五年级下册数学专项训练 奥数第九讲 数字游戏 _ 全国版 (含答案)-word
五年级下册奥数试题-组合数学之染色与覆盖 全国通用(含答案)

组合数学之染色与覆盖例1.有一次车展共36个展室,如下图,每个展室与相邻的展室都有门相通,入口和出口如图所示。
参观者 (填“能”或“不能”)从人口进去,不重复地参观完每个展室再从出口出来。
解:答:不能;如图将展室黑白相间染色,入口为白色,出口也是白色,而走遍36个展室,从白到黑,再从黑到白,共走了35步,最后应该走到黑格,而出口仍然是白格,矛盾,所以无法完成。
例2.棋盘由下图所示的9个小圆圈排列而成,用1~9编号,在3号和9号的小圆圈中各方一枚棋子,分别代表警察和小偷。
若两个小圆圈之间有线相连,则棋子可以从其中一格走入另一格,现在由警察先走,两人轮流,每人每次走一步,每步可以从一格走到有线相连的临格之中。
如果在6步之内警察走入小偷所在的格子中,就算警察抓住了小偷而立功获胜;如果警察走了6步还没有抓住小偷,就算他失职而失败。
问警察应如何取胜。
解:警察先从3走到1,则小偷从9走到7(或8);第2步,警察走到2,小偷走到6(或9); 第3步,警察走到3,小偷走到7或8;第4步,警察走到4,小偷走到9;第5步,警察6,小偷无论是走到7(或8),警察在第6步一定可以获胜。
例3.空间六点任三点不共线,任四点不共面,成对地连接它们得到十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色),求证:无论这么染,总存在一个同色的三角形。
解:设六点为A 、B 、C 、D 、E 、F ,从A 点出发的五条线段AB 、AC 、AD 、AE 、AF 中至少有3条是同色的,不妨设AB 、AC 、AD 为红色,我们再看△BCD 的三边,如果都是蓝色,那么存在同为蓝色的△BCD ,若△BCD 中有一条边不是蓝色,而是红色,不妨设BC 是红色,则AB 、AC 、BC 都是红色,这是一个红色三角形。
所以总存在一个同色的三角形。
例4.下图是由14个大小相同的方格组成的图形,试问 (“能”或“不能”)剪裁成7个由相邻两个方格组成的长方形。
奥数专题-消去法解决问题 假设法解决问题(竞赛试题)-2021-2022学年数学五年级下册全国通用

五年级奥数专题5消去法解决问题【同学们,这一讲我们要解决题目中含有两个或两个以上未知数量的应用题。
现在,就让我们一起进入这一讲的学习,开动脑筋,感受“消去法”的独特魅力吧!】例1:学校会议室第一次买了2个水壶和20个茶杯,共用去116 元;第二次又买了同样的2个水壶和16个茶杯,共用去100元。
水壶和茶杯的单价各是多少?【举一反三】:云云买了4本练习本和2支钢笔,共用去12元;小华买了同样的4本练习本和3支钢笔,一共用去17元。
练习本和钢笔的单价各是多少?例2:红红买了5本练习本和3支铅笔共花了18元,若买同样的3本练习本和5支铅笔需要花14元,练习本和铅笔的单价各是多少?【举一反三】:3个足球和2个篮球共140元,同祥的2个足球和3个篮球共135元。
足球和篮球的単价各是多少?例3:买9张桌子和3把椅子共花了780 元,5张桌子的价钱比3把椅子的价钱多340元。
桌子和椅子的单价各是多少?【举一反三】:3包味精和6包糖共重3000克.7包糖比3包味精重3000克。
1包味精和1包糖各重多少克?例4:某商店有篮球、足球和排球三种球。
1个篮球、1个足球和2个排球共60元;1个篮球、2个足球和1个排球共75元;2个篮球、1个足球和1个排球共65元。
每种球的单价各是多少?【举一反三】:买1支钢笔、2支圆珠笔和1个文具盒其花了31元;买同样的2支钢笔、1支圆珠笔和1个文具盒共花了38元;买同样的1支钢笔、1支圆珠笔和2个文具盒共花了43元。
求钢笔、圆珠笔和文具盒的单价。
例5:王航准备购买练习本铅笔和橡皮三种学习用品。
如果购买3支铅笔、7本练习本和1块橡皮要花6.9元;如果购买4支铅笔、10本练习本和1块橡皮要花9.5元。
那么购买1支铅笔、1本练习本和1块橡皮要花多少钱?【举一反三】:美术小组第一天买了3盒彩笔、1支毛笔和2盒油画棒,一-共用去84.4元;第二天买了同样的5盒彩笔、1支毛笔和3盒油画棒,一共用去131.2 元。
