中考数学分类(含答案)解直角三角形的应用

合集下载

2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)

2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)

解直角三角形一.选择题1. (2019•广东省广州市•3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•广西北部湾经济区•3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A. 米B. 米C. 米D. 米【答案】C【解析】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.二.填空题1. (2019•江苏宿迁•3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC <.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.2. (2 019·江苏盐城·3分)如图,在△ABC 中,BC =26+,∠C =45°,AB =2AC ,则AC 的长为________.【答案】2【解析】过A 作AD ⊥BC 于D 点,设AC =x 2,则AB =x 2,因为∠C =45°,所以AD =AC =x ,则由勾股定理得BD =x AD AB 322=-,因为AB =26+,所以AB =263+=+x x ,则x =2.则AC =2.3. (2 019·江苏盐城·3分)如图,在平面直角坐标系中,一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是__________.【答案】131-=x y 【解析】因为一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,则A (21,0),B (0,-1),则AB =25. 过A 作AD ⊥BC 于点D ,因为∠ABC =45°,所以由勾股定理得AD =410,设BC =x ,则AC =OC -OA =2112--x ,根据等面积可得:AC ×OB =BC ×AD ,即2112--x =410x ,解得x =10.则AC =3,即C (3,0),所以直线BC 的函数表达式是131-=x y .4. (2019•浙江湖州•4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为 120 cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6.)【分析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,利用等腰三角形的三线合一得到OE 为角平分线,进而求出同位角的度数,在直角三角形AFB 中,利用锐角三角函数定义求出h 即可.【解答】解:过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF , ∵BO =DO , ∴OE 平分∠BOD ,∴∠BOE =∠BOD =×74°=37°, ∴∠F AB =∠BOE =37°,在Rt △ABF 中,AB =85+65=150cm , ∴h =AF =AB •cos ∠F AB =150×0.8=120cm , 故答案为:120【点评】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.三.解答题1. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=ECsin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.2. (2019•江西•8分)图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1)(1)如图2,∠ABC=70°,BC∥OE。

2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。

若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

中考数学分类(含答案)解直角三角形的应用

中考数学分类(含答案)解直角三角形的应用

中考数学分类(含答案)解直角三角形应用一、选择题 1.(2010辽宁丹东市)如图,小颖利用有一个锐角是30°的三角板测量一棵树 的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m 二、填空题1.(2010山东济宁)如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .【答案】tan tan m n αα-⋅2.(2010重庆市潼南县)如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈732.13≈)【答案】82.0 3.(2010江西)如图,从点C 测得树的顶角为33º,BC =20米,则树高AB = 米(用计算器计算,结果精确到0.1米)(第15题)13【答案】0.4.(2010 湖北孝感)如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是海里(不作近似计算)。

6【答案】35.(2010广东深圳)如图5,某渔船在海面上朝正方方向匀速航行,在A处观测到灯塔M 在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行分钟可使渔船到达离灯塔距离最近的位置。

【答案】156.(2010广东佛山)如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的政务时刻阳光刚好不能射入窗户,则AB的长度是米。

2023年安徽中考数学总复习专题:解直角三角形的实际应用(PDF版,有答案)

2023年安徽中考数学总复习专题:解直角三角形的实际应用(PDF版,有答案)

