2021年中考数学必会专题系列10:直角三角形的存在性问题探究(有讲解答案)
直角三角形的存在性问题解题策略

03
CATALOGUE
直角三角形的存在性问题分类
直角在三角形内部
总结词
当直角位于三角形内部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直 角三角形的斜边长度。接着,根据三角形的性质和已知条件,判断是否能够构成 三角形。如果可以,则存在满足条件的直角三角形;否则,不存在。
在题目中,有时候会隐含一些关于三角形或 角度的条件,需要仔细审题并挖掘。
举例说明
在求解三角形边长的问题时,需要注意隐含 的等腰或等边条件,这些条件可能会影响三 角形的形状和存在性。
掌握常见题型和解题方法
01
02
03
常见题型
直角三角形存在性问题的 常见题型包括角度问题、 边长问题、高的长度问题 等。
直角在三角形外部
总结词
当直角位于三角形外部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直角三角形的斜边长度。接着,根 据三角形的性质和已知条件,判断是否能够构成三角形。如果可以,则存在满足条件的直角三角形;否则,不存 在。
建立方程
根据题目条件,可以建立关于未知数 (如角度、边长等)的方程,然后求 解该方程。
解方程
解方程的方法有很多种,如代数法、 三角函数法等,选择合适的方法求解 方程。
利用数形结合思想
数形结合
将题目中的条件和图形结合起来,通过 观察图形和计算数据,找到解决问题的 线索。
VS
综合分析
综合运用数学知识和图形分析,逐步推导 和验证,最终得出结论。
解题方法
针对不同的问题类型,需 要掌握相应的解题方法, 如利用三角函数、勾股定 理、相似三角形等。
直角三角形存在性问题解决方法汇总

【问题描述】如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标.【几何法】两线一圆得坐标(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角)重点还是如何求得点坐标,C1、C2求法相同,以C2为例:【构造三垂直】01问题与方法C3、C4求法相同,以C3为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股还剩下C1待求,不妨来求下C1:【解析法】还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1.考虑到直线AC1与AB互相垂直,k1k2=-1,可得:kAC=-2,又直线AC1过点A(1,1),可得解析式为:y=-2x+3,所以与x轴交点坐标为(1.5,0),即C1坐标为(1.5,0).确实很简便,但问题是这个公式出现在高中的教材上方法小结几何法:(1)两线一圆作出点;(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.代数法:(1)表示点A、B、C坐标;(2)表示线段AB、AC、BC;(3)分类讨论①AB²+AC²=BC²、②AB²+BC²=AC²、③AC²+BC²=AB²;(4)代入列方程,求解.02从等腰直角说起再特殊一些,如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等.2019兰州中考删减【等腰直角存在性——三垂直构造全等】通过对下面数学模型的研究学习,解决问题.【模型呈现】如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”.推理过程如下:【模型迁移】二次函数y=ax²+bx+2的图像交x轴于点A(-1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax²+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.2017本溪中考【直角顶点已知or未知】如图,在平面直角坐标系中,抛物线y=1/2x²+bx+c与x轴交于A、B两点,点B (3,0),经过点A的直线AC与抛物线的另一交点为C(4,5/2),与y轴交点为D,点P是直线AC下方的抛物线上的一个动点(不与点A、C重合).(1)求该抛物线的解析式.(2)点Q在抛物线的对称轴上运动,当△OPQ是以OP为直角边的等腰直角三角形时,请直接写出符合条件的点P的坐标.【小结】对于构造三垂直来说,直角顶点已知的和直角顶点的未知的完全就是两个题目!也许能画出大概位置,但如何能画出所有情况,才是问题的关键.其实只要再明确一点,构造出三垂直后,表示出一组对应边,根据相等关系列方程求解即可.2019阜新中考【对未知直角顶点的分析】如图,抛物线y=ax²+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.【小结】无论直角顶点确定与否,事实上,所有的情况都可以归结为同一个方程:NE=FM.故只需在用点坐标表示线段时加上绝对值,便可计算出可能存在的其他情况.03一般直角三角形的处理一般直角三角形存在性,同样构造三垂直,区别于等腰直角构造的三垂直全等,没了等腰的条件只能得到三垂直相似.而题型的变化在于动点或许在某条直线上,也可能在抛物线上等.2018安顺中考【对称轴上寻动点】如图,已知抛物线y=ax²+bx+c(a≠0)的对称轴为直线x=-1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.2018怀化中考【抛物线上寻动点】如图,在平面直角坐标系中,抛物线y=ax²+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2019鄂尔多斯中考【动点还可能在……】如图,抛物线y=ax²+bx-2(a≠0)与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C,直线y=-x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,圆C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.。
中考数学专题讲解:直角三角形的存在性问题

中考专题讲解:直角三角形的存在性问题 一、学习目标1.经历探索直角三角形存在性问题的过程,熟练掌握解题技巧2.体会分类讨论的数学思想,体验解决问题方法的多样性二、课前准备1.已知直角三角形的两边长分别为3和4,则第三边的长为2.如图,A(0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为三、探究理解如图,A(0,1),C(4,3)是直线121+=x y 上的两点,点P 是x 轴上的一个动点,问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标.问题:(1)这样的问题,你怎么思考的? 针对直角顶点进行分类(2)一般会有几种情况? 3种(3)分类时候需要做什么? 画图(4)解题有那些方法?(5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点总结:直角三角形的存在性问题的解题策略:四、反馈练习1.如图,点O (0,0),A(1,2),若存在格点P ,使△APO 为直角三角形, 则点P 的个数有 个2.在△ABC 中,∠C=900,AC=8 cm,BC=6 cm ,动点P 、Q 分别同时从点A 、B 出发,其中点P 在线段AB 上向点B 移动,速度是2 cm/s,点Q 在线段BC上向点C 运动,速度为1cm/s ,设运动时间为t s,当t= 时,△BPQ 是直角三角形.3.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB>1,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB=x.若△ABC 为直角三角形,(1)求x 的值.(2)x 的取值是多少.五、链接中考如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线834942++-=x x y 经过A 、C 两点,与AB 边交于点D ,Q 是AC 上一点,且AQ=5.请问在抛物线对称轴l 上是否存在点F ,使得△FDQ 为直角三角形?若存在,请直接写出所有符合条件的点F 的坐标,若不存在,请说明理由六、课堂小结直角三角形的存在性问题解题策略分类画图(1)角:构造相似三角形解题 (2) 边:勾股定理(3)函数:k 1·k 2=-1六、课后练习在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0),如图所示,B 点在抛物线221212-+=x x y 图像上,过点B 作BD ⊥X 轴,垂足为D ,且B 点的横坐标为-3.(1)求证:△BDC ≌△COA(2)求BC 所在直线的函数关系式(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由。