五年级小学数学 奥数例题 练习:平均数(含答案) 全国通用

五年级奥数例题+练习平均数例题1:有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个。
苹果和桃平均每箱37个。
求一箱苹果多少个?一箱桃多少个?①1箱苹果+1箱梨+1箱橘子= 42×3(个)=126(个)②1箱桃+1箱梨+1箱橘子= 36×3(个)③1箱苹果+1箱桃= 37×2(个)=74(个)由①②两个等式可知:一箱苹果比一箱桃子多126—108=18(个),再根据等式③就可以算出,一箱桃有(74—18)÷2=28(个),一箱苹果有28+18=46(个)。
一箱苹果和一箱桃共有:37×2=74(个)一箱苹果比一箱桃多:42×3—36×3=18(个)一箱桃有:(74—18)÷2=28(个)一箱苹果有:28+18=46(个)答:一箱苹果46个,一箱桃28个。
练习A:1、一次考试,甲、乙、丙三人平均91分,乙、丙、丁三人平均89分,甲、丁二人平均95分,问甲、丁各得多少分?2、甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?3、甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵。
三个小组各植树多少棵?例题2:一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?(92—91.2)×21=16.8(分)16.8÷(91.2—90.5)=24(人)答:这个班男生有24人。
练习B:1、两组学生进行跳绳比赛,平均每人跳52下。
甲组有6人,平均每人跳140下,乙组平均每人跳160下,乙组有多少人?2、有两块棉田,平均每100平方米产量是92.5千克。
已知一块田是500平方米,平均每100平方米产量是101.5千克;另一块田平均每100平方米产量是85千克,这块田是多少平方米?3、把甲级糖和乙级糖混在一起,平均每千克卖7元。
五年级下册数学专项训练 奥数第十讲 逻辑推理(一) _ 全国版(含答案)

第十讲逻辑推理(一)由于数学学科的特点,通过数学的学习来培养少年儿童的逻辑推理能力是一种极好的途径.为了使同学们在思考问题时更严密更合理,会有很有据地想问题,而不是凭空猜想,这里我们专门讨论一些有关逻辑推理的问题。
解答这类问题,首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。
例1 公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。
请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?解:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A 市,说明第一、二辆车不可能都开往A市.(否则,如果第一、二辆车都开往A市的,那么第三辆车的司机立即可以断定他的车一定开往B市)。
再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的.(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。
运用以上分析推理,第一辆车的司机可以判断,他一定开往B市。
例2 李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
2021—2022学年五年级下册奥数专训题----最大最小问题(附答案)

2021—2022学年五年级下册奥数专训题----最大最小问题姓名:___________班级:___________考号:___________一、填空题1.将1,2,3,4,5,6六个数填入圆圈内,使三角形每条边的和相等,并且最大。
2.把1~8 分别填入下图的圆圈内,使每个大圆的五个数的和相等,并且最大。
二、解答题3.一次一把钥匙开一把锁,现有三把钥匙、三把锁,但不知道哪把钥匙开哪把锁。