2023年安徽中考数学总复习专题:解直角三角形的实际应用1.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO =45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时70千米的限制速度?(参考数据:2≈1.41,3≈1.73).2.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.8m和2.4m,∠BOC=90°.(1)△CEO与△ODB全等吗?请说明理由.(2)爸爸在距离地面多高的地方接住小丽的?(3)秋千的起始位置A处与距地面的高是 m.3.投影仪,又称投影机,是一种可以将图象或视频投射到幕布上的设备.如图①是屏幕投影仪投屏情景图,如图②是其侧面示意图,已知支撑杆AD与地面FC垂直,且AD的长为12cm,脚杆CD的长为50cm,AD距墙面EF的水平距离为240cm,投影仪光源散发器与支撑杆的夹角∠EAD=120°,脚杆CD与地面的夹角∠DCB=42°,求光源投屏最高点与地面间的距离EF.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)4.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移多少m时,才能确保山体不滑坡.(取tan50°≈1.2)5.小华在网上看到一个如图(1)的躺椅,他决定自己动手用木条制作一个简易的躺椅,如图(2)是简易躺椅的侧面,其中∠B=44°,∠ACB=17°,∠DEC=∠DCE=48°,AE=13AC,若木条AB=5dm,请你计算木条AC,DE,DC的长.(相关数据:sin44°=0.69,cos44°=0.72,tan44°=0.97,sin17°=0.29,cos17°=0.96,tan17°=0.31,sin48°=0.74,cos48°=0.67,tan48°=1.11,结果保留一位小数)6.“蛟龙号”载人潜水器是中国探索深蓝的利器.如图,在某次任务中,当蛟龙号下潜到点B处时,科研人员在海面的观察点A测得点B的俯角为60°,当蛟龙号继续垂直下潜2千米到达海底C处时,在观察点A测得点C的俯角为75.97°,求点C到海面的深度.(结果精确到0.1千米)参考数据:3≈1.73,sin75.97°=0.97,cos75.97°≈0.24,tan75.97°≈4.007.图1是重庆欢乐谷的一个大型娱乐设施——“重庆之眼”摩天轮,它是全球第六、西南最高的观光摩天轮.如图2,小嘉从摩天轮最低处B出发先沿水平方向向左行走37米到达点C,再经过一段坡度(坡面的垂直高度与水平方向的距离的比)为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向左行走50米到达点E.在E处小嘉操作一架无人勘测机,当无人勘测机飞行至点E的正上方点F时,测得点D处的俯角为58°,摩天轮最高处A的仰角为24°.AB所在的直线垂直于地面,垂足为O,点A、B、C、D、E、F、O在同一平面内,求AB的高度.(结果精确到1米,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin24°≈0.40,cos24°≈0.91,tan24°≈0.45)8.一艘渔船在海中自西向东航行,速度为28海里/小时,船在A处测得灯塔C在北偏东60°方向,半小时后渔船到达B点,测得灯塔C在北偏东15°方向,求船与灯塔间的最近距离.9.海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A 的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为602海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:3≈1.73)10.如图1,图2分别是某款篮球架的实物图与侧面示意图,已知底座矩形BCLK的高BK=19cm,宽BC=40cm,底座BC与支架AC所成的角∠ACB=76°,支架AF的长为240cm,篮板顶端F到篮筐D的距离FD=90cm(FE与地面LK垂直,支架AK与地面LK 垂直,支架HE与FE垂直),篮板底部支架HE与支架AF所成的角∠FHE=66°,求篮筐D到地面的距离(精确到1cm).(参考数据:sin66°≈910,cos66°≈25,tan66°≈94,sin76°≈0.96,cos76°≈0.24,tan76°≈4.0)参考答案1.解:(1)在Rt△BOP中,∠BOP=90°,∵∠BPO=45°,OP=100,∴OB=OP=100.在Rt△AOP中,∠AOP=90°,∵∠APO=60°,∴AO=OP•tan∠APO.∴AO=1003(米),∴AB=100(3―1)(米);(2)∵此车的速度=100(3―1)4=25(3―1)≈25×0.73=18.25米/秒,70千米/小时=700003600米/秒≈19.4米/秒,18.25米/秒<19.4米/秒,∴此车没有超过了万丰路每小时70千米的限制速度.2.解:(1)△OBD与△COE全等.理由如下:由题意可知∠CEO=∠BDO=90°,OB=OC,∵∠BOC=90°,∴∠COE+∠BOD=∠BOD+∠OBD=90°.∴∠COE=∠OBD,在△COE和△OBD中,∠COE=∠OBD∠CEO∠ODBOC=OB,∴△COE≌△OBD(AAS);(2)∵△COE≌△OBD,∴CE=OD,OE=BD,∵BD、CE分别为1.8m和2.4m,∴OD=2.4m,OE=1.8m,∴DE=OD﹣OE=CE﹣BD=2.4﹣1.8=0.6(m),∵妈妈在距地面1.2m高的B处,即DM=1.2m,∴EM=DM+DE=1.8(m),答:爸爸是在距离地面1.8m的地方接住小丽的;(3)∵OA=OB=OD2+BD2=2.42+1.82=3(m),∴AM=OD+DM﹣OA=2.4+1.2﹣3=0.6(m).