学的一些基本概念和性质的基础上进行教学的。
教材从实际问题出发,引入函数的概念,让学生了解函数在实际问题中的应用。
接着,通过探究函数的性质,让学生掌握函数的单调性、奇偶性等基本性质。
最后,教材还介绍了函数图像的特点,让学生能够通过观察函数图像来理解函数的性质。
二. 学情分析学生在学习本节内容之前,已经掌握了初中数学的一些基本概念和性质,具备了一定的数学思维能力。
但是,对于函数这一概念,学生可能还比较陌生,难以理解函数的本质和应用。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出函数的概念,并通过大量的例子让学生感受函数的应用。
三. 教学目标1.了解函数的概念,理解函数的三个要素:定义域、值域、对应关系。
2.掌握函数的单调性、奇偶性等基本性质。
3.能够通过观察函数图像来理解函数的性质。
4.能够运用函数解决实际问题。
四. 教学重难点1.函数的概念和三个要素的理解。
2.函数的单调性、奇偶性的理解和应用。
3.函数图像的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,让学生感受函数的应用。
2.探究教学法:通过学生的自主探究,让学生掌握函数的单调性、奇偶性等基本性质。
3.数形结合教学法:通过观察函数图像,让学生理解函数的性质。
六. 教学准备1.教材和教学参考书。
2.函数图像的课件或黑板。
3.与函数相关的实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“小明每天跑步的速度是恒定的,请问他跑步的路程和时间的关系是什么?”让学生思考,引出函数的概念。
2.呈现(10分钟)讲解函数的定义,让学生理解函数的三个要素:定义域、值域、对应关系。
通过举例,让学生感受函数的应用。
3.操练(10分钟)让学生分组讨论,找出生活中的其他函数例子,并解释它们的特点。
北师大版数学八年级上册1《函数》教学设计3

北师大版数学八年级上册1《函数》教学设计3一. 教材分析《函数》是北师大版数学八年级上册的教学内容,本节课主要让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。
通过本节课的学习,使学生能够理解生活中的函数现象,提高解决实际问题的能力。
二. 学情分析学生在七年级时已经学习了代数知识,对变量、方程有一定的认识。
但函数作为一种新的数学概念,对学生来说较为抽象,需要通过实例让学生感受函数的意义,从而更好地理解函数的内涵。
三. 教学目标1.了解函数的概念,知道函数的表示方法。
2.理解函数的性质,能够分析生活中的函数现象。
3.提高学生解决实际问题的能力,培养学生的数学思维。
四. 教学重难点1.函数的概念及表示方法。
2.函数的性质的理解与应用。
五. 教学方法采用情境教学法、实例教学法和小组合作学习法。
通过生活实例引入函数概念,让学生在实际问题中感受函数的意义;通过小组讨论,引导学生探索函数的性质,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示生活中的函数现象。
2.实例材料:收集相关的实际问题,用于引入函数概念。
3.学习任务单:设计学习任务单,引导学生探究函数的性质。
七. 教学过程1.导入(5分钟)利用课件展示生活中的函数现象,如温度随时间的变化、物价随时间的变化等,引导学生思考这些现象背后的数学规律。
2.呈现(10分钟)介绍函数的概念,让学生了解函数的定义,并通过实例解释函数的表示方法。
如y=2x+1,x表示自变量,y表示因变量,2和1为常数。
3.操练(10分钟)让学生分组讨论,分析给定的实际问题,尝试用函数表示这些问题。
如一个人骑自行车行驶的路程s与时间t的关系,可以表示为s=10t(假设速度为10km/h)。
4.巩固(10分钟)让学生根据函数的性质,判断给定的实际问题是否为函数。
如一个人身高与年龄的关系,是否为函数?通过讨论,使学生理解函数的内涵。
5.拓展(10分钟)引导学生思考函数在实际生活中的应用,如购物时优惠券的使用、手机话费的计算等。
八年级数学上册4.1函数教学设计 (新版北师大版)

八年级数学上册4.1函数教学设计(新版北师大版)一. 教材分析函数是八年级数学上册第四单元的内容,本节课的主要内容是让学生初步理解函数的概念,了解函数的表示方法,以及会使用函数的性质解决一些简单问题。
教材通过引入实际问题,引导学生探究函数的定义和表示方法,培养学生的数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,对数学问题有一定的探究能力。
但函数概念抽象,学生理解起来有一定难度,因此需要教师在教学中引导学生逐步理解函数的概念,并通过实际例子让学生体验函数的应用。
三. 教学目标1.了解函数的定义和表示方法,能正确理解函数的概念。
2.学会用函数的性质解决一些简单问题,提高数学解决问题的能力。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.函数的概念和表示方法。
2.函数的性质及应用。
五. 教学方法1.情境教学法:通过引入实际问题,引导学生探究函数的定义和表示方法。
2.启发式教学法:在教学过程中,教师引导学生思考,激发学生的学习兴趣。
3.小组合作学习:学生分组讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学PPT:制作包含函数概念、表示方法和应用实例的PPT。