直角三角形存在性问题及真题典例分析(含解析)

直角三角形存在性问题【问题描述】如图,在平面直角坐标系中,点轴上找一点C 使得△ ABC 是直角三角形,求点A 坐标为(1,1 ),点B 坐标为(5,3),在x C坐标.几何法】两线一圆得坐标1)若∠ A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;2)若∠ B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C;3)若∠C 为直角,以AB为直径作圆,与x轴的交点即为所求点C.(直径所对的圆周角为直角)构造三垂直】BN NC2由A、B坐标得AM=2 ,BM=4 ,NC2=33代入得:BN=213故C2坐标为(,0)2重点还是如何求得点坐标,C1、C2 求法相同,以C2为例:易证△AMB ∽△BNC 2AM MBAM MC3易证△AMC3∽△C3NB,C3N= NB由A、B坐标得AM=1,BN=3,设MC3=a,C3N=b1a代入得:= ,即ab=3 ,又a+b=4,故a=1 或3 b3故C3坐标为(2,0),C4坐标为(4,0)构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股还剩下C1待求,不妨来求下C1 :1)表示点:设C1坐标为(2)表示线段:AB 2 5,AC13)分类讨论:当BAC1 为直角时,24)代入得方程:20 m 1 122222m11,BC1m 532AB2AC12BC12;m5222 32,解得: 3 m.2C3、C4 求法相同,以C3为例:m,0),又A(1,1)、B(5,3);还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1.考虑到直线AC1与AB 互相垂直,k AC1 k AB 1,可得:k AC1 2,又直线AC1过点A(1,1),可得解析式为:y=-2x+3,33所以与x 轴交点坐标为3,0 ,即C1坐标为3,0 .22 确实很简便,但问题是这个公式出现在高中的教材上~【小结】几何法:(1)“两线一圆”作出点;(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.代数法:(1)表示点A、B、C 坐标;(2)表示线段AB、AC、BC;(3)分类讨论① AB2+AC2=BC2、② AB2+BC2=AC2、③ AC2+BC2=AB2;(4)代入列方程,求解.如果问题变为等腰直角三角形存在性, 则同样可采取上述方法, 只不过三垂直得到的不是相 似,而是全等.三垂直构造等腰直角三角形】 中考真题(删减)】通过对下面数学模型的研究学习,解决问题. 模型呈现】如图,在 Rt △ABC ,∠ACB=90°,将斜边 AB 绕点 A 顺时针旋转 90 得到 AD ,过点 D 作DE ⊥AC 于点 E ,可以推理得到△ ABC ≌△ DAE ,进而得到 AC=DE ,BC=AE . 我们把这个数学模型成为 “K 型 ”. 推理过程如下:【模型迁移】二次函数 y ax 2 bx 2的图像交 x 轴于点 A ( -1,0), B ( 4,0)两点,交 y 轴于点 C .动点 M 从点 A 出发,以每秒 2 个单位长度的速度沿 AB 方向运动,过点 M 作MN x 轴交直线 BC 于点 N ,交抛物线于点 D ,连接 AC ,设运动的时间为 t 秒. (1)求二次函数 y ax 2 bx 2 的表达式;(2)在直线 MN 上存在一点 P ,当 PBC 是以 BPC 为直角的等腰直角三角形时,求此时 点 D 的坐标.E A C分析】1 2 3 1)yx x 2 ; 222)本题直角顶点 P 并不确定,以 BC 为斜边作等腰直角三角形,直角顶点即为 P 点,再 过点P 作水平线,得三垂直全等.设 HP=a ,PQ=b ,则 BQ=a , CH=b ,故 D 点坐标为( 1,3 )思路 2:等腰直角的一半还是等腰直角.如图,取BC 中点 M 点,以BM 为一直角边作等腰直角三角形, 则第三个顶点即为 P 点.根 据 B 点和 M 点坐标,此处全等的两三角形两直角边分别为 1 和 2 ,故 P 点坐标易求.由图可知:b aa b 42 ,解得:a1 b3同理可求此时解得: m 1 12 , m 2 1 2 , m3 1 6 , m4 1 6 (舍)如下图,对应 P 点坐标分别为 1 2, 11 2, 1 、 1 6,1中考真题】12如图,在平面直角坐标系中,抛物线 y x 2bx c 与 x 轴交于 A 、B 两点,点 B (3,0),25经过点 A 的直线 AC 与抛物线的另一交点为 C (4, ),与 y 轴交点为 D ,点 P 是直线 AC 下2 方的抛物线上的一个动点(不与点A 、C 重合).(1)求该抛物线的解析式.(2)点Q 在抛物线的对称轴上运动, 当 OPQ 是以OP 为直角边的等腰直角三角形时, 请直接写出符合条件的点 P 的坐标.分析】2)①当∠ POQ 为直角时,考虑 Q 点在对称轴上,故过点 Q 向 y 轴作垂线,垂线段长为 垂线,长度必为 1,故 P 的纵坐标为 ±1.如下图,不难求出 P 点坐标.13设 P 点坐标为 m,1 m 2 m 3 ,22可得: 1 m 2 m 3 1.2212 3; xx2 21) y1,可知过点 P 向 x 轴作②当∠ OPQ 为直角时,如图构造△ OMP ≌△ PNQ ,可得: PM=QN . 设 P 点坐标为 m,21m 2 m 32 ,1,若 1m 2 m 3 m 1 ,解得: m 1 5 , m 25 (舍).22若 1m 2 m 3 m 1,解得: m 1 2 5, m 2 2 5(舍) 22对于构造三垂直来说,直角顶点已知的和直角顶点的未知的完全就是两个题目!也许能画出大概位置,但如何能画出所有情况,才是问题的关键.其实只要再明确一点, 构造出三垂直后, 表示出一组对应边, 根据相等关系列方程求解即可.则PM 01 2 3 mm2212 m 23, QN= m 21, 如下图,对应 P 点坐标分别为 5,1 5中考真题】如图,抛物线y ax2 bx 2交x轴于点A( 3,0)和点B(1,0),交 y轴于点C. (1)求这个抛物线的函数表达式.(2)点 D的坐标为( 1,0) ,点 P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.( 3)点 M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使MNO 为等腰直角三角形,且MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.x备用图分析】2 2 41) y x x 2 ;332) 连接AC,将四边形面积拆为△ APC 和△ADC 面积,考虑△ ADC 面积为定值,故只需△APC 面积最大即可,铅垂法可解;过点N 作NE⊥x 轴交x 轴于E 点,如图1,过点M 向NE 作垂线交EN 延长线于易证△OEN≌△ NFM ,可得:NE=FM.22 m3当直角顶点不确定时,问题的一大难点是找出所有情况,而事实上,所有的情况都可以归结为同一个方程:NE=FM .故只需在用点坐标表示线段时加上绝对值,便可计算出可能存在的其他情况.3)F 点,设N 点坐标为m, 24 m3,则NE22m3 ,FM m 1 ,22m34m 2=m31,解得:m17 731) m27 737 73(图4)4对应N 点坐标分别为3 734734m 2=31,解得:m373(图2)、m41 73(图3)4 对应N 点坐标分别为7343 7343 734一般直角三角形存在性,同样构造三垂直,区别于等腰直角构造的三垂直全等,没了等腰的条件只能得到三垂直相似.而题型的变化在于动点或许在某条直线上,也可能在抛物线上等.对称轴上寻找点】(中考真题)如图,已知抛物线y ax2 bx c(a 0)的对称轴为直线x 1 ,且抛物线与x 轴交于 A、B两点,与 y轴交于C点,其中A(1,0),C (0,3).