第4章-8_交通分配方法-分配报告
合集下载
《交通量分配》课件

05
交通量分配的实践应用
城市交通规划中的应用
交通量调查
通过调查城市各区域之间的交通需求,了解不同路段的交通流量 和流向。
交通模型建立
根据调查数据,建立交通分配模型,预测不同路段上的交通量。
优化交通布局
根据交通分配结果,优化城市道路网络布局,提高道路使用效率 。
高速公路建设中的应用
高速公路建设规划
详细描述
随机用户均衡法假设用户对路径的选择是随 机的,基于概率分布将总交通量分配到各个 路径上。这种方法适用于不确定性和随机性 较大的交通情况,能够提供一种概率意义上 的最优解。
03
交通量分配模型
平衡分配模型
平衡分配模型是一种经典的交通量分配模型,它 假设所有路径上的交通量都相等,即各路径上的 流量达到平衡状态。
共享出行
鼓励共享单车、共享汽车等共享出行方式的发展,提高出行效率, 减少交通拥堵和排放。
多模式交通信息平台
建立多模式交通信息平台,提供多种交通方式的查询、预订和支付服 务,方便用户选择最合适的出行方式。
绿色出行和低碳交通的考虑
绿色出行宣传
加强绿色出行理念的宣 传和教育,鼓励市民选 择公共交通、步行、骑 行等低碳出行方式。
自动驾驶车辆
通过人工智能技术,实现自动驾驶车辆的研发和 应用,减少人为驾驶错误和交通拥堵。
3
智能停车系统
利用大数据和人工智能技术,实现停车位预约、 导航和自动泊车等功能,提高停车效率和便利性 。
多模式交通一体化考虑
综合交通枢纽
建设集多种交通方式于一体的综合交通枢纽,实现不同交通方式之 间的无最优的原则,通过迭代 算法来分配交通量。
VS
详细描述
用户均衡法考虑了用户对路径的选择和偏 好,通过迭代计算每条路径的效用(如行 程时间)和用户选择概率,最终达到用户 最优的交通量分配结果。这种方法能够反 映实际交通情况,但计算复杂度较高。
第4章-8 交通分配方法-分配

分配次序
1 100 60 50 40 30 20
2
3
4
5
6
7
8
9
10
K 1 2 3 4 5 10 40 30 30 25 20
20 20 20 15
10 15 10
10 10
5
5
5
5
5
容量限制交通分配方法流程图
0 步 1、初始化。将 PA 分布矩阵分解成若干份(N 份)。令 k=1, xa 。 ( 0 路段a)
然后分K次用最短路分配模型分配OD量。
每次分配一个OD分表,并且每分配一 次,路权修正一次,路权采用路阻函数 修正,直到把K个OD分表全部分配到网 络上。
容量限制交通分配
出行量T(A--B) = 40+30+20+10
A
40+20 20 10
30+10
40
10 30 30+10 20+40
B
分配次数K与每次的OD量分配率(%)
固定需求分配法 对于系统优化,Dafermas提出固定需求的系统 优化平衡模型:
min f (v) f ij [ Vs (i, j )] f ij [V (i, j )],
i, j s i, j
s.t.
V ( j, k ) V (i, j ) T ( j, s)
s s k i
a
步 5、判定:k=N?若是,停止计算;否则令 k=k+1,返回到第 2 步。
Equilibrium )简称SO
交通分配方法 平衡分配法 如果分配模型满足WARDROP第一、 第二原理,则该方法为平衡分配法。
非平衡分配法
如果采用模拟方法进行分配称之为非
1 100 60 50 40 30 20
2
3
4
5
6
7
8
9
10
K 1 2 3 4 5 10 40 30 30 25 20
20 20 20 15
10 15 10
10 10
5
5
5
5
5
容量限制交通分配方法流程图
0 步 1、初始化。将 PA 分布矩阵分解成若干份(N 份)。令 k=1, xa 。 ( 0 路段a)
然后分K次用最短路分配模型分配OD量。
每次分配一个OD分表,并且每分配一 次,路权修正一次,路权采用路阻函数 修正,直到把K个OD分表全部分配到网 络上。
容量限制交通分配
出行量T(A--B) = 40+30+20+10
A
40+20 20 10
30+10
40
10 30 30+10 20+40
B
分配次数K与每次的OD量分配率(%)
固定需求分配法 对于系统优化,Dafermas提出固定需求的系统 优化平衡模型:
min f (v) f ij [ Vs (i, j )] f ij [V (i, j )],
i, j s i, j
s.t.
