多边形和圆的初步认识的知识归纳及经典例题

合集下载

(最新)多边形和圆的初步认识知识归纳及经典例题

(最新)多边形和圆的初步认识知识归纳及经典例题

多边形和圆的初步认识知识讲解
【要点梳理】
要点一、多边形及正多边形
1.定义:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫
做正多边形.如下图:
要点诠释:
正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;
2.相关概念:
顶点:每相邻两条边的公共端点叫做多边形的顶点.
边:组成多边形的各条线段叫做多边形的边.
内角:多边形相邻两边组成的角叫多边形的内角(可简称为多边形的角),一个n边形有n个内角.
外角:多边形的边与它的邻边的延长线组成的角叫做多边形
的外角.
对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的
对角线.
要点诠释:
(1)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2
n n .(2)过n 边形的一个顶点的对角线可以把
n 边形分成(n-2)个三角形.
类型一、多边形及正多边形1.如图,(1)从正六边形的顶点A 出发,可以画出
条对角线,分别用字母表示出来为
;(2)这些对角线把六边形分割成
个三角形.
【思路点拨】画出对角线,并按一定规律数出对角线的条数及分割成的三角形的个数即可.
【答案】(1)3,线段AC 、线段AD 、线段AE ;(2)4.E
A B C F
D。

最新正多边形和圆知识点整理+典型例题+课后练习(1)

最新正多边形和圆知识点整理+典型例题+课后练习(1)

个性化辅导教案学生姓名: 授课教师: 所授科目:学生年级: 上课时间: 2016 年 月 日 时 分至 时 分 共 小时教学标题 正多边形和圆教学重难点知识梳理:1、正多边形:各边相等,各角也相等的多边形是正多边形。

2、正多边形的外接圆:一个正多边形的各个顶点都在圆上,我们就说这个圆是这个正多边形的外接圆。

把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做这个正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。

正n 边形每一个内角的度数为:()2180n n-⨯︒正n 边形的一个中心角的度数为:360n︒正多边形的中心角与外角的大小相等。

3、圆内接四边形的性质:圆内接四边形的对角和相等,都是180°。

4、圆内接正n 边形的性质(n ≥3,且为自然数):(1) 当n 为奇数时,圆内接正n 边形是轴对称图形,有n 条对称轴;但不是中心对称图形。

(2) 当n 为偶数时,圆内接正n 边形即是轴对称图形又是中心对称图形,对称中心是正多边形的中心,即外接圆的圆心。

5、常见圆内接正多边形半径与边心距的关系:(设圆内接正多边形的半径为r ,边心距为d) (1)圆内接正三角形:1d 2r=(2)圆内接正四边形:2d 2r = (3)圆内接正六边形:3d 2r = 6、常见圆内接正多边形半径r 与边长x 的关系:(1)圆内接正三角形:3x r = (2)圆内接正四边形:x 2r=(3)圆内接正六边形:x=r 7、正多边形的画法:画正多边形一般与等分圆正多边形周有关,要做半径为R 的正n 边形,只要把半径为R 的圆n 等分,然后顺次连接各点即可。

(1)用量角器等分圆周。

(2)用尺规等分圆(适用于特殊的正n 边形)。

8、定理1:把圆分成n(n ≥3)等份:(1)依次连结各分点所得的多边形是这个圆的内接正n 边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