(1)若直线y mx n 经过 B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x 1上找一点 M ,使点 M 到点 A的距离与到点C 的距离之和最小,求出点 M 的坐标;(3)设点 P为抛物线的对称轴x 1上的一个动点,求使BPC 为直角三角形的点 P坐标.分析】1)直线BC:y x3抛物线:y x2 2x3;2)将军饮马问题,考虑到M 点在对称轴上,且点 A 关于对称轴的对称点为点B ,故MA+MC=MB+MC,∴当B、M、C 三点共线时,M到A和C的距离之后最小,此时M 点坐标为(-1,2);3)两圆一线作点P:yx以 P 1 为例,构造△ PNB ∽△ BMC ,考虑到 BM =MC =3,易求 P 2 坐标为( 1,4).P 3、 P 4求法类似,下求 P 3:已知 PN=1, PM=2,设 CN=a ,BM=b , 1a,即 ab=2,由图可知: b-a=3, b2∴BN=PN=2,故 P 1 点坐标为( -1, -2). xx舍),对应 x故可解: 类似可求P 3坐标为1,3217.2由相似得:2 抛物线 y ax 2 2x c 与 x 轴交于 A( 1,0) ,B (3,0)两点,与 y 轴交于点 C ,点 D 是该抛物线的顶点.1)求抛物线的解析式和直线 AC 的解析式;2)请在 y 轴上找一点 M ,使 BDM 的周长最小,求出点 M 的坐标;3)试探究:在拋物线上是否存在点 P ,使以点 A , P , C 为顶点, AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点 P 的坐标;若不存在,请说明理由.抛物线上寻找点】中考真题) 如图,在平面直角坐标系中,分析】1)抛物线:y x2 2x 3 ,直线AC:y=3x+3;2)看图,M 点坐标为(0,3)与C 点重合了.3)考虑到AC 为直角边,有如下两种情况,故分别过A、C 作AC 的垂线,与抛物线交点即为所求P 点,xP:x先求过A 点所作垂线得到的点设P 点坐标为 m, m22m3,则PM=m+1,AM= 0 m22m2m3,易证△ PMA∽△ ANC,且AN =3,m 1 m2 2m 3 ∴ ,解得:31CN=1,m110,3m21(舍),故第1个P点坐标为130, 193再求过点C 所作垂线得到的点PM 3m2m 2m故第2 个P 点坐标为综上所述,P 点坐标为3 2 m2m,CN=m,m17,m2(舍)37,203,910137, 20或3939P:3,解得:1m22m动点还可能在⋯⋯】中考真题)如图,抛物线y ax2 bx 2(a 0)与x轴交于A( 3,0) ,B(1,0)两点,与 y轴交于点C ,直线 y x 与该抛物线交于 E , F 两点.1)求抛物线的解析式.2) P 是直线 EF 下方抛物线上的一个动点,作 PH EF 于点 H ,求 PH 的最大值.3) 以点C 为圆心,1 为半径作圆,e C 上是否存在点 M ,使得BCM 是以CM 为直角边的直角三角形?若存在,直接写出 M 点坐标;若不存在,说明理由.分析】CM 为直角边,故点C 可能为直角顶点,点M 也可能为直角顶点.①当 BCM 为直角时,如图:1)22x32;2) 过点P 作x 轴的垂线交EF 于点Q,所谓PH 最大,即PQ 最大,易解.3)M 1 :不难求得 CF=1,BF=2,故 M 1 坐标为同理可求 M 2 坐标为【总结】 对于大部分直角三角形存在性问题, 构造三垂直全等或相似基本上可解决问题, 牢 记构造步骤:( 1)过直角顶点作水平或竖直线;( 2)过另外两端点向其作垂线.∴ EM 1 : EC 1: 2,又 CM 1 1, 可得: EM 155,EC525 5BOCM 44M 3 :不难发现 CM=1,BC= 5 ,∴ BM 2,即△ MEC ∽△ BFM ,且相似比为 1:2, 设 EC=a , EM=b ,则 FM=2a , BF=2b , 2a 由图可知: 2a2b22,解得:13 54 5故点M 3 的坐标为至于 M 4坐标,显然 1, 2.综上所述, M 点坐标为或 255, 2或 1, 2 .如图: yBO放大C②当∠ BMC 为直角时,y。
中考专题讲解:直角三角形的存在性问题解题策略

中考专题讲解:直角三角形的存在性问题解题策略有关直角三角形的存在性问题,一般都是放在平面直角坐标系中和抛物线结合起来考察,这种题的解法套路一般都是固定的,在学习的过程中只需要牢固掌握直角三角形存在的基本模型:两线一圆,多加练习,这类问题就可以轻松掌握。
一、模型讲解“两线一圆”模型:在平面直角坐标系中遇到直角三角形的相关问题时,通常是以直角顶点作为分类标准,如下图,分别以点A、点B、点M为直角定点来构造直角三角形,然后根据相关条件来进行求解即可。
已知:定点A(2,1)、B(6,4)和动点M(m,0),存在直角三角形。
具体有以下三种情况:(1)过点A作直线AM垂直AB,交x轴于点M;(2)过点B作直线BM垂直AB,交x轴于点M;(3)根据直径所对的圆周角为90度,以AB为直径作圆,交x轴的点即为满足条件的点M(一般情况下有两个交点,特殊情况下只有一个交点),然后根据相关条件来进行求解即可。
作出图形后,具体求解方法有三种:方法一:“K型”图(有的叫“一线三等角”),三角形相似易得△ACM∽△BEA,求得CM,从而求出点M的坐标。
易得△AEB ∽△BFM求得BF,从而得M的坐标方法二:勾股定理∵BH²=BG²-GH² ∵AC²+CM²=AM²BH²=BM²-HM² MD²+BD²=BM²∴BG²-GH² =BM²-HM² AM²+BM²=AB²∴AC²+CM²+MD²+BD²=AB²方法三:解析法(来源于高中的解析几何,虽然有点超纲,但是很多老师都教学生这种方法)K AB ·K AM =-1,直线BM 与x 轴的交点即为M 。
K AB ·K BM =-1,直线A 与x 轴的交点即为M 。
中考压轴题动态几何之直角三角形存在性问题

中考压轴题动态几何之直角三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写直角三角形存在性问题模拟题.在中考压轴题中,直角三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△P AB为直角三角形时,AP的长为.原创模拟预测题2.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q 从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?原创模拟预测题3.如图,抛物线212y x bx c =-++与x 轴分别相交于点A (﹣2,0),B (4,0),与y 轴交于点C ,顶点为点P .(1)求抛物线的解析式;(2)动点M 、N 从点O 同时出发,都以每秒1个单位长度的速度分别在线段OB 、OC 上向点B 、C 方向运动,过点M 作x 轴的垂线交BC 于点F ,交抛物线于点H .①当四边形OMHN 为矩形时,求点H 的坐标;②是否存在这样的点F ,使△PFB 为直角三角形?若存在,求出点F 的坐标;若不存在,请说明理由.原创模拟预测题4.如图,已知抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.原创模拟预测题5.如图,已知直线3y x =-+与x 轴、y 轴分别交于A ,B 两点,抛物线2y x bx c =-++经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.原创模拟预测题6.如图,二次函数2+y x bx c 的图象交x 轴于A (﹣1,0)、B (3,0)两点,交y 轴于点C ,连接BC ,动点P 以每秒1个单位长度的速度从A 向B 运动,动点Q以每秒2个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;t时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ (3)如图2,当2的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.原创模拟预测题7.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x <4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.原创模拟预测题8.如图,已知二次函数232y ax x c =++的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数232y ax x c =++的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;(4)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.原创模拟预测题9.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x =﹣1和x =3时,y 的值相等,直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式.(2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQP 的面积有最小值,最小值是多少?(3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(0<m <2),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.。