∴秋千的起始位置A处与距地面的高0.6m.故答案为:0.6.3.解:过点A作AG⊥EF,垂足为G,过点D作DH⊥EF,垂足为H,则AB=GF,AG=BF=240cm,∠GAB=90°,在Rt△DBC中,∠DCB=42°,CD=50cm,∴DB=CD•sin42°≈50×0.67=33.5(cm),∵AD=12cm,∴GF=AB=AD+DB=45.5(cm),∵∠EAD=120°,∴∠EAG=∠EAD﹣∠GAB=30°,在Rt△EAG中,EG=AG•tan30°=240×33=803(cm),∴EF=EG+GF=803+45.5≈183.9(cm),∴光源投屏最高点与地面间的距离EF约为183.9cm.4.解:作∠DAG=50°,AG交BC于G,过点G作GH⊥AD于H,则BEGH为矩形,∴GH=BE,BG=EH,设BE=12xm,∵斜坡AB的坡比为12:5,∴AE=5xm,由勾股定理得:(5x)2+(12x)2=262,解得:x=2(负值舍去),∴BE=24m,AE=12m,∴GH=BE=24m,在Rt△GAH中,tan∠GAH=GH AH,则24AH≈1.2,解得:AH=20,∴EH=AH﹣AE=10(m),∴BG=EH=10m,答:坡顶B沿BC至少向右移10m时,才能确保山体不滑坡.5.解:过点A作AM⊥BC于点M,过点D作DN⊥FC于点N,如图,在Rt△ABM中,AB=5dm,∠ABC=44°,∵sin∠ABM=AM AB,∴AM=AB•sin∠ABM=5•sin44°=5×0.69=3.45dm,在Rt△ACM中,∠ACM=17°,∵sin∠ACM=AM AC∴AC=AMsin∠ACM=AMsin17°=3.450.29≈11.9dm;∵AE=13 AC,∴EC=AC―AE=23AC=23×11.9≈7.93dm,∵∠DEC=∠DCE=48°,∴DE=DC,∵DN⊥FC∴FN=CN=12EC≈3.97dm,在Rt△DEN中,EN=3,97dm,∠DEN=48°,∵cos∠DEN=EN DE,∴DE=ENcos∠DEN=3.97cos48°=3.970.67≈5.9dm答:AC的长为11.9dm,DE的长为5.9dm,DC的长为5.9dm.6.解:延长CB,交AE于点D,由题意得,∠DAB=60°,∠DAC=75.97°,∠ADC=90°,BC=2千米,设BD=x千米,则CD=(x+2)千米,在Rt△ABD中,tan60°=BDAD=xAD=3,解得AD=33 x,在Rt△ACD中,tan75.97°=CDAD=x+233x≈4.00,解得x≈1.5,经检验,x≈1.5是原方程的解且符合题意,∴CD≈3.5千米.∴点C到海面的深度约为3.5千米.7.解:过C作CM⊥OD于M,过F作FN⊥AB于N,如图所示:则FN=EO,ON=EF,OM=BC=37米,BO=CM,FN∥EO,∴∠EDF=∠DFN=58°,∵斜坡CD的坡度为i=1:2.4,CD=26米,∴BO=CM=10(米),MD=24(米),∵DE=50米,∴FN=EO=DE+MD+OM=50+24+37=111(米),在Rt△DEF中,tan∠EDF=EFDE=tan58°≈1.60,∴EF≈1.60DE=1.60×50=80(米),∴ON=EF≈80米,∴BN=ON﹣BO≈70(米),在Rt△AFN中,∠AFN=24°,∵tan∠AFN=ANFN=tan24°≈0.45,∴AN≈0.45FN=0.45×111=49.95(米),∴AB=AN+BN=49.95+70≈120(米),即AB的高度约为120米.8.解:过点C作CD⊥AB,交AB的延长线于点D,过点B作BE⊥AC于点E,由题意得,∠CAB=90°﹣60°=30°,∠CBD=90°﹣15°=75°,AB=28×0.5=14(海里),∴∠ACB=∠CBD﹣∠CAB=45°,在Rt△ABE中,sin30°=BEAB=BE14=12,cos30°=AEAB=AE14=32,解得BE=7,AE=73,在Rt△BCE中,∠BCE=45°,∴BE=CE=7海里,∴AC=AE+CE=(7+73)海里,在Rt△ACD中,sin30°=CDAC=CD7+73=12,解得CD=72+732.∴船与灯塔间的最近距离为(72+732)海里.9.解:(1)过点A作AH⊥CB于点H,如图.由题意得:∠CAB=90°﹣60°=30°,∠ABC=180°﹣60°=120°,∴∠C=180°﹣30°﹣120°=30°,∴AH=12AC=12×120=60(海里).答:点A到直线CB的距离是60海里;(2)海警船能否在1小时内拦截到可疑船只,理由:在Rt△ADH中,AD=602海里,AH=60海里,∴DH=AD2―AH2=60(海里),∵∠ABH=∠BAC+∠C=60°,在Rt△ABH中,∠BAH=90°﹣∠ABH=30°,∴BH=12 AB,∴AB=2BH,∵BH2+AH2=AB2,∴BH2+602=(2BH)2,∴BH=203,∴BD=DH﹣BH=(60﹣203)海里,∵海警船的速度是30海里/小时,∴(60﹣203)÷30≈0.9<1,答:海警船能否在1小时内拦截到可疑船只.10.解:延长FE交地面LK于点M,过点A作AG⊥FM,垂足为G,则∠FML=90°,AK=GM,HE∥AG,∴∠FHE=∠FAG=66°,在Rt△ACB中,∠ACB=76°,BC=40cm,∴AB=BC•tan76°≈40×4=160(cm),∵BK=19cm,∴GM=AK=AB+BK=179(cm),在Rt△AFG中,AF=240cm,∴FG=AF•sin66°≈240×910=216(cm),∵FD=90cm,∴DM=FG+GM﹣FD=216+179﹣90=305(cm),∴篮筐D到地面的距离约为305cm.。