2.实际问题:准备一些与生活相关的问题,用于引导学生探究函数。
3.练习题:准备一些有关函数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如“某水果店售价为每千克x元,求购买y千克该水果需要支付的总价”,让学生思考这些实际问题与数学函数之间的关系。
2.呈现(15分钟)介绍函数的定义和表示方法。
函数的定义:在某个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一的值与之相对应,那么y就是x的函数。
函数的表示方法有解析式和列表法。
3.操练(15分钟)让学生分组讨论,运用函数的性质解决一些简单问题。
如:“已知函数y=2x+1,求当x=3时,y的值是多少?”4.巩固(10分钟)让学生独立完成一些有关函数的练习题,巩固所学知识。
八年级数学上册第4章《函数》教学设计(北师大版)

函数一、教材分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。
教材让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图象的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
教材中的函数概念就是这样从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。
本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。
同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
二、学情分析1、对学生已有知识经验分析学生在小学时学到加减乘除运算法则,乘法口诀,就体现了一种对应关系。
还有按规律数火柴棒的经历,也体现了一种对应。
学生在六年级上学期学习圆和扇形时,就初步感知了两个变量的依赖关系;学习数据的表示(统计图表)时,认识数字与图形的联系和对应关系。
六年级下学期学习数轴时,初步接触点与数的对应。
学生在七年级上学期用字母表示数,代数式的值的教学是培养学生对变量的认识、树立初步的函数观念的良好契机。
数、字母、代数式之间的关系实际上就是数、自变数、函数之间的关系。
代数式本身就是代数式所含字母的函数,代数式求值实际上就是给自变数一个确定的值,求对应的函数值。
在七年级下册已学习了《变量之间的关系》,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,对变量间互相依存的关系有了一定的认识。
初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。
上述分析表明,课本在正式引进函数概念之前,早已结合有关知识,渗透了函数的概念和对应的思想:通过代数式的值的概念,可以很好给学生渗透一些变量间的依存关系以及变量的变化范围等方面的初步知识,学习平面上的点和有序实数对间的一一对应关系,为学生学习函数的图形做好了准备,此外,方程(特别是二元一次方程)、等式的学习以及有关几何量的计算,进一步促进学生认识两个量之间是相互关联的,体会到两个变量之间的相互依存关系,都为学生学习函数知识作了很好的准备!2、可能存在的难点分析由常量数学到变量数学的过渡,以函数的引入为标志,宣布了数学问题的研究由处理相对稳定的数学问题进入处理运动、变化的量与量关系的数学问题的领域,抽象层次的再一次提升;由数到形,又到数形结合,研究量与量之间运动、变化过程中表现出的关系,则又是一类研究对象与研究方法的转变而导致的不适应,就出现了由常量数学到变量数学过渡的这一难关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数》
《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。
教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,
进而抽象出函数的概念。
与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。
同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;
2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;
3.了解函数的三种表示方法。
4.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;
5.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神。
◆教学重难点
◆
对学生来讲本节课的难点在于对函数概念的理解。
◆课前准备
◆
教具:教材,课件,电脑。
学具:教材,笔,练习本。
◆教学过程
第一环节:创设情境、导入新课
内容:
展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。
意图:
承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
效果:
生活实例,激发了学生的研究热情,起到很好的导入效果。
第二环节:展现背景,提供概念抽象的素材
内容:
问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?