V ( j, k ) V (i, j ) T ( j, s)
s s k i
a
步 5、判定:k=N?若是,停止计算;否则令 k=k+1,返回到第 2 步。
Equilibrium )简称SO
交通分配方法 平衡分配法 如果分配模型满足WARDROP第一、 第二原理,则该方法为平衡分配法。
非平衡分配法
如果采用模拟方法进行分配称之为非
第4章-8 交通分配方法-分配要点

min t a ( x)dx
Va 0 r i j
s.t. Va ar i, j X r i. j
X i, j T i, j
r
T i, j 从i j的出行量
X r i, j 0
r
求解算法:Frank-Wolfe算法
1、平衡分配法
一、综述
WARDROP原理
• Wardrop第一原理:网络上的交通以这样一
种方式分布,就是所有使用的路线都比没有
使用的路线费用小。——用户优化平衡模型
(User Optimized Equilibrium)简称UE • Wardrop第二原理:车辆在网络上的分布, 使得网络上所有车辆的总出行时间最小。—— 系统优化平衡模型( System Optimized
a
步 5、判定:k=N?若是,停止计算;否则令 k=k+1,返回到第 2 步。
解: (1)确定各 PA 点对之间的最短路径,如表 2。 (2)将各 PA 点对的出行量全部分配到相应的最短路径上。 (3)累加各路段上的出行分配量,得最后分配结果。如图所示。 表 2 最短路径表
A P 1 3 7 9 3-1 7-4-1 9-8-5-2-1 7-4-5-2-3 9-6-3 1-2-3 1-4-7 3-2-5-4-7 0 9-8-7 1-2-5-8-9 3-6-9 7-8-9 0 1 3 7 9
误不受路段、交叉口交通负荷的影响。每一OD
点对应的OD量被全部分配在连接该OD点对的最 短线路上,其他道路上分配不到交通量。 缺陷:导致出行分布量不均匀,全部集中在最短 路上。
各种分配方法的基础
输入OD矩阵及网络几何信息 计算路权 计算最短路权矩阵
辩识各OD点对间的最短路线并分配该OD量
Va 0 r i j
s.t. Va ar i, j X r i. j
X i, j T i, j
r
T i, j 从i j的出行量
X r i, j 0
r
求解算法:Frank-Wolfe算法
1、平衡分配法
一、综述
WARDROP原理
• Wardrop第一原理:网络上的交通以这样一
种方式分布,就是所有使用的路线都比没有
使用的路线费用小。——用户优化平衡模型
(User Optimized Equilibrium)简称UE • Wardrop第二原理:车辆在网络上的分布, 使得网络上所有车辆的总出行时间最小。—— 系统优化平衡模型( System Optimized
a
步 5、判定:k=N?若是,停止计算;否则令 k=k+1,返回到第 2 步。
解: (1)确定各 PA 点对之间的最短路径,如表 2。 (2)将各 PA 点对的出行量全部分配到相应的最短路径上。 (3)累加各路段上的出行分配量,得最后分配结果。如图所示。 表 2 最短路径表
A P 1 3 7 9 3-1 7-4-1 9-8-5-2-1 7-4-5-2-3 9-6-3 1-2-3 1-4-7 3-2-5-4-7 0 9-8-7 1-2-5-8-9 3-6-9 7-8-9 0 1 3 7 9
误不受路段、交叉口交通负荷的影响。每一OD
点对应的OD量被全部分配在连接该OD点对的最 短线路上,其他道路上分配不到交通量。 缺陷:导致出行分布量不均匀,全部集中在最短 路上。
各种分配方法的基础
输入OD矩阵及网络几何信息 计算路权 计算最短路权矩阵
辩识各OD点对间的最短路线并分配该OD量
交通流分配分解

真正地符合路网实际情况,还有更重要更基本的交通需求的 时变性(即动态性)需要反映出来。
需要一种交通流分配方法能够将路网上交通流的拥挤性、路 径选择的随机性、交通需求的时变性综合集成地刻画反映出 来,这是研究交通问题的学者一直积极探索的问题。
基本概念
交通流分配的几种模式