2012至2017年广东省中考数学试题分类汇编解直角三角形及应用解答

2012至2017年广东省中考数学试题分类汇编解直角三角形及应用解答

20、解直角三角形及应用18.(2012广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D 处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题。

解答:解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.25.(2015)如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC 完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB 上沿A→D,C →B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y(cm2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值.(参考数据:sin75°=,sin15°=)【解析】(1)(2) 如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°,∴sin 15°=FC NC ,又NC =x ,∴FC =,∴NE =DF+.∴点N 到AD+cm ;(3) ∵sin 75°=FN NC ,∴FN =, ∵PD =CP∴PF∴111)222y x x =++-·)即2y =+,当x =时,y有最大值为.20、(2014)如题20图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A 、B 、D 三点在同一直线上)。

中考数学应用题分类及参考答案(精编)

中考数学应用题分类及参考答案(精编)

中考数学应用题分类及参考答案(精编)一、方程应用1.为加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.求月平均增长率.2.一带一路给沿线地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,甲志愿者计划完成此项工作的天数?二、一次函数应用4.低碳生活绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为_________;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?三、二次函数应用5.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.四、解直角三角形应用6.灯塔是港口城市的标志性建筑之一,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,求灯塔的高度AD(结果精确到1m,参考数据:√ 2≈1.41,√ 3≈1.73)7.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:√ 3,且点A,B,C,D,E 在同一平面内,求小明同学测得古塔AB的高度.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,求甲楼的高度.五、方程与不等式应用9.某市为创建文明城市,开展美化绿化城市活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?六、方程与函数应用10.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?七、一次函数与二次函数应用11.某汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数y(辆)有如下关系:(1)观察表格,辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:请求出公司的最大月收益是多少元.八、解直角三角形与方程应用12.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC 的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.九、解直角三角形与圆应用13.如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=ac ,sinB=bc,可得asinA=bsinB=csinC=2R,即asinA=bsinB=csinC=2R(规定sin90°=1).(1)探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinA ( )bsinB( )csinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.(2)初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.(3)综合应用:如图3,在某次数学活动中,小玲同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度.(结果保留小数点后一位,参考数据:√3≈1.732,sin15°=√6−√24)十、方程、不等式与函数应用14.要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲,乙两种切割方式,如图2.切割,拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20-12a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.参考答案1.解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990. 2.解:设每件产品的实际定价是x 元,则原定价为(x+40)元.5000x+40=4000x,解得x =160 ,经检验x =160是原方程的解.3.