问:最多要试多少次才知道哪把钥匙开哪把锁?4.有5位同学收集汽车票,他们共有3张1元、3张2元、2张5元和4张10元的车票,这五位同学每人的车票价钱数各不相同,问:收集汽车票价钱最多的同学最少收集了多少元的汽车票?5.4个人的年龄和是100岁,其中最小的17岁,且四人的年龄都不相同,那么年龄最大的最多是几岁?6.一把钥匙只能开一把锁,现有五把钥匙、五把锁,但不知道哪把钥匙开哪把锁。
问:最多要试开多少次才能配好全部的锁和钥匙?7.一个三位数除以39,商是a,余数是b(a,b都是整数)。
求a-b的最大值。
8.一次考试满分100分,5个同学平均得分92分,且各人得分是不相同的整数。
已知分数最少的80分。
那么第三名同学最少得多少分?9.有两条垂直相交的线段AB、CD,交点为E。
已知DE=3CE,BE=4AE,在AB、CD上取三点画三角形,问:怎样取三角形的面积最大?10.甲、乙、丙三同学移动7张桌子,由于桌子的远近关系,移动桌子所花的时间分别为4分钟、5分钟、6分钟、7分钟、8分钟、9分钟和10分钟。
现三人同时开始,至少要花多少时间全部移完?11.某大街两侧有三家大商店,从甲店经过乙店到丙店要走3000m,从乙店经过丙店到甲店要走3500m,从丙店经过甲店到乙店要走2500m。
哪两家的店距离最近?相距多远?12.在一次考试中小明的语文和数学平均成绩是96分,数学和英语的平均成绩是88分,语文和英语的平均成绩是86分。
小学五年级数学经典奥数题训练50(含答案)word百度文库

小学五年级数学经典奥数题训练50(含答案)word百度文库一、拓展提优试题1.如图所示,P为平行四边形ABDC外一点。
已知PCD∆的面积等于5平方厘米,PAB∆的面积等于11平方厘米。
则平行四边形ABCD的面积是CADBP2.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.3.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.4.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.5.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?6.数一数,图中有多少个正方形?7.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.8.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打 折.9.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距 千米.10.用0、1、2、3、4这五个数字可以组成 个不同的三位数.11.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有 个细胞.12.如图,若长方形S 长方形ABCD =60平方米,S 长方形XYZR =4平方米,则四边形S 四边形EFGH = 平方米.13.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需 分钟.14.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是 .15.观察下面数表中的规律,可知x = .【参考答案】一、拓展提优试题1.12[解答]作PF AB ⊥,由于//AB DC ,所以PF CD ⊥。
五年级下册奥数试题-数的整除 (无答案)全国通用

数的整除姓名1(例)、判断:354796能不能被4整除?能否被8整除?2、(1)写一个六位数,使它能被4整除。
(2)写一个六位数,使它能被8整除。
3(例)、在□里填上适当的数,使47587□能被25整除。
4、在□里填上适当的数,使47587□能被9整除。
5(例)、923□□后面填上什么数字,使它能被60整除?6、97247□□后面填上什么数字,使它能被45整除?7(例)、在□里填上适当的数字,使七位数□2002□□能同时被8、9、25整除。