(1)将现状OD交通量分配到现状交通网络上,以分析目前交 通网络的运行状况,如果有某些路段的交通量观测值,还可 以将这些观测值与在相应路段的分配结果进行比较,以检验 模型的精度。
概述
两种机制相互作用直至平衡:
一种机制是:各种车辆试图通过在网络上选择最佳行驶路线 来达到自身出行费用最小的目标; 另一种机制是:道路上的车流量越大,用户遇到的阻力即对 应的行驶阻抗越高。
用一定的模型来描述这两种机制及其相互作用,并求解网络 上交通流量在平衡状态下的合理分布,即交通流分配。
交通配流
经过大量的理论分析和工程实践,人们得出影响路阻的主 要因素是时间,因此出行时间常常被作为计量路阻的主要 标准。
交通阻抗有两部分组成:路段上的阻抗、节点处的阻抗。
路段阻抗
出行时间与流量的关系比较复杂,可以广义地表达为:
即路段a上的费用Ca 不仅仅是路段本身流量的函数,而且是整 个路网上流量V的函数。 对于公路网而言,由于路段比较长,大部分出行时间是在路 段上而不是在交叉口上,费用和流量的关系可以简化为:
(2) 路网定义,即路段及交叉口特征和属性数据,同时 还包括其时间—流量函数;
(3)路段阻抗函数。
从交通流分配的特点来说,可以分为两类:
交通工具的运行线路固定类型和运行线路不固定类型。
线路固定类型有公共交通网和轨道交通网,这些是集体 旅客运输;
线路不固定类型有城市道路网、公路网,这一般是指个 体旅客运输或货物运输,这类网络中,车辆是自由选择 运行径路的。
需要一种交通流分配方法能够将路网上交通流的拥挤性、路 径选择的随机性、交通需求的时变性综合集成地刻画反映出 来,这是研究交通问题的学者一直积极探索的问题。
基本概念
交通流分配的几种模式
(1)将现状OD交通量分配到现状交通网络上,以分析目前交 通网络的运行状况,如果有某些路段的交通量观测值,还可 以将这些观测值与在相应路段的分配结果进行比较,以检验 模型的精度。
概述
两种机制相互作用直至平衡:
一种机制是:各种车辆试图通过在网络上选择最佳行驶路线 来达到自身出行费用最小的目标; 另一种机制是:道路上的车流量越大,用户遇到的阻力即对 应的行驶阻抗越高。
用一定的模型来描述这两种机制及其相互作用,并求解网络 上交通流量在平衡状态下的合理分布,即交通流分配。
交通配流
经过大量的理论分析和工程实践,人们得出影响路阻的主 要因素是时间,因此出行时间常常被作为计量路阻的主要 标准。
交通阻抗有两部分组成:路段上的阻抗、节点处的阻抗。
路段阻抗
出行时间与流量的关系比较复杂,可以广义地表达为:
即路段a上的费用Ca 不仅仅是路段本身流量的函数,而且是整 个路网上流量V的函数。 对于公路网而言,由于路段比较长,大部分出行时间是在路 段上而不是在交叉口上,费用和流量的关系可以简化为:
(2) 路网定义,即路段及交叉口特征和属性数据,同时 还包括其时间—流量函数;
(3)路段阻抗函数。
从交通流分配的特点来说,可以分为两类:
交通工具的运行线路固定类型和运行线路不固定类型。
线路固定类型有公共交通网和轨道交通网,这些是集体 旅客运输;
线路不固定类型有城市道路网、公路网,这一般是指个 体旅客运输或货物运输,这类网络中,车辆是自由选择 运行径路的。
交通流分配分解

增量分配法(incremental assignment method)
该方法是在全有全无分配方法的基础上,考虑了路 段交通流量对阻抗的影响,进而根据道路阻抗的变 化来调整路网交通量的分配,是一种“变化路阻” 的交通量分配方法。
增量分配法有容量限制-增量加载分配、容量限制迭代平衡分配两种形式。
容量限制-增量加载分配方法
基 本 概 念
交通流分配的几种模式
(1) 将现状 OD 交通量分配到现状交通网络上,以分析目前交 通网络的运行状况,如果有某些路段的交通量观测值,还可 以将这些观测值与在相应路段的分配结果进行比较,以检验 模型的精度。
(2) 将规划年 OD 交通量预测值分配到现状交通网络上,以发 现对规划年的交通需求来说,现状交通网络的缺陷,为交通 网络的规划设计提供依据。 (3)将规划年OD交通量预测值分配到规划交通网络上,以评 价交通网络规划方案的合理性。