多边形和圆的初步认识知识归纳及经典例题

多边形和圆的初步认识知识归纳及经典例题

多边形和圆的初步认识知识讲解【要点梳理】要点一、多边形及正多边形1.定义:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点诠释:正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;2.相关概念:顶点:每相邻两条边的公共端点叫做多边形的顶点.边:组成多边形的各条线段叫做多边形的边.角:多边形相邻两边组成的角叫多边形的角(可简称为多边形的角),一个n边形有n个角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n . (2)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.类型一、多边形及正多边形1.如图,(1)从正六边形的顶点A 出发,可以画出 条对角线,分别用字母表示出来为 ;(2)这些对角线把六边形分割成 个三角形.【思路点拨】画出对角线,并按一定规律数出对角线的条数及分割成的三角形的个数即可. E A B C F D【答案】(1)3,线段AC 、线段AD 、线段AE ;(2)4.【总结升华】(1) n 边形有n 个顶点,n 条边,n 个角.(2) 过n 边形的每一个顶点有(n -3)条对角线,n 边形总共(3)2n n 条对角线.(3) n 边形从一个顶点出发,分别连接这个顶点和其余各顶点,可以分割(n -2)个三角形.举一反三:【变式】(2015春•期末)过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是( )A .八边形B .九边形C .十边形D .十一边形 【答案】B若一个多边形的角和等于720°,则从这个多边形的一个顶点引出对角线 条.一个多边形除一个角外其余角的和为1510°,则这个多边形对角线的条数是( )A .27B . 35C . 44D . 542.同学们在平时的数学活动中会遇到这样一个问题:把形纸片截去一个角后,还剩多少角,余下的图形是几边形,亲爱的同学们,你知道吗?【答案与解析】解:这个问题,我们可以用图来说明.按图(1)所示方式去截,不经过点B和D,还剩五个角,即得到一个五边形.按图(2)所示方式去截,经过点D(或点B).不经过点B(或点D),还剩4个角,即得到一个四边形.按图(3)所示方式去截,经过点D、点B,则剩下3个角,即得到三角形.答:余下的图形是五边形或四边形或三角形.【总结升华】一个n边形剪去一个角后,可能是(n+1)边形,也可能是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题.举一反三:【变式】一个多边形共有20条对角线,则多边形的边数是( C ).A.6B.7C.8D.9要点二、圆及扇形1.圆的定义如图,在一个平面,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可.②圆是一条封闭曲线.2.扇形(1)圆弧:圆上任意两点A,B间的部分叫做圆弧,简称弧,记作AB,读作“圆弧AB”或“弧AB”. 如下图:(2)扇形的定义:如上图,由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形.要点诠释:圆可以分割成若干个扇形.(3)圆心角:顶点在圆心的角叫做圆心角. 如上图,∠AOB是圆的一个圆心角,也是扇形OAB的圆心角.【典型例题】9.(2014•长宁区一模)下列说法中,结论错误的是(B )A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧10.(2015春•校级月考)有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是( B )A.1 B. 2 C. 3 D. 4 19.(2015春•定县期末)下列说确的是(④)填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦3.如图是对称中心为点的正六边形.如果用一个含角的直角三角板的角,借助点(使角的顶点落在点处),把这个正六边形的面积等分,那么的所有可能的值是___________ __.【答案】根据圆接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即可知:360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷=2.故n的所有可能的值是2,3,4,6,12.4.(2015•丰泽区校级质检)如图,MN为⊙O的弦,∠M=50°,则∠MON等于.【思路点拨】利用等腰三角形的性质可得∠N的度数,根据三角形的角和定理可得所求角的度数.【答案】80°.【解析】解:∵OM=ON,∴∠N=∠M=50°,∴∠MON=°﹣∠M﹣∠N=80°,故答案为80°.【总结升华】考查圆的认识;利用圆的半径相等这个知识点是解决本题的突破点.类型三、扇形5. 将一个半径为3的圆形草坪分割成三个扇形,分别种植三种花草,他们的圆心角的度数之比为2:3:4,求这三个圆心角的度数,并尝试求他们的面积,你还能求他们的面积之比吗,你发现了什么【思路点拨】考查扇形面积及圆心角的概念.【答案与解析】解:这三个圆心角的度数分别为:°°236080234⨯=++;°°3360120234⨯=++;°°4360160234⨯=++. 圆的面积29r ππ=,这三个圆心角的面积分别为:8092360ππ⨯=;12093360ππ⨯=;16094360ππ⨯=. 这三个圆心角的面积之比为:2:3:4πππ=2:3:4.发现:扇形的面积之比等于圆心角之比.【总结升华】一个扇形的面积与对应圆的面积比等于扇形圆心角的度数n 与360的比,即S 扇:S 圆=n :360, 几个半径相等的扇形的面积比等于这几个扇形的圆心角的比.6.一个扇形圆心角120°,以扇形的半径为边长画一个形,这个形的面积是16平方厘米.这个扇形的面积为多少?【思路点拨】由题意可知,这个扇形所在的圆的半径r 就是这个形的边长,即r2=边长2=120平方厘米.【答案与解析】。