直角三角形的存在性问题

直角三角形的存在性问题(因动点产生的直角三角形的存在性问题)课前预热1、两点式2、两直线互相垂直,两直线的解析式为11b x k y +=与22b x k y += → 121-=⋅k k3、三角形相似:射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=24、三角函数求解新课认知问题提出:已知直角三角形的一边(即直角三角形的两个点确定),求 解第三点解决方法:1、找点方法:双线一圆(两垂线一圆)一圆指以已知边为直径作圆,双线指过线段(边)端点(顶点)做垂线. 2、分析题目中的定长、定角3、确定点的坐标情况分类:(1)当动点在直线上运动时常用方法:①121-=⋅k k ;②三角形相似;③勾股定理;(2)当动点在曲线上运动是时情况分类:①已知点处做直角方法:①121-=⋅k k ;②三角形相似;③勾股定理.②动点处做直角方法:寻找特殊角.动点在直线上运动时例1如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为秒时,△PAD的周长最小?当t为秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由当动点在曲线上运动时 (1)求解过程中只有已知点处做直角例2 如图,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.(2)求解过程中动点处做直角例3 如图,已知抛物线y=x 2+bx+c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ=43AB,求tan ∠CED 的值②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.1、(2012山东枣庄10分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C为 (-1,0) .如图所示,B 点在抛物线y =12x 2+12x -2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌△COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2.已知抛物线y=ax 2+bx+3(a ≠0)经过A (3,0),B (4,1)两点,且与y 轴交于点C .(1)求抛物线y=ax 2+bx+3(a ≠0)的函数关系式及点C 的坐标;(2)如图(1),连接AB ,在题(1)中的抛物线上是否存在点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(2),连接AC ,E 为线段AC 上任意一点(不与A 、C 重合)经过A 、E 、O 三点的圆交直线AB 于点F ,当△OEF 的面积取得最小值时,求点E 的坐标.3、(2012内蒙古)如图,抛物线2y x bx 5=--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.例1(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+例2(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D 为直角顶点.连接AD ,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AB 2+BD 2=AB 2,∴△ABD 为直角三角形,即点A 为所求的点Q . ∴Q 1(﹣2,0);③以点B 为直角顶点.如图,设Q 2点坐标为(x ,y ),过点Q 2作Q 2K ⊥x 轴于点K ,则Q 2K=﹣y ,OK=x ,BK=8﹣x . 易证△QKB ∽△BOD , ∴,即,整理得:y=2x ﹣16.∵点Q 在抛物线上,∴y=x 2﹣x ﹣4. ∴x 2﹣x ﹣4=2x ﹣16,解得x=6或x=8,当x=8时,点Q 2与点B 重合,故舍去;当x=6时,y=﹣4,∴Q 2(6,﹣4).例3 ⑴∵抛物线的对称轴为直线x=1, ∴1221b b a -=-=⨯ ∴b =-2.∵抛物线与y 轴交于点C (0,-3),∴c =-3,∴抛物线的函数表达式为y =x 2-2x -3.⑵∵抛物线与x 轴交于A 、B 两点,当y =0时,x 2-2x -3=0.∴x 1=-1,x 2=3.∵A 点在B 点左侧,∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y =kx +m , 则033k m m =+⎧⎨-=⎩,∴13k m =⎧⎨=-⎩∴直线BC 的函数表达式为y =x -3. ⑶①∵AB =4,PO =34AB , ∴PO =3∵PO ⊥y 轴∴PO ∥x 轴,则由抛物线的对称性可得点P 的横坐标为12-, ∴P (12-,74-)∴F(0,74 -),∴FC=3-OF=3-74=54.∵PO垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2).过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(12),P2(1-252).练习1、【答案】解:(1)证明:∵∠BCD +∠ACO =90°,∠ACO +∠OAC =90°,∴∠BCD =∠OAC 。
专题10:直角三角形的存在性问题探究

专题十:直角三角形的存在性问题探究引例.如图,在平面直角坐标系中,点C(0,4),射线CE∥x 轴,直线y =-12x +b 交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若△ABD 恰为等腰直角三角形,则b 的值为 .是否存在一点,使之与另外两个定点构成直角三角形的问题:首先弄清题意,注意区分直角顶点;其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点. 解决方法如下方法一:利用勾股定理进行边长的计算,从而来解决问题;方法二:往往可以利用到一线等三角之K 字(90°)类型和母子相似型类型,尝试建构相应的相似来进行处理;方法三:可利用直径所对的圆周角为90°来处理.导例解析:分三种情况讨论:①当∠ABD =90°时,如图1,b =43;②当∠ADB =90°时,如图2,b =83;③当∠DAB =90°时,如图3,b =2方法点睛专题导入类型一:利用勾股定理来解决直角三角形的存在性问题例1.如图,已知抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,且经过A(1,0),C(0,3)两点,与x 轴的另一个交点为B.(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图【分析】(1)首先由题意,根据抛物线的对称称轴公式,待定系数法,建立关于a ,b ,c 的方程组,解方程组可得答案;(2)首先利用勾股这事不师古求得BC ,PB ,PC 的长,然后分别从点B 为直角顶点,点C 为直角顶点,点P 为直角顶点去分析求得答案. 类型二:构造相似来解决直角三角形存在性问题例2.如图①,抛物线y =-13x 2+bx +8与x 轴交于点A(-6,0),点B(点A 在点B 左侧),与y 轴交于点C ,点P 为线段AO 上的一个动点,过点P 作x 轴的垂线l 与抛物线交于点E ,连接AE,EC.(1)求抛物线的解析式及点C 的坐标;典例精讲(2)如图②,当EC ∥x 轴时,点P 停止运动,此时,在抛物线上是否存在点G ,使△AEG 是以AE 为直角边的直角三角形?