8、已知一个五位数□392□能被55整除,所有符合条件的五位数有哪些?9(例)、小明妈妈去批发市场购了72条毛巾,回家后不小心把发票弄脏了,只能看到总计栏里金额为□54.9□元,请你算算这些毛巾共用了多少钱?10、一位马虎的采购员购买了72只热水瓶,洗衣服时把发票洗烂了,只能依稀看到:72只热水瓶共□63.5□元(□内数字看不清),请你帮他算一算,共用了多少钱?11(例)、右边这个17位数333……3□999……9(其中3和9各8个)能被7整除,那么中间方格内的数字是多少?12、右边这个41位数777……7□444……4(其中7和4各20个)能被7整除,那么中间方格内的数字是多少?13(例)、商店里有6箱货物,分别重18、19、20、22、25、27千克,两位顾客买去了其中的5箱,已知一个顾客买走的重量是另一个顾客的2倍,问商店里剩下的一箱货物重多少千克?14、有一水果店进了6袋水果,分别装着苹果和橘子。
重量分别是18、20、30、31、38、46千克,当天下午卖出一袋苹果,在剩下的5袋水果中,橘子是苹果的3倍,问水果店进了多少千克橘子?练习题(A组)1、在62的右边补上三位数,组成一个五位数使它能被3、4、5整除,求这样的最小五位数。
2、一个五位数各个数位上的数各不相同,它能被3、5、7、13整除,这样的五位数最小是几?3、一个五位数能被11整除,首位是7,其余数位上的数各不相同,这五位数最小是几?4、有一个六位数□2002□能被88整除,求这个六位数。
五年级下册数学试题-奥数培优:火车过桥 (全国通用 )

【备课说明】重点:掌握“火车过桥”问题的基本关系与火车过桥几个问题的分析方法。
难点:“火车过桥”的行程分析图的画法。
1、过桥问题是行程问题中的一类.我们所说的列车通过一座桥,是指从车头上桥到车尾离桥的这个过程.这时,列车行驶的总路程是桥长加上车长,这是解决问题的关键.2、火车过桥问题的基本数量关系式:路程=桥长+车长过桥时间=(桥长+车长)÷车速车速=(桥长+车长)÷过桥时间桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长(北师大附小期末模拟)一列火车有18节车厢,每节车厢长45米,车厢与车厢之间相隔1米,问这列火车以30米/秒的速度过一座长103米的大桥需要多少秒?解:45×18+(18-1)×1+103=930(米)930÷30=31(秒)答:需要31秒。
【答案】31【知识点】火车行程【难度】★★火车长108米,每秒行12米,经过长48米的桥,要多少时间?解:()()秒13121561248108=÷=÷+答:经过长48米的桥,要13秒。
【答案】13【知识点】火车行程【难度】★★在铁路复线上两列火车相向而行,甲车车长172米,车速每秒16米,乙车车长128米,车速每秒24米,现两车车头相距180米,几秒钟后两车的车尾相离?解:(180+172+128)÷(24+16)=12(秒)。
答:12秒后两车的车尾相离。
【答案】12【知识点】火车行程【难度】★★客车以每秒钟21米的速度行驶,司机发现对面开来的一列货车,速度是每秒钟15米,从身边经过共用了10秒钟,问货车的车长是多少米?分析:这是一道相遇问题,路程和就是货车的车长。
解:(15+21)×10=360(米)。
答:货车的车长是360米。
【答案】360【知识点】火车行程【难度】★★在铁路复线上两列火车同向而行,甲车车长172米,车速每秒24米,乙车车长128米,车速每秒16米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九讲数学游戏游戏对策问题因常与智力游戏相结合,因此具有很大的趣味性.又由于解题方法灵活,技巧性强,所以对开阔解题思路,提高分析问题解决问题的能力是很有益处的。
例1 在一个3×3的方格纸中,甲乙两人轮流(甲先)往方格纸中填写1、3、4、5、6、7、8、9、10九个数中的一个,数不能重复.最后甲的得分是不计中间行的上下两行六个数之和,乙的得分是不计中间列的左右两列六个数之和,得分多者为胜.请你为甲找出一种必胜的策略。
分析把题中的九个格标上字母:a、b、c、d、e、f、g、h、i。