正多边形和圆的经典例题

正多边形和圆的经典例题

正多边形和圆的经典例题1. 前言嘿,大家好!今天咱们聊聊正多边形和圆的那些事儿。

别紧张,听我慢慢道来,这绝对不是枯燥的数学课,而是一次轻松有趣的数学旅行。

你可能会问,正多边形是什么?那就是像正方形、正六边形那样,边和角都一模一样的形状。

而圆呢,它就像咱们喝水时看到的杯子底部,圆滑得让人觉得舒服。

接下来,我们来探讨一下这些形状之间的关系,还有一些有趣的例子,让你在不知不觉中get到这些知识!2. 正多边形的特点2.1 边和角的对称正多边形最大的特点,就是它的边和角都超级对称,简直像个模特儿站在那儿,姿态优雅!比如,想象一下一个正六边形,就像是蜜蜂的蜂巢,六个边都是相等的,角度也是60度,完全没有一个角敢突出自己,真是团结的好榜样!这就是为什么很多建筑和设计师喜欢用它,显得大方又美观。

2.2 周长和面积的计算再说说正多边形的周长和面积,简单得不要不要的!你只需知道每条边的长度,就可以轻松算出周长,公式就是边长乘以边的数量。

至于面积嘛,正六边形的面积就有点小复杂,不过只需用边长乘以边数,然后再乘以一个常数,记得把它除以2就好。

是不是简单?看吧,数学其实也可以很轻松嘛!3. 圆的魅力3.1 圆的周长和面积说到圆,咱们就不得不提它的周长和面积了。

圆的周长可得靠π(pi)来帮忙,公式是2πr,r是半径。

想象一下,一个大披萨,切下来一片,边缘那一圈就是周长。

而面积呢,则是πr²,听起来高深,其实只要记住这两个公式,就能在朋友面前装得很厉害了!不仅可以计算圆形的游泳池,还能算算自家花园的面积,绝对是个实用的小技能。

3.2 圆和正多边形的关系有趣的是,正多边形和圆之间的关系就像是两位老朋友。

圆的形状是完美的,而正多边形可以通过不断增加边的数量,逐渐接近圆形。

比如,八边形就比六边形更接近圆,十六边形又比八边形更接近,直到你加到无数个边,哦,那简直就是一个圆啊!这种不断变化的过程就像人生,有时候需要不断调整,才能找到最适合自己的方式。