Wardrop提出的第二原理:
在系统平衡条件下,拥挤的路网上交通流应该按照平均或 总的出行成本最小为依据来分配。
Wardrop第二原理,在实际交通流分配中也称为系统最优 原理(SO,System Optimization)。
第一原理主要是建立每个道路利用者使其自身出行成本 (时间)最小化的行为模型,而第二原理则是旨在使交通 流在最小出行成本方向上分配,从而达到出行成本最小的 系统平衡。
在城市交通网络的实际出行时间中,除路段行驶时间外,交 叉口延误占有较大的比重,特别是在交通高峰期间,交叉口 拥挤阻塞比较严重时,交叉口延误将超过路段行驶时间。
1958年英国TRRL研究所的F.V. Webster 等人根据排队论理论, 提出了一个计算交叉口延误的模型。该模型中主要包括两部分: 一部分是车辆到达率为固定均值时产生的正常相位延误即均匀 延误; 另一部分是车辆到达率随机波动时所产生的附加延误。
交通分配方法-分配

基于历史交通流数据,运用时间 序列分析、机器学习等方法进行 交通流预测。
动态交通分配
根据实时交通流信息和预测结果, 动态调整交通分配方案,提高道 路通行效率。
基于人工智能的交通分配
01
人工智能技术应用
运用深度学习、强化学习等人工 智能技术,实现交通分配的自动 化和智能化。
02
交通模式识别
03
智能路径规划
随着环境保护意识的提高,如何在交通分配中考虑环境因素,如减少尾气排放、降低噪音等,将成为未来研究的重要 课题。
多目标交通分配
在实际交通场景中,往往需要考虑多个目标,如时间最短、费用最少、舒适度最高等。如何设计多目标 交通分配算法,平衡不同目标间的冲突和矛盾,将是未来研究的重要方向。
THANKS
感谢观看
06
总结与展望
研究成果总结
01
交通分配方法理论体系
本文构建了完整的交通分配方法理论体系,包括交通网络建模、交通流
分配、算法设计和性能评估等方面。
02 03
高效算法设计
针对大规模交通网络和复杂交通场景,设计了高效的交通分配算法,如 基于最短路径的分配算法、基于多路径的分配算法等,提高了交通分配 的准确性和效率。
容量限制分配法
原理
在交通分配过程中考虑道 路的通行能力限制,确保 分配结果符合实际交通情 况。
优点
能够反映道路通行能力对 交通分配的影响,提高分 配结果的准确性。
缺点
计算复杂度高,需要获取 详细的道路通行能力数据。
04
先进交通分配技术
基于GIS的交通分配
GIS技术应用
利用GIS强大的空间数据处理和分析功能,实现交通网络建模和路 径规划。
系统最优原则
动态交通分配
根据实时交通流信息和预测结果, 动态调整交通分配方案,提高道 路通行效率。
基于人工智能的交通分配
01
人工智能技术应用
运用深度学习、强化学习等人工 智能技术,实现交通分配的自动 化和智能化。
02
交通模式识别
03
智能路径规划
随着环境保护意识的提高,如何在交通分配中考虑环境因素,如减少尾气排放、降低噪音等,将成为未来研究的重要 课题。
多目标交通分配
在实际交通场景中,往往需要考虑多个目标,如时间最短、费用最少、舒适度最高等。如何设计多目标 交通分配算法,平衡不同目标间的冲突和矛盾,将是未来研究的重要方向。
THANKS
感谢观看
06
总结与展望
研究成果总结
01
交通分配方法理论体系
本文构建了完整的交通分配方法理论体系,包括交通网络建模、交通流
分配、算法设计和性能评估等方面。
02 03
高效算法设计
针对大规模交通网络和复杂交通场景,设计了高效的交通分配算法,如 基于最短路径的分配算法、基于多路径的分配算法等,提高了交通分配 的准确性和效率。
容量限制分配法
原理
在交通分配过程中考虑道 路的通行能力限制,确保 分配结果符合实际交通情 况。
优点
能够反映道路通行能力对 交通分配的影响,提高分 配结果的准确性。
缺点
计算复杂度高,需要获取 详细的道路通行能力数据。
04
先进交通分配技术
基于GIS的交通分配
GIS技术应用
利用GIS强大的空间数据处理和分析功能,实现交通网络建模和路 径规划。