解:设甲志愿者计划完成此项工作需x 天,故甲的工效都为:1x ,由于甲、乙两人工效相同,则乙的工效为1x ,甲前两个工作日完成了1x ×2,剩余的工作量甲完成了1x (x −2−3),乙在甲工作两个工作日后完成了1x (x −2−3),则2x +2(x−2−3)x=1,解得x=8,经检验,x=8是原方程的解.4.解析:(1)在OA 段,速度=100.5 =20km/h(2)当1.5≤x ≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,y=20x ﹣20,当x=2.5时,解得y=30,乙地离小红家30千米.5(1)证明:∵矩形MEFN 与矩形EBCF 面积相等 ∴ME =BE,AM =GH∵四块矩形花圃的面积相等,即S 矩形AMND =2S 矩形MEFN ∴AM =2ME ∴AE =3BE (2)∵篱笆总长为100m∴2AB+GH+3BC =100即2AB+12AB+3BC=100 ∴AB=40-65 BC 设BC 的长度为xm,矩形区域ABCD 的面积为ym 2则y=BC ·AB=x(40- 65x)=−65x 2+40x ∵x>0,40- 65x>0 ∴0<x<1003∴ y=−65x 2+40x(0<x<1003)6.36m7.(20+10√ 3)m 8.(36﹣10√ 3)m9(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x−3601.6x =4解得x=33.75,经检验x=33.75是原分式方程的解,1.6x=1.6×33.75=54(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a)≥360,解得a ≥72,则至少每年平均增加72万平方米. 10(1)y =10x+100(2)由题意得(10x+100)×(55﹣x ﹣35)=1760,整理得x 2﹣10x ﹣24=0,x 1=12,x 2=﹣2(舍去),55﹣x =43,这种消毒液每桶实际售价43元.11(1)设解析式y=kx+b,由题意得{3000k +b =1003200k +b =96,解得{k =−150b =160 ∴y 与x 间的函数关系是y =−150x +160(2)填表如下:(3)W =(−50x +160)(x −150)−(x −3000) =(−150x 2+163x −24000)−(x −3000) =−150x 2+162x −21000=−150(x −4050)2+307050当x=4050时,W 最大=307050,所以,当每辆车的月租金为4050元时,公司获得最大月收益307050元.12(1)过B 作BF ∥AD,过D 过AF ⊥AD,两直线交于F,过B 作BE 垂直地面交地面于E,如图:根据题知∠ABF =∠DAB =30°,AF =12AB =135m,BE:CE =1:2.4 设BE 长t 米,则CE 长2.4t 米. ∵BE 2+CE 2=BC2∴t 2+(2.4t)2=2602,解得t =100m(负值舍去),h =AF+BE =235m(2)设甲种设备每小时的造雪量是xm 3,则乙种设备每小时的造雪量是(x+35)m 3,根据题意得150x=500x+35,解得x =15,经检验,x =15是原方程的解,也符合题意,x+35=50.答:甲种设备每小时的造雪量是15m 3,则乙种设备每小时的造雪量是50m 3. 13(1)探究活动:a sinA = b sinB = csinC理由:如图2,过点C 作直径CD 交⊙O 于点D,连接BD. ∴∠A=∠D,∠DBC=90°∴sinA=sinD,sinD=a 2R ∴asinA = aa 2R=2R同理可证:b sinB =2R,c sinC =2R ∴a sinA = b sinB = csinC =2R (2)初步应用:∵asinA = bsinB =2R ∴8sin60° = bsin45° ∴b=8sin45°sin60°=8√63(3)综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100 ∴∠ACB =30°设古塔高DC=x,则BC=√2x ,AB sin∠ACB =BCsinA ,100sin30°=√2xsin15°,x=50(√3-1=36.6,古塔CD=36.6m.14(1)要制作200个A,B 两种规格的顶部无盖木盒,制作A 种木盒x 个,故制作B 种木盒(200-x)个;有200张规格为40cm ×40cm 的木板材,使用甲种方式切割的木板材y 张, 故使用乙种方式切割的木板材(200-y)张.(2)使用甲种方式切割的木板材y 张,则可切割出4y 个长、宽均为20cm 的木板,使用乙种方式切割的木板材(200-y)张,则可切割出8(200-y)个长为10cm,宽为20cm 的木板; 设制作A 种木盒x 个,则需要长、宽均为20cm 的木板5x 个,制作B 种木盒(200-x)个,则需要长、宽均为20cm 的木板(200-x)个,需要长为10cm 、宽为20cm 的木板4(200-x)个; 故{4y =5x +(200−x)8(200−y)=4(200−x),解得{x =100y =150 故制作A 种木盒100个,制作B 种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张.(3)用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,总成本为150×5+8×50=1150(元)两种木盒的销售单价均不能低于7元,不超过18元,所以{7≤a ≤187≤20−12a ≤18,解得{7≤a ≤184≤a ≤26,a 的取值范围为7≤a ≤18. 设利润为W,则W=100a+100(20-12a)-1150整理得W=850+50a,当a=18时,W 有最大值,最大值为850+50×18=1750,此时B 种木盒的销售单价定为20-12×18=11(元)即A 种木盒的销售单价定为18元,B 种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.。