初一-第12讲-多边形和圆的初步认识

初一-第12讲-多边形和圆的初步认识

多边形和圆的初步1.认识多边形,知道球多边形的对角线数量。

2.认识圆弧和圆心角。

3.掌握探究多边形的边、顶点、对角线之间的关系。

教学建议:从生活中所见到过的多边形、结合三角形的定义引入多边形的概念。

知识点一:多边形1.定义:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形是多边形.2.分类:根据组成多边形的条数将其分为三角形、四边形、五边形、六边形……例1如图,下面图形是多边形的有____(填序号).分析:根据多边形的定义及特征判断,①②⑤都有一部分曲线,不符合定义;⑥不是由线段首尾相连组成;⑦不是封闭图形.解:③④拓展一些常见的多边形:变式训练1.下列图形:①正方形;②三角形;③圆锥;④线段;⑤棱柱;⑥圆;⑦球;⑧长方形;⑨圆柱;⑩梯形.其中,是平面图形的有;是多边形的有____.(只填序号)答案:⑧④①②⑧④知识点二:多边形的分割1.三角形是特殊的多边形,其边数最少,也是生活中最常见的平面图形.2.利用三角形研究多边形最常用的方法是将多边形进行分割,从而把多边形的问题转化成三角形来处理.3.若多边形的边数为n(n≥3),从这个多边形的一个顶点出发,能把这个多边形分割成(n-2)个三角形.例2在多边形中,连接不相邻的两个顶点的线段,叫做多边形的对角线.请你先画一画、数一数,如果从四边形、五边形、六边形的一个顶点引对角线各有多少条?如果从每个顶点都引又各有对角线多少条?n 边形(n ,≥4,n 是整数)共有多少条对角线?分析:可以实际动手画一画,再数一数,然后从特殊到一般,找出多边形对角线的规律. 解:如下图所示:从一个顶点出发,四边形的一个顶点可引4 -3 =1(条)对角线;五边形的一个顶点可引5 -3 =2(条)对角线;六边形的一个顶点可引6-3 =3(条)对角线……∴n 边形的一个顶点可引(n -3)条对角线.如果从每个顶点都引对角线,四边形有4个顶点,每个顶点引4 -3 =1条,四个顶点共可引4条.但在此过程中,从顶点引过去,然后又从另一顶点引回来,故这四条对角线是两两重复的,结果实际上:四边形有224)34(=⨯-(条)对角线; 五边形有525)35(=⨯-(条)对角线;六边形有926)36(=⨯-(条)对角线;∴n 边形有2)3(nn ⨯-条对角线.如下图所示:拓展(1)从一个顶点出发,连接不相邻的顶点,此时可将n 边形分割成(n -2)个三角形.(2)从多边形一边上的一点出发,连接各顶点,此时可将n 边形分割成(n -1)个三角形.(3)从多边形内部的一点出发,连接各顶点, 此时可将n 边形分割成n 个三角形,变式训练1.(1)若在n 边形内部任意取一点P ,将P 与各顶点连接起来,则可将多边形分割成 ________个三角形. (2)若点P 取在多边形的一条边上(不是顶点),将P 与n 边形各顶点连接起来,则可将多边形分割成____个三角形.2.(黑龙江牡丹江)用大小相同的实心点摆成如图所示的图案,按照这样的规律摆成的第n 个图案中,共有实心点的个数为____答案:1.n n -1 2.292nn +提示:2)2)(1(2)1(3++++-n n n 292nn +=知识点三:弧和扇形1.圆:(1)静态定义:平面上到定点的距离等于定长的所有点组成的图形叫圆.(2)描述性定义:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.定点叫做圆心,定长叫做半径2.弧:圆上两点A 、B 之间的部分叫做圆弧,简称弧.记作AB ,读作“圆弧AB ”或“弧AB ”. 3.扇形:由一条弧AB 和经过这条弧的端点的两条半径OA 、08所组成的图形叫做扇形。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