若存在,请求出点G 的坐标;若不存在,说明理由.【分析】(1)用待定系数法求出抛物线解析式,令x=0时,求出y 轴交点坐标; (2)先求出点P 的坐标,再分两种情况计算:当∠AEG=90°时,判断出△EMG ∽△APE ,得出比例式求解即可;当∠EAG=90°时,判断出△GNA ∽△APE ,得到比例式计算.1. 如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标.2.如图,抛物线y =13x 2+bx +c 与x 轴交于A(3,0),B(-1,0)两点,过点B 作直线BC⊥x 轴,交直线y =-2x 于点C.专题过关(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标,并判断顶点D是否在直线y=-2x上;(3)点P是抛物线上一动点,是否存在这样的点P(点A除外),使△PBC是以BC为直角边的直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由;4.如图,在平面直角坐标系中,∠ACB=90°,OC=2O B,tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点.过点P作PD垂直x轴于点D,交线段AB于点E,DE.使PE=12①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.5.已知抛物线y=ax2+bx+c的顶点坐标为P(2,4).(1)试写出b,c之间的关系式;(2)当a>0时,若一次函数y=x+4的图象与y轴及该抛物线的交点依次为D,E,F,且E,F的横坐标x1与x2之间满足关系x2=6x1.①求△ODE与△OEF的面积比;②是否存在a,使得∠EPF=90°?若存在,求出a的值;若不存在,请说明理由.6.已知开口向下的抛物线y=ax2﹣2ax+3与x轴的交点为A,B两点(点A在点B的左边),与y轴的交点为C,OC=3OA.(1)请直接写出该抛物线解析式;(2)如图,D为抛物线的顶点,连接BD,BC,P为对称轴右侧抛物线上一点.若∠ABD=∠BCP,求点P的坐标(3)在(2)的条件下,M,N是抛物线上的动点.若∠MPN=90°,直线MN必过一定点,请求出该定点的坐标.答案例1. (1)由题意得{−b2a=−1,a +b +c =0,c =3,解得{a =−1,b =−2,c =3.∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A(1,0),∴B(-3,0).设直线BC 的解析式y =mx +n ,把B(-3,0),C(0,3)分别代入y =mx +n,得{−3m +n =0,n =3.解得{m =1,n =3.∴直线BC 的解析式为y =x +3.∴M(-1,2);(2)设P(-1,t),∵B(-3,0),C(0,3),∴BC 2=18, PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2; ②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4; ③若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解得t 1=3+√172,t 2=3−√172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+√172),P 4(-1,3−√172).例2(1)∵点A(-6,0)在抛物线y =-13x 2+bx +8上,∴0=-13×(-6)2+(-6b)+8,解得b =-23.∴抛物线的解析式为y =-13x 2-23x +8,令x =0,得y =8,∴C(0,8);(2))存在.如图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,图①∵EC ∥x 轴,∴EP =CO =8.把y =8代入y =-13x 2-23x +8,则8=-13x 2-23x +8,解得x =0(舍去)或x =-2.∴P(-2,0) .∴AP =AO -PO =4.(ⅰ)如图①,当∠AEG =90°时,∵∠MEG +∠AEP =90°,∠AEP +∠EAP =90°, ∴∠MEG =∠EAP .又∵∠APE =∠EMG =90°,∴△EMG ∽△APE .∴EM AP =MGEP .设点G(m ,-13m 2-23m +8)(m >0),则GN =MP =-13m 2-23m +8.∴EM =EP -MP =8-(-13m 2-23m +8)=13m 2+23m ,MG =PN =PO +ON =2+m .∴13m 2+23m 4=2+m 8=,∴m =-2(舍去)或m =32.∴G(32,254);(ⅱ)如图②,当∠EAG =90°时,图②∵∠NAG +∠EAP =90°,∠AEP +∠EAP =90°,∴∠NAG =∠AEP .∵∠APE =∠GNA =90°,∴△GNA ∽△APE .∴GN AP =ANEP . 设点G(n ,-13 n 2-23n +8)(n >4),∴GN =13n 2+23n -8,AN =AO +ON =6+n .∴2128334+-n n =68+n .∴n =-6(舍去)或n =112.∴G(112,-234) .综上,符合条件的G 点的坐标为(32,254)或(112,-234).1.(1)由题意得{32+3b +c =0,c =3.,解得{b =−4,c =3.∴抛物线的解析式为y =x 2-4x +3;(2)如图①,过点P 作PG ∥CF 交CB 与点G .图①由题可知,直线BC 的解析式为y =-x +3,OC =OB =3,∴∠OCB =45°.同理可知∠OFE =45°.∴△CEF 为等腰直角三角形.∵PG ∥CF ,∴△GPE 为等腰直角三角形.∵F(0,m),C(0,3),∴CF =3-m .∵△CEF ∽△GEP ,∴EF =√22CF =√22(3-m), PE =√22PG .设P(t ,t 2-4t +3)(1<t<3), 则G(t ,-t +3)PE =√22PG =√22(-t +3-t -m)=√22(-m -2t +3) .∵点P 是直线y =x +m 与抛物线的交点,∴t 2-4t +3=t +m .∴PE +EF =√22 (3-m)+√22 (-m -2t +3)=√22(-2t -2m +6)=-√2 (t +m -3)=-√2 (t 2-4t)= -√2 (t -2)2+4√2.∴当t =2时,PE +EF 最大,最大值为4√2;(3)由(1)知对称轴x =2,设点D(2,n),如图②.专题过关图②当△BCD 是以BC 为直角边的直角三角形时,分两种情况讨论:(ⅰ)D 在C 上方D 1位置时,由勾股定理得CD 12+BC 2=BD 12,即(2-0)2+(n -3)2+(3√2)2=(3-2)2+(0-n)2,解得n =5;(ⅱ)D 在C 下方D 2位置时,由勾股定理得BD 22+BC 2=CD 22即(2-3)2+(n -0)2+(3√2)2=(2-0)2+(n -3)2 ,解得n =-1,综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1). 2.:(1)∵y =13x 2+bx +c 与x 轴交于A(3,0),B(-1,0)两点,∴{13×32+3b +c =0,13×(−1)2−b +c =0.解得{b =−23c =−1.,∴抛物线的解析式为y =13x 2-23x -1; (2)由y =13x 2-23x -1=13(x-1)2-43,∴抛物线的顶点D 的坐标为(1,-43). 把x =1代入y =-2x 中得y =-2.∵-43≠-2,∴顶点D 不在直线y =-2x 上;(3)存在.理由如下:如图,过点C 作x 轴的平行线,与该抛物线交于点P 1,P 2,连接BP 1,BP 2.∵直线BC ⊥x 轴,∴△P 1BC 、△P 2BC 都是直角三角形.把x =-1代入y =-2x 中得y =-2×(-1)=2.∴C(-1,2). ∴把y =2代入y =13x 2-23x -1中,得13x 2-23x -1=2,解得x 1=√10+1,x 2=-√10+1.∴P 1(√10+1,2),P 2(-√10+1,2).3. (1)设抛物线解析式为y =a(x +1)(x -3),即y =ax 2-2ax -3a . ∴-2a =2,解得a =-1,∴抛物线解析式为y =-x 2+2x +3. 当x =0时,y =-x 2+2x +3=3,则C(0,3). 