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)

教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。

11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年中考数学分类(含答案)解直角三角形应用一、选择题1.(2010辽宁丹东市)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m 二、填空题1.(2010山东济宁)如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .【答案】tan tan m n αα-⋅2.(2010重庆市潼南县)如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈ 732.13≈)(第15题)【答案】82.03.(2010江西)如图,从点C测得树的顶角为33º,BC=20米,则树高AB=米(用计算器计算,结果精确到0.1米)【答案】0.134.(2010 湖北孝感)如图,一艘船向正北航行,在A处看到灯塔S 在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是海里(不作近似计算)。

5.(2010广东深圳)如图5,某渔船在海面上朝正方方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行分钟可使渔船到达离灯塔距离最近的位置。

【答案】156.(2010广东佛山)如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的政务时刻阳光刚好不能射入窗户,则AB的长度是米。

(假设夏至的政务时刻阳光与地平面夹角为60°)7.(2010辽宁沈阳)若等腰梯形ABCD 的上、下底之和为2,并且两条对角线所成的锐角为60°,则等腰梯形ABCD 的面积为 。

【答案】3或338.(2010四川达州)如图5,一水库迎水坡AB 的坡度1i =︰3, 则该坡的坡角α= .【答案】30°(即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(5332+)m B .(3532+)m C .53m D .4m【答案】A9.(2010江苏宿迁)小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了A .5200mB .500mC .3500mD .1000m图5BA ED C30°10.(2010浙江湖州)河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是()A.53米B.10米C.15米D.103米【答案】A.三、解答题1.(2010安徽省中中考)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是600,船的速度为5米/秒,求船从A到B处约需时间几分。

(参考数据:7.13 )【答案】2.(2010安徽芜湖)(本小题满分8分)图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16cm,求塔吊的高CH的长.解:【答案】3.(2010广东广州,22,12分)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D 处测得塔顶B的仰角为39°.(1)求大楼与电视塔之间的距离AC ; (2)求大楼的高度CD (精确到1米)45°39°D CAE B【分析】(1)由于∠ACB =45°,∠A =90°,因此△ABC 是等腰直角三角形,所以AC =AB =610;(2)根据矩形的对边相等可知:DE =AC =610米,在Rt △BDE 中,运用直角三角形的边角关系即可求出BE 的长,用AB 的长减去BE 的长度即可. 【答案】(1)由题意,AC =AB =610(米);(2)DE =AC =610(米),在Rt △BDE 中,tan ∠BDE =BE DE,故BE =DE tan39°.因为CD =AE ,所以CD =AB -DE ·tan39°=610-610×tan39°≈116(米)答:大楼的高度CD 约为116米. 【涉及知识点】解直角三角形【点评】解直角三角形是每年中考的必考知识点之一,主要考查直角三角形的边角关系及其应用,难度一般不会很大,本题是基本概念的综合题,主要考查考生应用知识解决问题的能力,很容易上手,容易出错的地方是近似值的取舍.4.(2010甘肃兰州)(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米.(1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)【答案】(1)如图,作AD ⊥BC 于点D ……………………………………1分Rt △ABD 中,AD =AB sin45°=42222=⨯ (2)分在Rt △ACD 中,∵∠ACD =30°∴AC =2AD =24≈6.5………………………3分 即新传送带AC 的长度约为6.5米. ………………………………………4分 (2)结论:货物MNQP 应挪走. ……………………………………5分解:在Rt △ABD 中,BD =AB cos45°=42222=⨯……………………6分在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1 ∵PC =PB —CB ≈4—2.1=1.9<2 ………………………………7分∴货物MNQP 应挪走. …………………………………………………………8分5.(2010江苏南京)(7分)如图,小明欲利用测角仪测量树的高度。