系统最优原则
交通分配及其算法

模型发展:
路段相互影响的平衡配流
含能力约束的分配模型
弹性需求分配模型 随机用户平衡
算法改进:
F-W算法--收敛特性:方向、步长加速和流量更新
其他优化算法:简约梯度法、凸单纯型法等
Dial于2006年提出了一个基于路径的,但又能避免 路径存储和枚举的算法,因而是效率更高的新算法
启发式算法:
全有全无法 容限配流法 比例配流法
Frank-Wolfe算法
0 tn tn (0) 第0步 初始化:令 进行全有全无分配,得
到 { xn },令n=1 n n ta ta ( xa )a 第1步 计算 ,
n {ta }进行全有全无分配, 第2步 搜索下降方向:根据
n n n { ya } ,从而确定下降方向 d n y x 得到
Wardrop第一准则:所有出行者选择道路的依据是使 自己的出行总费用最少—用户最优
Wardrop第二准则:所有出行者选择道路的依据是使 整个系统的总费用最少--系统最优 平衡状态:总是选择阻抗最小的路径,当不存单方面 改变其路径并能降低其阻抗时,认为达到了稳定状态。
1956年,Beckman及他的同事研究了交通分配的数学 模型,根据非线性最优化理论,把这两个准则对应于 线性约束的凸非线性最优问题的解,证明了满足 Wardrop用户均衡原理的配流等价于一个非合作博弈 中的Nash均衡解,得到其配流模型。 同年,Frank和Wolfe共同提出了关于求解凸二次优 化问题的迭代算法,被称为Frank-Wolfe算法。 1975年Leblanc将Frank-Wolfe算法用于求解这个模 型获得成功。 Boyce于2005年就UE基本模型对交通科学及相关学科 建模技术发展的深远影响进行了回顾和展望。
基本交通分配模型课件

元胞自动机法的步骤相对简单明了,易于实现和理解。然而,对于复杂的交通分配问题,元胞自动机 可能需要较长的迭代时间和较大的计算资源。
元胞自动机的优缺点
元胞自动机法的优点在于能够模拟真 实世界的复杂性和动态性,适用于处 理大规模和复杂的交通网络。此外, 元胞自动机法还具有规则简单、易于 实现等优点。
VS
动态规划法
动态规划法是一种通过将问题分解为子问题并求解最优子 问题的策略来求解最优化问题的方法。在交通分配问题中 ,动态规划法可用于求解多阶段行驶时间和成本的分配方 案。
动态规划法的优点在于能够处理具有重叠子问题和最优子 结构的问题。然而,对于大规模问题,动态规划法可能存 在计算复杂度高和存储需求大的问题。
元胞自动机是由元胞(即格点或单元 )组成的离散空间,每个元胞具有有 限的状态集合,并根据一定的规则与 相邻元胞相互作用进行状态更新。
元胞自动机的基本原理包括局部性、 并行性和自组织性,这些特性使得元 胞自动机能够模拟复杂的系统行为。
2 元胞自动机的步骤
元胞自动机的实现步骤通常包括初始化、规则设定、迭代更新和结果分析等阶段。在交通分配问题中 ,元胞自动机首先需要对道路网络进行离散化处理,然后根据车辆的行驶规则进行迭代更新,最后对 结果进行分析和优化。
其他参数
如天气条件、路况等,这些参 数可能会影响交通分配的结果
。
变量
01
02
03
04
流量变量
表示各路段上的交通流量,是 交通分配模型的主要输出变量
。
时间变量
表示各路段上的旅行时间,是 描述交通流量的重要变量。
路径变量
表示各路径上的交通流量,是 描述交通流分布的重要变量。
成本变量
表示各路径上的总成本,包括 时间成本和费用成本等,是描 述交通流分布的重要变量。
元胞自动机的优缺点
元胞自动机法的优点在于能够模拟真 实世界的复杂性和动态性,适用于处 理大规模和复杂的交通网络。此外, 元胞自动机法还具有规则简单、易于 实现等优点。
VS
动态规划法
动态规划法是一种通过将问题分解为子问题并求解最优子 问题的策略来求解最优化问题的方法。在交通分配问题中 ,动态规划法可用于求解多阶段行驶时间和成本的分配方 案。
动态规划法的优点在于能够处理具有重叠子问题和最优子 结构的问题。然而,对于大规模问题,动态规划法可能存 在计算复杂度高和存储需求大的问题。