甲的得分为:a+b+c+g+h+i=(a+c+g+i)+(b+h);乙的得分为:a+d+g+c+f+i=(a+c+g+i)+(d+f)要想使甲的得分高于乙的得分,必须且只需使b+h>d+f.要想使b +h>d+f,甲有两种策略:一是增强自己的实力——使b、h格内填的数尽可能地大;二是削弱对方的实力——使d、f格内填的数尽可能地小.下面分两种情况进行讨论:取胜的总策略是“增强自己,削弱对方”两者兼顾。
为了使叙述方便起见,我们分别用(甲2)和(a5)分别表示“甲第二轮”和“在a处填数字5”,其余如(乙1),(甲1,b10)等含义类同。
一、甲首先使b、h处填的数尽可能大.譬如,(甲1,b10)。
1.乙为了不输,(乙1)必须在h处填数.(否则,即如(乙1)不在h处填数,(甲2)在h处填余下来的最大数后,无论(乙2)怎么填,最后总有b+h≥10+8=18>16=9+7≥d+f,甲胜).这样,必须(乙1,h1).(乙当然在h处填最小数)2.(甲2)不能在d处或f处填数.(否则,如(甲2,dx),x为任一数,则(乙2)在f处填余下来的最大数后,即有d+f≥3+9=12>11=10+1=b+h,乙胜).当然(甲2)填9,譬如(甲2,eg).(以后,只要甲不填错,即只要把余下数中的最小者填入d或f,就不会输了)3.显然,(乙2,d8),乙就不会输了.因此不分胜负(此时(甲3)必须(f3))。
同样,若(甲1,h10),只要乙应对正确,乙就不会输。
因此,只有二、甲首先使d、f处填的数尽可能小(才有可能必胜).譬如,(甲1,d1)。
1.若(乙1)不在f处填数时,(甲2)在f处填余下来的最小数,则最后必有b+h≥3+5=8>5=1+4≥d+f,甲胜。
2.若(乙1,f10)(乙当然在f处填最大数),则(甲2,b9),最后必有b+h≥9+3=12>11=1+10=d+f,甲胜.因此,只要(甲1,d1),且以后甲每次应对正确,则甲必胜。
解:甲第一轮采用削弱对方策略,把1填入d格(或f格)内,以后无论乙怎样填,甲第二轮“随机应变”,只要把尽可能大的数填入b或h 格内,或者把尽可能小的数填入f格(或d格)内(在乙没有在f或d格内填数的情况下),甲都能获胜。
例2 在4×4的方格纸上有一粒石子,它放在左下角的方格里.甲乙二人玩游戏,由甲开始,二人交替地移动这粒石子,每次只能向上、向右或向右上方移动一格,谁把石子移到右上角谁胜.问甲能取胜吗?如果要取胜,应采取什么办法?分析见右图,采用倒推法.甲要取胜,就必须使乙在移动最后一次石子后,石子落在再移动一次就能移到右上角的那些方格中,即○一1~○一3.而移动一次石子,石子必定落在这三个方格之一的方格只有○+1和○+2,即○+1和○+2必须由甲来占领。
这样,如一开始分析的那样,就必须使乙在某一次移动石子后,石子落在再移动一次就能移到○+1或○+2的那些方格中,即○一4~○一9.而从哪些方格(除了○+1和○+2外)中移动一次石子,石子必定落在○一1~○一9之一中呢?只有用○+3.因此甲第一次移动石子就必须把石子从左下角移到○+3.中。
这样,所有的格子被分成“胜位”(○+1~○+3)和“负位”(○一1~○一9).自然,上图中的○一10和○一11也是负位.即,谁占据胜位,谁将获胜(若此后他不失误);谁占负位,谁将失败(若此后对方不失误)。
解:由以上的分析和上图知,甲要取胜,必须向右上走一格.然后,乙如果向上走,甲也向上走;乙向右走,甲也向右走;乙向右上走,甲也向右上走.总之,甲走完第一步以后,乙朝哪个方向走,甲就朝哪个方向走,这样甲就能取胜。
如果是5×5的方格,甲要取胜,应采取怎样的策略呢?根据例2的分析,我们仍用○+表示胜位,○一表示负位,如图所示.因此,先移动石子者必输——第一次他只能把石子移动到负位。
例3 甲乙两人玩下面的游戏:有两堆玻璃球,一堆8个,另一堆9个,甲乙两人轮流从中拿取,每次只能从同一堆中拿,个数(>0)不限.规定拿到最后一个球的人为输.问如果甲先拿,他有无必胜的策略?分析解这类题的一个常用的方法是从简单的情形讨论起,逐渐找出规律或找出解来。
为了便于叙述,我们用(m,n)表示两堆球,其中一堆有m个,另一堆有n个。
我们从最简单的情况(1,0)开始讨论。
显然,谁拿过球后两堆球成为(1,0)的状况,则对方必败,因为此时对方只有唯一的一种选择——拿走最后一个球.因此(1,0)是胜位,即谁造成这个局面谁必胜.把这种情形简记为①(1,0),胜位。