设直线AC 的解析式为y =px +q ,把A(-1,0),C(0,3)代入得{−p +q =0,q =3.解得{p =3,q =3.∴直线AC 的解析式为y =3x +3.(2)∵y=-x 2+2x +3=-(x -1)2+4,∴顶点D 的坐标为(1,4).如图,作B 点关于y 轴的对称点B′,则B′(-3,0),连接DB′交y 轴于M.∵MB=MB′,∴MB+MD =MB′+MD =DB′,此时MB +MD 的值最小.∵BD 的值不变,∴此时△BDM 的周长最小.易得直线DB′的解析式为y =x +3.当x =0时,y =x +3=3,∴点M 的坐标为(0,3).(3)存在,符合条件的点P 的坐标为(73,209)或(103,-139).4.(1)在Rt△ABC 中,由点B 的坐标可知OB =1.∵OC=2OB ,∴OC=2,则BC =3.又∵tan∠ABC=2,∴AC=2BC =6,则点A 的坐标为(-2,6).把点A ,B 的坐标代入抛物线y =-x 2+bx +c 中,得{−4−2b +c =6,−1+b +c =0.解得{b =−3,c =4.∴该抛物线的解析式为y =-x 2-3x +4. (2)①由点A(-2,6)和点B(1,0)的坐标易得直线AB 的解析式为y =-2x +2.如图,设点P 的坐标为(m ,-m 2-3m +4),则点E 的坐标为(m ,-2m +2),点D 的坐标为(m ,0) .则PE =-m 2-m +2,DE =-2m +2,由PE =12DE 得-m 2-m +2=12(-2m +2),解得m =±1.又∵-2<m <1,∴m=-1,∴点P 的坐标为(-1,6).②∵M 在直线PD 上,且P(-1,6),设M(-1,y),∴AM 2=(-1+2)2+(y -6)2=1+(y -6)2,BM 2=(1+1)2+y 2=4+y 2,AB 2=(1+2)2+62=45. 分三种情况:(ⅰ)当∠AMB=90°时,有AM 2+BM 2=AB 2,∴1+(y -6)2+4+y 2=45,解得y =3±√11. ∴M(-1,3+√11)或(-1,3-√11);(ⅱ)当∠ABM=90°时,有AB 2+BM 2=AM 2,∴45+4+y 2=1+(y -6)2,解得y =-1,∴M(-1,-1).(ⅲ)当∠BAM=90°时,有AM 2+AB 2=BM 2,∴1+(y -6)2+45=4+y 2,解得y =132,∴M(-1,132).综上所述,点M 的坐标为(-1,3+√11)或(-1,3-√11)或(-1,-1)或(-1,132). 5.(1)∵抛物线顶点坐标为(2,4),∴抛物线解析式为y=a (x ﹣2)2+4=ax 2﹣4ax+4a+4,∴b=﹣4a ,c=4a+4.∴b+c=4;(2)①由题意可知△ODE 和△ODF 的底边DE 、DF 边上的高相同,∴S △ODE :S △ODF =DE :DF=x 1:x 2=1:6.∴S △ODE :S △OEF =1:5;②如图,分别过E ,F 作x 轴的垂线,垂足分别为G 、H ,交直线DP 于点M 、N , ∵直线y=x+4,∴设点E 坐标为(m ,m+4),则点F 的坐标为(6m ,6m+4).∴EM=EG ﹣MG=m+4﹣4=m ,FN=FH ﹣NH=6m+4﹣4=6m ,PM=PD ﹣MD=2﹣m ,PN=DN ﹣PD=6m ﹣2, ∵∠EPF=90°,∴∠EPM+∠FPN=90°,且∠FPN+∠PFN=90°.∴∠EPM=∠PFN . ∴△EPM ∽△PEN .∴EM PN =PM FN ,即m 6m−2=2−m 6m .整理可得6m 2+7m+2=0,解得m=12或m=23, 当m=12时,点E (12,92),F (3,7),把F 点坐标代入抛物线解析式可得a+4=7,解得a=3, ∴抛物线解析式为y=3(x ﹣2)2+4,当x=12时,代入可求得y=434≠92,即点E 不在该抛物线图象上,不符合题意.当m=23时,点E (23, 143),F (4,8),把F 点坐标代入抛物线解析式可求得a=1.∴抛物线解析式为y=(x ﹣2)2+4.当x=23时,代入可求得y=529≠143,即点E 不在抛物线图象上,不符合题意,综上可知不存在满足条件的a 的值.6.(1)当x=0时,y=ax2﹣2ax+3=3,∴C(0,3),OC=3OA=3.∴OA=1,A(﹣1,0).把点A(﹣1,0)代入抛物线解析式,得:a+2a+3=0,解得a=﹣1.∴抛物线解析式为y=﹣x2+2x+3;(2)如图1,若点P在抛物线对称轴右侧且在x轴上方,过点P作PE∥y轴交BC于点E,PF⊥BC于点F,过点D作DH⊥x轴于点H,∴∠CFP=∠BHD=90°.∵当y=﹣x2+2x+3=0时,解得:x1=﹣1,x2=3.∴A(﹣1,0),B(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4).∴DH=4,BH=3﹣1=2.∴BD==.∴Rt △BDH 中,sin ∠ABD =DH BD ==.∵C (0,3)∴BC PC 设直线BC 解析式为y =kx+b ,∴30,0 3.k b b +=⎧⎨+=⎩解得:1,3.k b =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x+3.设P (p ,﹣p 2+2p+3)(1<p <3),则E (p ,﹣p+3),∴PE =﹣p 2+2p+3﹣(﹣p+3)=﹣p 2+3p . ∵S △BCP =12PE•OB=12BC•PF,∴PF =22PE OB BC ⋅==.∵∠ABD =∠BCP ,∴Rt △CPF 中,sin ∠BCP =PE PC =sin ∠ABD =5.∴PF PC .∴PF 2=45PC 2.解得p 1=﹣1(舍去),p 2=53. ∴﹣p 2+2p+3=329.∴点P 坐标为(53,329). 如图2,若点P 在x 轴下方,∵tan ∠ABD =DH BH=2>tan45°,∴∠ABD >45°. ∵∠BCP <∠BOC 即∠BCP <45°,∴∠ABD 与∠BCP 不可能相等.综上所述,点P 坐标为(53,329); (3)如图3,过P 作PH ∥y 轴,分别过点M 、N 作MG ⊥PH 于G ,NH ⊥PH 于H .设直线MN 的解析式为y =kx+n ,M (x 1,y 1)、N (x 2,y 3),令kx+n =﹣x 2+2x+3,即=x 2+(k ﹣2)x+n ﹣3=0,∴x 1+x 2=2﹣k ,x 1x 2=n ﹣3.∴y 1+y 2=k (x 1+x 2)+2n =k (2﹣k )+2n .y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+nk (x 1+x 2)+n 2=﹣3k 2+2nk+n 2, ∵∠G =∠MPN =∠H ,∴△MPG ∽△PNH .∴MG GP PH HN= . ∵P 坐标为(53,329),MG =53﹣x 1,PH =y 1﹣329,HN =253x -,GP =2329y -. ∴12115323932593x y y x --=--.整理,得12121212255321024()()93981x x x x y y y y -++=++-. ∴222255321024(2)3(22)3293981k n y k k n k nk n --+-=-++---. 解得 k 1=﹣3n+233,k 2=332515n -+. ∴直线MN ;y =(﹣3n+233)x+n =(﹣3x+1)n+233,过定点(13,239);或y=(332515n-+)x+n=(513x-+)n+3215,过定点(53,329)即P点,舍去.∴直线MN过定点(13,239).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十:直角三角形的存在性问题探究引入:x+b交线段引例.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=-12OC于点B,交x轴于点A,D是射线CE上一点.若△ABD恰为等腰直角三角形,则b的值为.方法梳理是否存在一点,使之与另外两个定点构成直角三角形的问题:首先弄清题意,注意区分直角顶点;其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点.解决方法如下方法一:利用勾股定理进行边长的计算,从而来解决问题;方法二:往往可以利用到一线等三角之K字(90°)类型和母子相似型类型,尝试建构相应的相似来进行处理;方法三:可利用直径所对的圆周角为90°来处理.