元胞自动机是由元胞(即格点或单元 )组成的离散空间,每个元胞具有有 限的状态集合,并根据一定的规则与 相邻元胞相互作用进行状态更新。
元胞自动机的基本原理包括局部性、 并行性和自组织性,这些特性使得元 胞自动机能够模拟复杂的系统行为。
2 元胞自动机的步骤
元胞自动机的实现步骤通常包括初始化、规则设定、迭代更新和结果分析等阶段。在交通分配问题中 ,元胞自动机首先需要对道路网络进行离散化处理,然后根据车辆的行驶规则进行迭代更新,最后对 结果进行分析和优化。
其他参数
如天气条件、路况等,这些参 数可能会影响交通分配的结果
。
变量
01
02
03
04
流量变量
表示各路段上的交通流量,是 交通分配模型的主要输出变量
。
时间变量
表示各路段上的旅行时间,是 描述交通流量的重要变量。
路径变量
表示各路径上的交通流量,是 描述交通流分布的重要变量。
成本变量
表示各路径上的总成本,包括 时间成本和费用成本等,是描 述交通流分布的重要变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k k 1 步 2、计算各路段阻抗: t a t a ( xa )
a
步 3、按全有全无分配法将各 PA 点对(i. j)的第 k 份出行分布量分配到它们之间的最
k 短路径上;并累加各路段从该步分配新得到的交通量,设为 wa , k k 1 k 步 4、令: xa xa wa ,
a 。
结构严谨,思路明确。但维数太大,约 束条件太多,求解困难。
2、非平衡模型
分配手段 无迭代分配方法 型态 单路径型 多路径型 最短路(全有全无) 容量限制分配 分配 多路径分配 容量限制——多路径 分配 有迭代分配方法
二、最短路(全由全无)交通分配法
在分配中,取路权(两交叉口间的出行时间)
为常数,即假设车辆的路段行驶车速、交叉口延
解: (1)确定各 PA 点对之间的最短路径,如表 2。 (2)将各 PA 点对的出行量全部分配到相应的最短路径上。 (3)累加各路段上的出行分配量,得最后分配结果。如图所示。 表 2 最短路径表
A P 1 3 7 9 3-1 7-4-1 9-8-5-2-1 7-4-5-2-3 9-6-3 1-2-3 1-4-7 3-2-5-4-7 0 9-8-7 1-2-5-8-9 3-6-9 7-8-9 0 1 3 7 9
(j s),
Vs i, j 0
弹性需求平衡分配模型
这类分配模型中,出行OD矩阵T在分配
过程中是连续变化的,OD点对之间的出行 量取决于出行时间。
T (i, j ) F t (i, j )
模型同固定需求分配模型,约束条件用 上式替代。求解时将其转化为固定需求问题 求解。
组合分配平衡模型 在组合分配模型中,交通分配与出行分 布或方式划分为同步进行,并相互影响。 平衡分配模型特点
最后一OD点对? 输出各路段、交叉口总分配交通量 最短路分配方法流程图
转入下一 OD点对
例:在如图所示的交通网络中,设节点 1、3、7、9 为出行生成点,其余节点为交叉口,四 个生成点之间出行分布如表所示。试用全有全无分配法分配这些分布量。 表 1 PA 表(1000 人次)
A P 1 3 7 9 0 25 40 30 20 0 30 40 20 40 0 25 50 10 10 0 1 3 7 9
a
步 5、判定:k=N?若是,停止计算;否则令 k=k+1,返回到第 2 步。
然后分K次用最短路分配模型分配OD量。
每次分配一个OD分表,并且每分配一 次,路权修正一次,路权采用路阻函数 修正,直到把K个OD分表全部分配到网 络上。
容量限制交通分配
出行量T(A--B) = 40+30+20+10
A
40+20 20 10
30+10
40
10 30 30+10 20+40
B
分配次数K与每次的OD量分配率(%)
固定需求分配法 对于系统优化,Dafermas提出固定需求的系统 优化平衡模型:
min f (v) f ij [ Vs (i, j )] f ij [V (i, j )],
i, j s i, j
s.t.