已知他离树的水平距离BC 为10m ,测角仪的高度CD 为1.5m ,测得树顶A 的仰角为33°.求树的高度AB 。

(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65) 【答案】6.(2010江苏南通)(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min 的速度向正东方向行走,在A 处测得建筑物C 在北偏东60°方向上,20min 后他走到B 处,测得建筑物C 在北偏西45°方向上,求建筑物C 到公路AB 的距离.3 1.732 )【答案】过C 作CD ⊥AB 于D 点,C60°45°(第23题)由题意可知AB=50×20=1000m,∠CAB=30°,∠CBA=45°,AD=CD/tan30°,BC=CD/tan45°,∵AD+BD= CD/tan30°+ CD/tan45°=1000,解得CD1-)m≈366m.7.(2010江苏盐城)(本题满分10分)如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30º,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45º.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m).【答案】解:设AB、CD的延长线相交于点E∵∠CBE=45º CE⊥AE∴CE=BE………………………(2分)∵CE=26.65-1.65=25 ∴BE=25∴AE=AB+BE=30 ……………………………………………(4分)在Rt△ADE中,∵∠DAE=30º∴DE=AE×tan30 º =30×33=10 3 …………………(7分)A B C DE∴CD =CE -DE =25-10 3 ≈25-10×1.732=7.68≈7.7(m) ……………(9分)答:广告屏幕上端与下端之间的距离约为7.7m ……………………(10分) (注:不作答不扣分)8.(2010山东青岛)小明家所在居民楼的对面有一座大厦AB ,AB=80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)【答案】ABC DEA解:设CD = x . 在Rt △ACD 中,tan37ADCD︒=, 则34AD x =, ∴34AD x =.在Rt△BCD 中, tan48° =BDCD, 则1110BD x=, ∴1110BD x =. (4)分∵AD +BD = AB , ∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. (6)9.(2010四川凉山)如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45降为30,已知原滑滑板AB 的长为4米,点D 、B 、C 在同一水平地面上。