多边形和圆的初步认识知识归纳及经典例题

多边形和圆的初步认识知识归纳及经典例题

多边形和圆的初步认识知识讲解【要点梳理】要点一、多边形及正多边形1. 定义:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形. 如下图:D/■人/E C E五边形正六边形要点诠释:正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;2.相关概念:顶点:每相邻两条边的公共端点叫做多边形的顶点.边:组成多边形的各条线段叫做多边形的边.内角:多边形相邻两边组成的角叫多边形的内角(可简称为多边形的角),一个n边形有n个内角.夕卜角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1) 过n边形的一个顶点可以引(*3)条对角线,n边形对角线的条数为n(n 3).2(2) 过n边形的一个顶点的对角线可以把n边形分成(n- 2)个三角形. 类型一、多边形及正多边形G l.如图,(1)从正六边形的顶点A出发,可以画出___________________ 条对角线,分别用字母表示出来为_____________________ ; ( 2)这些对角线把六边形分割成__________ 个三角形.E D【思路点拨】画出对角线,并按一定规律数出对角线的条数及分割成的三角形的个数即可•【答案】(1) 3,线段AC线段AD线段AE; (2) 4.【总结升华】(1) n边形有n个顶点,n条边,n个内角.(2) 过n边形的每一个顶点有(n -3)条对角线,n边形总共n(n 3)条2 对角线•(3) n边形从一个顶点出发,分别连接这个顶点和其余各顶点,可以分割(n —2)个三角形.举一反三:【变式】(2015春?郑州期末)过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是( )A .八边形B .九边形C.十边形 D .十一边形【答案】B若一个多边形的内角和等于720°则从这个多边形的一个顶点引出对角线条. 一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是( )A. 27B. 35C. 44D. 542.同学们在平时的数学活动中会遇到这样一个问题:把正方形纸片截去一个角后,还剩多少角,余下的图形是几边形,亲爱的同学们,你知道吗?【答案与解析】解:这个问题,我们可以用图来说明.按图(1)所示方式去截,不经过点B和D,还剩五个角,即得到一个五边形.按图(2)所示方式去截,经过点D(或点B).不经过点B(或点D),还剩4个角,即得到一个四边形.按图(3)所示方式去截,经过点D、点B,则剩下3个角,即得到三角形.答:余下的图形是五边形或四边形或三角形.【总结升华】一个n边形剪去一个角后,可能是(n+1)边形,也可能是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题. 举一反三:【变式】一个多边形共有20条对角线,则多边形的边数是(C ).A.6B.7C.8D.9要点二、圆及扇形1. 圆的定义如图,在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆,固定的端点叫做圆心,线段0A叫做半径.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可.②圆是一条封闭曲线.2. 扇形(1)圆弧:圆上任意两点A, B间的部分叫做圆弧,简称弧,记作A B,读作“圆弧AB'或“弧AB'.如下图:(2)扇形的定义:如上图,由一条弧AB和经过这条弧的端点的两条半径OA 0B所组成的图形叫做扇形.要点诠释:圆可以分割成若干个扇形.(3)圆心角:顶点在圆心的角叫做圆心角.如上图,/ AOB是圆的一个圆心角,也是扇形OAB的圆心角.【典型例题】9. (2014?长宁区一模)下列说法中,结论错误的是(B )A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C.圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧10. (2015春?张掖校级月考)有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是(B )A. 1B. 2C. 3D. 419. (2015春?定陶县期末)下列说法正确的是(④__________________ )填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦03.如图是对称中心为点匚的正六边形.如果用一个含二角的直角三角板的角,借助点O (使角的顶点落在点O处),把这个正六边形的面积兀等分,那么左的所有可能的值是______________________________________________ .根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即可知:360- 30=12;【答360-60=6;360-120=3; 360-180=2.故n的所有可能的值是2, 3, 4, 6, 12.04.(2015?丰泽区校级质检)如图,MN为O O的弦,/ M=50 °则/ MON等于________ .【思路点拨】利用等腰三角形的性质可得/ N的度数,根据三角形的内角和定理可得所求角的度数.【答案】80°【解析】解:T OM=ON ,•••/ N= / M=50 °•••/ MON=180 °-Z M -Z N=80°故答案为80°【总结升华】考查圆的认识;利用圆的半径相等这个知识点是解决本题的突破点.360- 90=4;类型三、扇形C>5.将一个半径为3的圆形草坪分割成三个扇形,分别种植三种 花草,他们的圆心角的度数之比为2: 3: 4,求这三个圆心角的度数, 并尝试求他们的面积,你还能求他们的面积之比吗,你发现了什么 【思路点拨】考查扇形面积及圆心角的概念. 【答案与解析】 解:这三个圆心角的度数分别为:ooooo36080 ; 360120 ; 360160 .2342342 3 4圆的面积r 29 ,c 160 ’ 9 —— 4 .360这三个圆心角的面积之比为:2 :3 : 4 2: 发现:扇形的面积之比等于圆心角之比.【总结升华】一个扇形的面积与对应圆的面积比等于扇形圆心角的度 数n 与360的比, 即S 扇:S 圆=n : 360,几个半径相等的扇形的面积比等于这几个扇形 的圆心角的比..一个扇形圆心角120°,以扇形的半径为边长画一个正方形,这个正方形的面积是16平方厘米.这个扇形的面积为多少?【思路点拨】由题意可知,这个扇形所在的圆的半径 r 就是这个正方 形的边长,即r 2 =边长2 = 120平方厘米. 【答案与解析】这三个圆心角的面积分别为:93602 ; 91203 ;3603: 4.解: 设扇形所在圆的半径为r,则r216,贝y:扇形的面积为:3.14 16 120 16.75 (平方厘米). 360答这个扇形的面积为16.75平方厘米.:【总结升华】此题在求面积时用到了整体代换,此外注意扇形的面积的计算方法.。