②(a)(n,0),负位,其中n>1;(对方只需在n个球的那堆中拿走n—1个,对方就造出(1,0)局面,因而对方胜)。
显然,(b)(1,1),负位;(c)(n,1),负位,其中n>1。
(对方只需在n个球的那堆中的球全拿走,就造出(1,0)局面.)此外,③(2,2),胜位.(对方拿走1个变(2,1),即②(c)中的情形;拿走2个变(2,0),即②(a)中的情形.对方均负).因此④(n,2),负位,其中n>2。
(对方只需在n个球的那堆中拿走n—2个,对方就占据了胜位(2,2).)与③类似,有⑤(3,3),胜位.(对方一次拿走任意多个后必变为②(a),②(c),④三种负位之一.)因此⑥(n,3),负位,其中n>3。
(对方只需在n个球的那堆中拿走n—3个,对方就占据了胜位(3,3).)还有⑦(4,4),胜位.(对方一次拿走任意多个后必变为②(a),②(c),④,⑥四种负位之一.)因此⑧(n,4),负位,其中n>4。
(对方只需在n个球的那堆中拿走n—4个,对方就占据了胜位(4,4).)如此等等,因此,当两堆球的个数相等但不等于1,或只有一堆球,其中只有一个球时,先拿的必输;当个数不相等但不是(1,0),或两堆各有1个球时,先拿的必胜(当为(n,0)时,拿走n-1个球;当为(n,1)时,拿走n个球;否则,从多的一堆中拿走一些,使两堆个数相等)。
解:如果甲先拿,甲有必胜的策略.甲的具体做法是:从9个球的那一堆中拿1个,使两堆球数相等,都是8个。
此后,乙从一堆中拿球,甲就从另一堆中拿.如果乙把一堆中的球全拿走,那么甲就比乙少拿一个即可(即就剩下一个球);如果乙使得一堆球就剩下一个球,那么甲就把另一堆球都拿走;否则,当乙拿几个时,甲也拿同样多的个数.在前两种情形,因为只剩下一堆球,而且这堆中只有一个球,因此乙必输;在后一种情形两堆球的个数相同,只是比原来少了。
这样,如果每次都是后一种情形,那么甲总能使得乙面临两堆各有2个球的局面.这时,乙只有两种选择:拿2个或拿1个,然后,甲拿1个或拿2个,乙也必输。
说明:我们也可用例2的分析中的思考方法来解这道题。
先如右图画一表格.其中有“*”的格子表示两堆球的个数分别为3和5.这个方格记为(3,5)(第四行第六列).显然.(5,3)(第六行第四列)的含义与(3,5)一样(行、列分别为从下到上、从左到右编序).我们的问题转化为:在(8,9)格中有一石子(即“有两堆玻璃球,一堆8个,另一堆9个”),甲乙两个轮流移动石子(即“甲乙两人轮流从中拿球”),每次只能向下或向左移动(即“每次只能从一堆中拿”),格数不限(即“个数不限”).规定把石子移到(0,0)格(即左下角)的人为输(即“规定拿到最后一个球的人为输”).问如果甲先移(即“甲先拿”),他有无必胜的策略?按照例2分析中的思路,我们把解答填在右面的表格里,其中的“+”、“-”分别表示该格为“胜位”和“负位”.如,(1,0)格中的“+”表示谁把石子移动到这一格即会胜.在表格中除了(1,0),(0,1)是胜位外,其余所有的胜位为(n,n),n=2,3,4,….而(8,9)格是负位.因此,开始时石子在(8,9)格中时,如甲先移,甲有必胜的策略,即甲必胜——把石子移到一个标有“+”的格子,即移到(8,8)格中.此时,无论乙怎样移动石子(只要按规定移),他必把石子移到负位.接着,甲又能把石子移到胜位,….最后,甲必能把石子移到(1,0)格或(0,l)格.因此甲必胜。
请同学们自己推导一下上述填“+”、“-”的过程,并把“移石子”的必胜策略“翻译”成“取玻璃球”的策略.习题九1.如果把例1中的九个数改为1、2、3、4、5、6、7、8、10(注意缺少9),得分少者为胜,甲先填,请你为甲找出一种必胜的策略。
2.甲乙两人玩轮流从右图中选数的游戏,谁选的数中有三个在同一条直线上(即和为15),谁就胜.先选的人有没有必胜的方案?3.把例2分别改成在8×8和9×9方格纸上,甲乙两人交替将右上角石子移到左下角,其他规则不变,问谁能有必胜策略?4.甲乙两人玩下面的游戏:有三堆玻璃球,A堆有29个,B堆有16个,C堆有16个,甲乙两人依次从中拿取,每次只许从同一堆中拿,至少拿一个,多拿不限,规定拿最后一个者为输.问如果甲先拿,他有无必胜的策略?。