当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?
摩天轮上一点的高度h与旋转时间t之间有一定的关系,下图就反映了时间t(分)与
摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别
取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?
问题2.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。
随着层数的增加,物体的总
数是如何变化的?
填写下表:
问题3.一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零。
因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0。
(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?
(2)给定一个大于-273 ℃的t值,你能求出相应的T值吗?
意图:
通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等)。
效果:
通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点。
第三环节:概念的抽象
内容:
1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:
在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值。
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2.点明函数概念中的两个关键词:两个变量,一个x值确定一个y值,它们是判断函数关系的关键。
3.再通过对上面3个情境的比较,引导学生思考三个情境呈现形式的不同(依次以图像、代数表达式、表格的形式反映两个变量之间的关系),得出函数常用的三种表示方法:
(1) 图象法 ; (2)列表法 ; (3)解析法。
意图:
通过比较异同点,揭示函数的本质概念和不同的表示方法。
效果:
教学过程中,由于有了七年级较好的铺垫,学生都能顺利地抽象出有关概念。
第四环节:概念辨析与巩固
内容:
1.介绍常量与变量的概念
常量:在某一变化过程中,始终保持不变的量;
变量:在某一变化过程中,可以取不同数值的量。
指出下列关系式中的变量与常量:
(1)球的表面积S (cm 2)与球半径R (cm)的关系式是S=4πR 2。
(2)以固定的速度V 0(米/秒)向上抛一个球,小球的高度h(米)与小球运动的时间t(秒)之间的关系式是h=V 0t-4.9t 2。
2.概念应用举例
1. 小明骑车从家到学校速度是15千米/时,你能表示出他走过的路程s 与时间t 之间的变化关系吗?S 是t 的函数吗?路程s 随时间t 的变化的图像是什么?
略解:S=15t,是函数,图像略。
2. 如果A 、B 路程为200千米,一辆汽车从A 地到B 地行驶的速度v 与行驶时间t 是怎样的变化关系?V 是t 的函数吗?速度v 随时间t 的变化的图像是什么?
略解: ,是函数,图像略。
3. 若正方形的边长为x,则面积y 与边长x 之间的关系是什么?y 是x 的函数吗?面积y 随边长x 的变化的图像是什么?
略解:s=x 2
,是函数,图像通过课件展示给同学们。
意图:
通过常量与变量的区别阐述,进一步理解函数的关键;通过三个例题,对函数概念进行更深入的探讨,再次揭示函数概念的本质特征。
200
v t =
效果:
通过对函数基本特征的反复比较与探究,学生能比较深刻地理解函数的概念;同时三个例题涉及了初中阶段将要学到一次函数、反比例函数和二次函数,也为学生将来学习这三种函数留下了一个初步的印象。
第五环节:课时小结
内容:请同学们针对本节的内容进行自我小结,学生之间相互补充后;最后教师总结。
意图:
引导学生自己总结本节课的知识要点和数学学习方法,使学生从感性上升到理性,形成系统的知识。
效果:
学生各抒己见,然后相互补充完善,最后师生共同完成了小结内容。
当然,在学生发言时,教师要注意学生的语言表述的准确性。
最终总结了下面的内容:
1.初步掌握函数的概念,并能判断两个变量之间的关系是否是函数的关系。
理解函数的概念应抓住以下三点:
(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“y有确定的值”;
(2)判断两个变量是否有函数关系不是看它们之间是否有关系是存在,更重要的是看对于x的每一个确定的值,y是否有唯一确定的值与之对应;
(3)函数不是数,它是指在某一变化的过程中两个变量之间的关系。
2.在一个函数关系式中,能识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值。
3.函数的三种表达式:
(1)图象法(用图像来表示函数的方法);
(2)列表法(把自变量x的一系列值和函数y的对应值列成一个表格来表示函数的反方法);
(3)解析法(用代数式来表示函数的方法,用来表示函数关系的式子叫做函数关系式,函数关系式是等式,在书写时有顺序性,一般写成:“函数=函自变量的代数式”的形式)。
4.学会用辩证唯物主义的观点的看待一个问题。
5.本节课用到的基本思想是:通过观察、分析、对比、归纳等过程获取数学知识。