5.5多边形与圆的初步认识

5.5多边形与圆的初步认识

F
1、(1)如图,从八边形ABCDEFGH 的顶点A出发,可以画出多少条对角线? G 分别用字母表示出来; (2)这些对角线将八边形分割成多少 个三角形?
E D C
H A B
2、过某个多边形一个顶点的所有对角线,将这个多边形分
成5个三角形,问这个多边形是几边形?
观察下图中的多边形,它们的边、角有什么特点? 小组交流一下。
五边形
六边形
八边形
边 内角
3 3 3
n
4 4 4
5 5 5
6 6 6
8 8 8
n 个内角。
思考:n边形有
个顶点, n 条边,
观察下面一组图形找找其中的规律
四边形
五边形
六边形
七边形
多边形的边数 过一个顶点的对 角线的条数 对角线分割成三 角形的个数
4 1
2
5 2
3
6 3
4
7 4
5
8 5
6
(n-3) 结论:n边形可以从一个顶点出发,引出 条对角线, 这些对角线把这个n边形分成(n-2) 个三角形.
∠EAB, ∠ABC,∠BCD, ∠CDE, ∠DEA, 是多边形的内角(可
简称为多边形的角); AC,AD都是连接不相邻两个顶点的线段,像这样的线段叫做多边 形的对角线。
D
你还能画出图中 其他的对角线吗? E C
A
B
观察一下:(1)每一个顶点有几条对角线? 2条 (2)一共有几条对角线? 5条
多边形 三角形 四边形 顶点
O
练一练: 1、如图,把一个圆分成三个扇形,你能求出这 三个扇形的圆心角吗?
2、画一个半径为1cm的的圆,并在其中画一个 圆心角为120°的扇形AOB。试计算出这个扇形 的面积。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形和圆的初步认识知识讲解
【要点梳理】
要点一、多边形及正多边形
1.定义:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:
要点诠释:
正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;
2.相关概念:
顶点:每相邻两条边的公共端点叫做多边形的顶点.
边:组成多边形的各条线段叫做多边形的边.
内角:多边形相邻两边组成的角叫多边形的内角(可简称为多边形的角),一个n边形有n个内角.
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.
对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
要点诠释:
(1)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2
n n . (2)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.
类型一、多边形及正多边形
1.如图,(1)从正六边形的顶点A 出发,可以画出 条对角
线,分别用字母表示出来为 ;(2)这些对角线把六
边形分割成 个三角形.
【思路点拨】画出对角线,并按一定规律数出对角线的条数及分割成
的三角形的个数即可. E A B C F D
【答案】(1)3,线段AC、线段AD、线段AE;(2)4.
【总结升华】
(1)n边形有n个顶点,n条边,n个内角.
n n 条对角(2)过n边形的每一个顶点有(n-3)条对角线,n边形总共(3)
2
线.
(3)n边形从一个顶点出发,分别连接这个顶点和其余各顶点,可以分割(n-2)个三角形.
举一反三:
【变式】(2015春•郑州期末)过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是()
A.八边形B.九边形C.十边形D.十一边形
【答案】B
若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线条.
一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()
A.27 B.35 C.44 D. 54 2.同学们在平时的数学活动中会遇到这样一个问题:把正方形纸片
截去一个角后,还剩多少角,余下的图形是几边形,亲爱的同学们,
你知道吗?
【答案与解析】
解:这个问题,我们可以用图来说明.
按图(1)所示方式去截,不经过点B和D,还剩五个角,即得到一个五边形.
按图(2)所示方式去截,经过点D(或点B).不经过点B(或点D),还剩4个角,即得到一个四边形.