导例解析:分三种情况讨论:①当∠ABD=90°时,如图1,b=4;②当∠ADB=90°时,如3;③当∠DAB=90°时,如图3,b=2图2,b=83精讲精练类型一:利用勾股定理来解决直角三角形的存在性问题例1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式;(2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.第2题图【分析】(1)首先由题意,根据抛物线的对称称轴公式,待定系数法,建立关于a,b,c 的方程组,解方程组可得答案;(2)首先利用勾股这事不师古求得BC,PB,PC的长,然后分别从点B为直角顶点,点C 为直角顶点,点P为直角顶点去分析求得答案.类型二:构造相似来解决直角三角形存在性问题x2+bx+8与x轴交于点A(-6,0),点B(点A在点B左侧),例2.如图①,抛物线y=-13与y轴交于点C,点P为线段AO上的一个动点,过点P作x轴的垂线l与抛物线交于点E,连接AE,EC.(1)求抛物线的解析式及点C的坐标;(2)如图②,当EC∥x轴时,点P停止运动,此时,在抛物线上是否存在点G,使△AEG是以AE为直角边的直角三角形?若存在,请求出点G的坐标;若不存在,说明理由.【分析】(1)用待定系数法求出抛物线解析式,令x=0时,求出y轴交点坐标;(2)先求出点P的坐标,再分两种情况计算:当∠AEG=90°时,判断出△EMG∽△APE,得出比例式求解即可;当∠EAG=90°时,判断出△GNA∽△APE,得到比例式计算.专题练习1. 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标.x2+bx+c与x轴交于A(3,0),B(-1,0)两点,过点B作直线BC⊥x 2.如图,抛物线y=13轴,交直线y=-2x于点C.(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标,并判断顶点D是否在直线y=-2x上;(3)点P是抛物线上一动点,是否存在这样的点P(点A除外),使△PBC是以BC为直角边的直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由;4.如图,在平面直角坐标系中,∠ACB=90°,OC=2O B,tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点.过点P作PD垂直x轴于点D,交线段AB于点E,DE.使PE=12①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.5.已知抛物线y=ax2+bx+c的顶点坐标为P(2,4).(1)试写出b,c之间的关系式;(2)当a>0时,若一次函数y=x+4的图象与y轴及该抛物线的交点依次为D,E,F,且E,F的横坐标x1与x2之间满足关系x2=6x1.①求△ODE与△OEF的面积比;②是否存在a,使得∠EPF=90°?若存在,求出a的值;若不存在,请说明理由.6.已知开口向下的抛物线y=ax2﹣2ax+3与x轴的交点为A,B两点(点A在点B的左边),与y轴的交点为C,OC=3OA.(1)请直接写出该抛物线解析式;(2)如图,D为抛物线的顶点,连接BD,BC,P为对称轴右侧抛物线上一点.若∠ABD=∠BCP,求点P的坐标(3)在(2)的条件下,M,N是抛物线上的动点.若∠MPN=90°,直线MN必过一定点,请求出该定点的坐标.答案例1. (1)由题意得{−b 2a =−1,a +b +c =0,c =3,解得{a =−1,b =−2,c =3. ∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A(1,0),∴B(-3,0).设直线BC 的解析式y =mx +n ,把B(-3,0),C(0,3)分别代入y =mx +n,得{−3m +n =0,n =3.解得{m =1,n =3.∴直线BC 的解析式为y =x +3.∴M(-1,2); (2)设P(-1,t),∵B(-3,0),C(0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2; ②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4; ③若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解得t 1=3+√172,t 2=3−√172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+√172),P 4(-1,3−√172).例2(1)∵点A(-6,0)在抛物线y =-13x 2+bx +8上, ∴0=-13×(-6)2+(-6b)+8,解得b =-23.∴抛物线的解析式为y =-13x 2-23x +8,令x =0,得y =8,∴C(0,8);(2))存在.如图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,图①∵EC ∥x 轴,∴EP =CO =8.把y =8代入y =-13x 2-23x +8,则8=-13x 2-23x +8,解得x =0(舍去)或x =-2.∴P(-2,0) .∴AP =AO -PO =4.(ⅰ)如图①,当∠AEG =90°时,∵∠MEG +∠AEP =90°,∠AEP +∠EAP =90°, ∴∠MEG =∠EAP .又∵∠APE =∠EMG =90°,∴△EMG ∽△APE .∴EM AP =MG EP .设点G(m ,-13m 2-23m +8)(m >0),则GN =MP =-13m 2-23m +8.∴EM =EP -MP =8-(-13m 2-23m +8)=13m 2+23m , MG =PN =PO +ON =2+m . ∴13m 2+23m 4=2+m8=,∴m =-2(舍去)或m =32.∴G(32,254); (ⅱ)如图②,当∠EAG =90°时,图② ∵∠NAG +∠EAP =90°,∠AEP +∠EAP =90°,∴∠NAG =∠AEP .∵∠APE =∠GNA =90°,∴△GNA ∽△APE .∴GN AP =AN EP .设点G(n ,-13 n 2-23n +8)(n >4),∴GN =13n 2+23n -8,AN =AO +ON =6+n . ∴2128334+-n n =68+n .∴n =-6(舍去)或n =112.∴G(112,-234) .综上,符合条件的G 点的坐标为(32,254)或(112,-234). 专题练习答案1.(1)由题意得{32+3b +c =0,c =3.,解得{b =−4,c =3.∴抛物线的解析式为y =x 2-4x +3; (2)如图①,过点P 作PG ∥CF 交CB 与点G .图①由题可知,直线BC 的解析式为y =-x +3,OC =OB =3,∴∠OCB =45°.同理可知∠OFE =45°.∴△CEF 为等腰直角三角形.∵PG ∥CF ,∴△GPE 为等腰直角三角形.∵F(0,m),C(0,3),∴CF =3-m .∵△CEF ∽△GEP ,∴EF =√22CF =√22 (3-m), PE =√22PG . 设P(t ,t 2-4t +3)(1<t<3), 则G(t ,-t +3)PE =√22PG =√22 (-t +3-t -m)=√22 (-m -2t +3) .∵点P 是直线y =x +m 与抛物线的交点,∴t 2-4t +3=t +m .∴PE +EF =√22 (3-m)+√22 (-m -2t +3)=√22 (-2t -2m +6)=-√2 (t +m -3)=-√2 (t 2-4t)= -√2 (t -2)2+4√2.∴当t =2时,PE +EF 最大,最大值为4√2;(3)由(1)知对称轴x =2,设点D(2,n),如图②.图②当△BCD 是以BC 为直角边的直角三角形时,分两种情况讨论:(ⅰ)D 在C 上方D 1位置时,由勾股定理得CD 12+BC 2=BD 12,即(2-0)2+(n -3)2+(3√2)2=(3-2)2+(0-n)2 ,解得n =5;(ⅱ)D 在C 下方D 2位置时,由勾股定理得BD 22+BC 2=CD 22即(2-3)2+(n -0)2+(3√2)2=(2-0)2+(n -3)2 ,解得n =-1,综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).2.:(1)∵y =13x 2+bx +c 与x 轴交于A(3,0),B(-1,0)两点, ∴{13×32+3b +c =0,13×(−1)2−b +c =0.