(1) 改善后滑滑板会加餐长多少米?(2) 若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由。

1.414= 1.732= 2.449=,以上结果均保留到小数点后两位)。

【答案】10.(2010四川眉山)如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .ABCD 3045第20题图【答案】解:在Rt △AFG 中,tan AG AFG FG∠=∴tan AG FG AFG ==∠……………(2分)在Rt △ACG 中,tan AGACG CG∠=∴tan AG CG ACG=∠…………(4分)又 40CG FG -= 即40=∴AG =…………………………(7分)∴ 1.5AB =(米)答:这幢教学楼的高度AB为 1.5)米.(8分)11.(2010浙江杭州)(本小题满分10分)如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移 动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P的北偏东75°方向上,距离点P 320千米处.(1) 说明本次台风会影响B市;(2)求这次台风影响B市的时间.【答案】(1) 作BH⊥PQ于点H, 在Rt△BHP中,由条件知, PB = 320, BPQ = 30°, 得BH= 320sin30° = 160 < 200,∴本次台风会影响B市. ---4分(2) 如图, 若台风中心移动到P1时, 台风开始影响B市, 台风中心移动到P2时, 台风影响结束.由(1)得BH = 160, 由条件得BP1=BP2 = 200,∴P 1P 2 = 222160200-=240,--- 4分∴台风影响的时间t =30240= 8(小时).--- 2分12.(2010浙江嘉兴)设计建造一条道路,路基的横断面为梯形ABCD ,如图(单位:米).设路基高为h ,两侧的坡角分别为α和β,已知2=h ,︒=45α,21tan =β,10=CD .(1)求路基底部AB 的宽;(2)修筑这样的路基1000米,需要多少土石方?【答案】1)作AB DE ⊥于E ,AB CF ⊥于F ,则2==CF DE ,在Rt △ADE 中,∵︒=45α,∴2==DE AE .在Rt △CFB 中,∵21tan =β,∴21=BFCF,∴42==CF BF . 在梯形ABCD 中,又∵EF =CD =10, ∴AB =AE +EF +FB =16(米). …6分 (2)在梯形ABCD 中,∵AB =16,10=CD ,2=DE , ∴面积为262)1610(21)(21=⨯+=⨯+DE AB CD (平方米),αβABCED F(第21题)αβABCD (第21题)∴修筑1000米路基,需要土石方:26000100026=⨯(立方米). …4分13.(2010浙江绍兴)如图,小敏、小亮从A ,B 两地观测空中C 处一个气球,分别测得仰角为30°和60°,A ,B 两地相距100 m.当气球 沿与BA 平行地飘移10秒后到达C ′处时,在A 处测得气 球的仰角为45°.(1)求气球的高度(结果精确到0.1m);(2)求气球飘移的平均速度(结果保留3个有效数字).【答案】解:(1) 作CD ⊥AB ,C /E ⊥AB ,垂足分别为D ,E.∵ CD =BD ·tan60°,CD =(100+BD )·tan30°,∴(100+BD )·tan30°=BD ·tan60°, ∴ BD =50, CD =503≈86.6 m ,∴ 气球的高度约为86.6 m.第20题图第20题图(2) ∵ BD =50, AB =100, ∴ AD =150 ,又∵ AE =C /E =503, ∴ DE =150-503≈63.40, ∴ 气球飘移的平均速度约为6.34米/秒.14.(2010 浙江台州市)施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?【答案】(1) cos ∠D =cos ∠ABC =BCAB =25.44≈0.94,∴∠D ≈20°.(2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , 共需台阶28.9×100÷17=170级.15.(2010山东聊城)建于明洪武七年(1374年),高度33米的光岳楼是目前我国现存的最高大、最古老的楼阁之一(如图①).喜爱数学实践活动的小伟,在30米高的光岳楼顶P 处,利用自制测角仪测得正南方向一商店A 点的俯角为60º,又测得其正前方的海源阁宾馆B 点的俯角为30º(如图②).求商店与海源阁宾馆之间的距离.(结果保留根号)(第19题)第20题图A PO B图②【答案】由题意知∠PAO =60º,∠B =30º,在Rt △POA 中,tan PO PAO OA∠=,30tan 60OA︒=,OA =30,在在Rt △POB 中,tan PO B AB=,30tan 30OA︒=,OA =303=,∴AB=OB -OA=-16.(2010湖南长沙)为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60和45.求路况显示牌BC 的高度.【答案】解:在Rt △ABD,AB =3m ,∠ADB =45°所以333tan tan 451AB AD ADB ====∠.Rt △ACD 中,AD =3m ,∠ADC =60°所以tan 3tan 603AC AD ADC ==⨯==所以路况显示牌BC 的高度为()333-m .17.(2010浙江金华)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°.(1)试通过计算,比较风筝A 与风筝B 谁离地面更高?(2)求风筝A 与风筝B 的水平距离.(精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732) 全品中考网【答案】解:(1)分别过A ,B 作地面的垂线,垂足分别为D ,E .AB45° 60°CED (第19题在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°,∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m ∵17.32>16.97∴风筝A 比风筝B 离地面更高.(2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°,∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 m∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .18.(2010 山东济南)我市某乡镇学校教学楼后面靠近一座山AB 45° 60°C ED B C E坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B沿BC削进到E 处,问BE至少是多少米(结果保留根号)?【答案】解:作BG⊥AD于G,作EF⊥AD于F,∵Rt△ABG中,∠BAD=600,AB=40,∴BG =AB·sin600=203,AG = AB·cos600=20同理在Rt△AEF中,∠EAD=450,∴AF=EF=BG=203,∴BE=FG=AF-AG=20(13-)米.19.(2010江苏泰州)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度3=i,山坡长为2401∶米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)【答案】过点A作AD⊥BC于点D,在Rt△ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt△ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .20.(2010江苏无锡)在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.N M 东北B CA l【答案】解:(1)由题意,得∠BAC =90°,∴BC ==.∴轮船航行的速度为43=km/时.(2)能.……(4分) 作BD ⊥l 于D ,CE ⊥l 于E ,设直线BC 交l 于F ,l 东则BD =AB ·cos ∠BAD =20,CE =AC ·sin ∠CAE=,AE =AC ·cos∠CAE =12. ∵BD ⊥l ,CE ⊥l ,∴∠BDF =∠CEF =90°.又∠BFD =∠CFE ,∴△BDF ∽△CEF ,∴,DF BD EF CE =∴32EF EF +=,∴EF =8.∴AF =AE +EF =20. ∵AM <AF <AN ,∴轮船不改变航向继续航行,正好能行至码头MN 靠岸.21.(2010湖南邵阳,22,8分)如图(十二),在上海世博会场馆通道建设中,建设工人将坡长为10米(AB =10米),坡角为20°30`(∠BAC =20°30`)的斜坡通道改造成坡角为12°30`(∠BDC =12°30`)的斜坡通道,使坡的起点从点A处向左平移至点D处,求改造后的斜坡通道BD 的长。

相关文档
最新文档