按图(3)所示方式去截,经过点D、点B,则剩下3个角,即得到三角形.
答:余下的图形是五边形或四边形或三角形.
【总结升华】一个n边形剪去一个角后,可能是(n+1)边形,也可能
是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题.举一反三:
【变式】一个多边形共有20条对角线,则多边形的边数是( C ).
A.6
B.7
C.8
D.9
要点二、圆及扇形
1.圆的定义
如图,在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径.
要点诠释:
①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可.
②圆是一条封闭曲线.
2.扇形
(1)圆弧:圆上任意两点A,B间的部分叫做圆弧,简称弧,记作»AB,读作“圆弧AB”或“弧AB”. 如下图:
(2)扇形的定义:如上图,由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形.
要点诠释:圆可以分割成若干个扇形.
(3)圆心角:顶点在圆心的角叫做圆心角. 如上图,∠AOB是圆的一个圆心角,也是扇形OAB的圆心角.
【典型例题】
9.(2014•长宁区一模)下列说法中,结论错误的是(B )
A.直径相等的两个圆是等圆
B.长度相等的两条弧是等弧
C.圆中最长的弦是直径
D.一条弦把圆分成两条弧,这两条弧可能是等弧10.(2015春•张掖校级月考)有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是( B )
A.1 B. 2 C. 3 D. 4 19.(2015春•定陶县期末)下列说法正确的是(④)填序号.
①半径不等的圆叫做同心圆;②优弧一定大于劣弧;
③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦
3.如图是对称中心为点的正六边形.如果用一个含角的直角三角板的角,借助点(使角的顶点落在点处),把这个正六边形的面积等分,那么的所有可能的值是 ___________ __ .
【答案】
根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,
即可知:360÷30=12;
360÷60=6;360÷90=4;
360÷120=3;360÷180=2.
故n的所有可能的值是2,3,4,6,12.
4.(2015•丰泽区校级质检)如图,MN为⊙O的弦,∠M=50°,则∠MON等于.
【思路点拨】利用等腰三角形的性质可得∠N的度数,根据三角形的内角和定理可得所求角的度数.
【答案】80°.
【解析】
解:∵OM=ON,
∴∠N=∠M=50°,
∴∠MON=180°﹣∠M﹣∠N=80°,
故答案为80°.
【总结升华】考查圆的认识;利用圆的半径相等这个知识点是解决本题的突破点.
类型三、扇形
5. 将一个半径为3的圆形草坪分割成三个扇形,分别种植三种花草,他们的圆心角的度数之比为2:3:4,求这三个圆心角的度数,并尝试求他们的面积,你还能求他们的面积之比吗,你发现了什么
【思路点拨】考查扇形面积及圆心角的概念.
【答案与解析】
解:这三个圆心角的度数分别为:
°°236080234⨯=++;°°3360120234⨯=++;°°4360160234
⨯=++. 圆的面积29r ππ=,
这三个圆心角的面积分别为:8092360ππ⨯
=;12093360
ππ⨯=;16094360ππ⨯=. 这三个圆心角的面积之比为:2:3:4πππ=2:3:4.
发现:扇形的面积之比等于圆心角之比.
【总结升华】一个扇形的面积与对应圆的面积比等于扇形圆心角的度数n 与360的比,
即S
:S圆=n:360,几个半径相等的扇形的面积比等于这几个扇扇
形的圆心角的比.
6.一个扇形圆心角120°,以扇形的半径为边长画一个正方形,这个正方形的面积是16平方厘米.这个扇形的面积为多少?
【思路点拨】由题意可知,这个扇形所在的圆的半径r就是这个正方形的边长,即r2=边长2=120平方厘米.
【答案与解析】
解:设扇形所在圆的半径为r,则216
r=,则:
扇形的面积为:120
⨯⨯≈(平方厘米).
3.141616.75
360
答:这个扇形的面积为16.75平方厘米.
【总结升华】此题在求面积时用到了整体代换,此外注意扇形的面积的计算方法.。

相关文档
最新文档