解得{b =−23c =−1.,∴抛物线的解析式为y =13x 2-23x -1; (2)由y =13x 2-23x -1=13(x-1)2-43,∴抛物线的顶点D 的坐标为(1,-43). 把x =1代入y =-2x 中得y =-2. ∵-43≠-2,∴顶点D 不在直线y =-2x 上;(3)存在.理由如下:如图,过点C 作x 轴的平行线,与该抛物线交于点P 1,P 2,连接BP 1,BP 2.∵直线BC ⊥x 轴,∴△P 1BC 、△P 2BC 都是直角三角形.把x =-1代入y =-2x 中得y =-2×(-1)=2.∴C(-1,2).∴把y =2代入y =13x 2-23x -1中,得13x 2-23x -1=2, 解得x 1=√10+1,x 2=-√10+1.∴P 1(√10+1,2),P 2(-√10+1,2).3. (1)设抛物线解析式为y =a(x +1)(x -3),即y =ax 2-2ax -3a . ∴-2a =2,解得a =-1,∴抛物线解析式为y =-x 2+2x +3.当x =0时,y =-x 2+2x +3=3,则C(0,3).设直线AC 的解析式为y =px +q ,把A(-1,0),C(0,3)代入得{−p +q =0,q =3.解得{p =3,q =3.∴直线AC 的解析式为y =3x +3. (2)∵y=-x 2+2x +3=-(x -1)2+4,∴顶点D 的坐标为(1,4).如图,作B 点关于y 轴的对称点B′,则B′(-3,0),连接DB′交y 轴于M.∵MB=MB′,∴MB+MD =MB′+MD =DB′,此时MB +MD 的值最小.∵BD 的值不变,∴此时△BDM 的周长最小.易得直线DB′的解析式为y =x +3.当x =0时,y =x +3=3,∴点M 的坐标为(0,3).(3)存在,符合条件的点P 的坐标为(73,209)或(103,-139).4.(1)在Rt△ABC 中,由点B 的坐标可知OB =1.∵OC=2OB ,∴OC=2,则BC =3.又∵tan∠ABC=2,∴AC=2BC =6,则点A 的坐标为(-2,6).把点A ,B 的坐标代入抛物线y =-x 2+bx +c 中,得{−4−2b +c =6,−1+b +c =0.解得{b =−3,c =4.∴该抛物线的解析式为y =-x 2-3x +4. (2)①由点A(-2,6)和点B(1,0)的坐标易得直线AB 的解析式为y =-2x +2.如图,设点P 的坐标为(m ,-m 2-3m +4),则点E 的坐标为(m ,-2m +2),点D 的坐标为(m ,0) .则PE =-m 2-m +2,DE =-2m +2,由PE =12DE 得-m 2-m +2=12(-2m +2),解得m =±1.又∵-2<m <1,∴m=-1,∴点P 的坐标为(-1,6).②∵M 在直线PD 上,且P(-1,6),设M(-1,y),∴AM 2=(-1+2)2+(y -6)2=1+(y -6)2,BM 2=(1+1)2+y 2=4+y 2,AB 2=(1+2)2+62=45. 分三种情况:(ⅰ)当∠AMB=90°时,有AM 2+BM 2=AB 2,∴1+(y -6)2+4+y 2=45,解得y =3±√11. ∴M(-1,3+√11)或(-1,3-√11);(ⅱ)当∠ABM=90°时,有AB 2+BM 2=AM 2,∴45+4+y 2=1+(y -6)2,解得y =-1,∴M(-1,-1).(ⅲ)当∠BAM=90°时,有AM 2+AB 2=BM 2,∴1+(y -6)2+45=4+y 2,解得y =132,∴M(-1,132).综上所述,点M 的坐标为(-1,3+√11)或(-1,3-√11)或(-1,-1)或(-1,132). 5.(1)∵抛物线顶点坐标为(2,4),∴抛物线解析式为y=a (x ﹣2)2+4=ax 2﹣4ax+4a+4,∴b=﹣4a ,c=4a+4.∴b+c=4;(2)①由题意可知△ODE 和△ODF 的底边DE 、DF 边上的高相同,∴S △ODE :S △ODF =DE :DF=x 1:x 2=1:6.∴S △ODE :S △OEF =1:5;②如图,分别过E ,F 作x 轴的垂线,垂足分别为G 、H ,交直线DP 于点M 、N , ∵直线y=x+4,∴设点E 坐标为(m ,m+4),则点F 的坐标为(6m ,6m+4).∴EM=EG ﹣MG=m+4﹣4=m ,FN=FH ﹣NH=6m+4﹣4=6m ,PM=PD ﹣MD=2﹣m ,PN=DN ﹣PD=6m ﹣2, ∵∠EPF=90°,∴∠EPM+∠FPN=90°,且∠FPN+∠PFN=90°.∴∠EPM=∠PFN . ∴△EPM ∽△PEN .∴EM PN =PM FN ,即m 6m−2=2−m 6m .整理可得6m 2+7m+2=0,解得m=12或m=23, 当m=12时,点E (12,92),F (3,7),把F 点坐标代入抛物线解析式可得a+4=7,解得a=3, ∴抛物线解析式为y=3(x ﹣2)2+4,当x=12时,代入可求得y=434≠92,即点E 不在该抛物线图象上,不符合题意.当m=23时,点E (23, 143),F (4,8),把F 点坐标代入抛物线解析式可求得a=1.∴抛物线解析式为y=(x ﹣2)2+4.当x=23时,代入可求得y=529≠143,即点E 不在抛物线图象上,不符合题意,综上可知不存在满足条件的a 的值.6.(1)当x=0时,y=ax2﹣2ax+3=3,∴C(0,3),OC=3OA=3.∴OA=1,A(﹣1,0).把点A(﹣1,0)代入抛物线解析式,得:a+2a+3=0,解得a=﹣1.∴抛物线解析式为y=﹣x2+2x+3;(2)如图1,若点P在抛物线对称轴右侧且在x轴上方,过点P作PE∥y轴交BC于点E,PF⊥BC于点F,过点D作DH⊥x轴于点H,∴∠CFP=∠BHD=90°.∵当y=﹣x2+2x+3=0时,解得:x1=﹣1,x2=3.∴A(﹣1,0),B(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4).∴DH=4,BH=3﹣1=2.∴BD==.∴Rt △BDH 中,sin ∠ABD =DH BD ==∵C (0,3)∴BC PC 设直线BC 解析式为y =kx+b ,∴30,0 3.k b b +=⎧⎨+=⎩解得:1,3.k b =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x+3.设P (p ,﹣p 2+2p+3)(1<p <3),则E (p ,﹣p+3),∴PE =﹣p 2+2p+3﹣(﹣p+3)=﹣p 2+3p . ∵S △BCP =12PE•OB=12BC•PF,∴PF =22PE OB BC ⋅==.∵∠ABD =∠BCP ,∴Rt △CPF 中,sin ∠BCP =PE PC =sin ∠ABD .∴PF .∴PF 2=45PC 2.解得p 1=﹣1(舍去),p 2=53. ∴﹣p 2+2p+3=329.∴点P 坐标为(53,329). 如图2,若点P 在x 轴下方,∵tan ∠ABD =DH BH=2>tan45°,∴∠ABD >45°.∵∠BCP <∠BOC 即∠BCP <45°,∴∠ABD 与∠BCP 不可能相等. 综上所述,点P 坐标为(53,329); (3)如图3,过P 作PH ∥y 轴,分别过点M 、N 作MG ⊥PH 于G ,NH ⊥PH 于H .设直线MN 的解析式为y =kx+n ,M (x 1,y 1)、N (x 2,y 3),令kx+n =﹣x 2+2x+3,即=x 2+(k ﹣2)x+n ﹣3=0,∴x 1+x 2=2﹣k ,x 1x 2=n ﹣3.∴y 1+y 2=k (x 1+x 2)+2n =k (2﹣k )+2n .y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+nk (x 1+x 2)+n 2=﹣3k 2+2nk+n 2,∵∠G =∠MPN =∠H ,∴△MPG ∽△PNH .∴MG GP PH HN= . ∵P 坐标为(53,329),MG =53﹣x 1,PH =y 1﹣329,HN =253x -,GP =2329y -. ∴12115323932593x y y x --=--.整理,得12121212255321024()()93981x x x x y y y y -++=++-. ∴222255321024(2)3(22)3293981k n y k k n k nk n --+-=-++---. 解得 k 1=﹣3n+233,k 2=332515n -+.∴直线MN;y=(﹣3n+233)x+n=(﹣3x+1)n+233,过定点(13,239);或y=(332515n-+)x+n=(513x-+)n+3215,过定点(53,329)即P点,舍去.∴直线MN过定点(13,239).。