V ( j, k ) V (i, j ) T ( j, s)
s s k i
误不受路段、交叉口交通负荷的影响。每一OD
点对应的OD量被全部分配在连接该OD点对的最 短线路上,其他道路上分配不到交通量。 缺陷:导致出行分布量不均匀,全部集中在最短 路上。
各种分配方法的基础
输入OD矩阵及网络几何信息 计算路权 计算最短路权矩阵
辩识各OD点对间的最短路线并分配该OD量
累加交叉口、路段交通量
min t a ( x)dx
Va 0 r i j
s.t. Va ar i, j X r i. j
X i, j T i, j
r
T i, j 从i j的出行量
X r i, j 0
r
求解算法:Frank-Wolfe算法
1、平衡分配法
三、容量限制分配方法
容量限制分配是一种动态的交通分配方法,它
考虑了路权与交通负荷之间的关系,即考虑了 交叉口、路段的通行能力限制,比较符合实际
情况。
容量限制分配有:
(1)容量限制——增量加载分配
(2)容量限制——迭代平衡分配
1、容量限制——增量加载分配 先将OD表中的每一个OD量分解成 K部分,即将原OD表分解成K个OD分表,
第六节
网络交通分配
交通分配就是把各种出行方式的空间OD
量分配到具体的交通网络上,通过交通分配
所得的路段、交叉口交通量资料是检验道路
规划网络是否合理的依据。
① 现状OD量在现状交通网络上的分配 分析目前交通网络的运行状况,检验四阶段预测 模型的精度。 ② 规划年OD分布预测值在现状交通网络上的分配 以规划年的交通需求找出现状交通网络的缺陷, 为后面交通网络的规划设计提供依据。 ③ 规划年OD分布预测值在规划交通网络上的分配 评价交通网络规划方案的优劣。 两类分配: 运行线路固定 运行线路不固定
一、综述
WARDROP原理
• Wardrop第一原理:网络上的交通以这样一
种方式分布,就是所有使用的路线都比没有
使用的路线费用小。——用户优化平衡模型
(User Optimized Equilibrium)简称UE • Wardrop第二原理:车辆在网络上的分布, 使得网络上所有车辆的总出行时间最小。—— 系统优化平衡模型( System Optimized
Equilibrium )简称SO
交通分配方法 平衡分配法 如果分配模型满足WARDROP第一、 第二原理,则该方法为平衡分配法。
非平衡分配法
如果采用模拟方法进行分配称之为非
平衡分配法。
1、平衡分配法
固定需求分配法 在分配模型中,出行OD矩阵T(i,j)固定不变。 Beckmann提出固定需求的用户优化平衡模型:
分配次序
1 100 60 50 40 30 20
2
3
4
5
6
7
8
9
10
K 1 2 3 4 5 10 40 30 30 25 20
20 20 20 15
10 15 10
10 10
5
5
5
5
5
容量限制交通分配方法流程图
0 步 1、初始化。将 PA 分布矩阵分解成若干份(N 份)。令 k=1, xa 。 ( 0 路段a)