三角函数知识点归纳

合集下载

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=1rad =π180°≈57.30°=57°18ˊ1°=180π≈0.01745〔rad 〕3.弧长及扇形面积公式(1)弧长公式:r l .α= α----是圆心角且为弧度制(2)扇形面积公式:S=r l .21r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p 〔x,y 〕, r=22y x +(1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy(2)各象限的符号:记忆口诀:一全正,二正弦,三两切,四余弦sin α cos α tan α 5.同角三角函数的根本关系: 〔1〕平方关系:s in 2α+ cos 2α=1 〔2〕商数关系:ααcos sin =tan α〔z k k ∈+≠,2ππα〕 6.诱导公式:记忆口诀:把2k πα±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.xy+O— —+x yO — ++— +y O— + + —7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式:(3) 降幂公式: 升幂公式 : 1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-=9、正弦定理 :2sin sin sin a b cR A B C===.余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理:111sin sin sin 222S ab C bc A ca B ===.。

三角函数初学知识点总结

三角函数初学知识点总结

三角函数初学知识点总结一、正弦函数正弦函数是最基本的三角函数之一,它的定义如下:在直角三角形中,对于任意角A,正弦函数的定义为:sinA=对边/斜边其中,对边是角A的对边,斜边是角A的斜边。

正弦函数的图像是一条连续的曲线,它的周期性是2π,即sin(x+2π)=sinx。

正弦函数的奇偶性:sin(-x)=-sinx,可以看出正弦函数是奇函数。

正弦函数的性质:在区间[-π/2,π/2]上,正弦函数是单调递增的,并且在[-π/2,π/2]上具有最大值1和最小值-1。

正弦函数的应用:正弦函数在物理、几何、工程等领域都有广泛的应用,例如在振动、波动、周期性变化等方面。

二、余弦函数余弦函数也是三角函数中的重要函数,它的定义如下:在直角三角形中,对于任意角A,余弦函数的定义为:cosA=邻边/斜边其中,邻边是角A的邻边,斜边是角A的斜边。

余弦函数的图像也是一条连续的曲线,它的周期性是2π,即cos(x+2π)=cosx。

余弦函数的奇偶性:cos(-x)=cosx,可以看出余弦函数是偶函数。

余弦函数的性质:在区间[0,π]上,余弦函数是单调递减的,并且在[0,π]上具有最大值1和最小值-1。

余弦函数的应用:余弦函数在物理、几何、工程等领域同样有着广泛的应用,例如在力的分解、振动、周期性变化等方面。

三、正切函数正切函数是三角函数中比较特殊的一个函数,它的定义如下:在直角三角形中,对于任意角A,正切函数的定义为:tanA=对边/邻边其中,对边是角A的对边,邻边是角A的邻边。

正切函数的图像也是一条连续的曲线,它的周期性是π,即tan(x+π)=tanx。

正切函数的奇偶性:tan(-x)=-tanx,可以看出正切函数是奇函数。

正切函数的性质:在区间(-π/2,π/2)上,正切函数是单调递增的,但在整个定义域上是周期性的,且具有无穷多个间断点。

正切函数的应用:正切函数在解决角度的测量、直角三角形的求解等问题中有着重要的应用。

高中数学-三角函数知识点总结

高中数学-三角函数知识点总结

三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典一、正弦函数、余弦函数、正切函数的定义1. 正弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y=sinθ称为角θ的正弦函数。

2. 余弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则x=cosθ称为角θ的余弦函数。

3. 正切函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y/x=tanθ称为角θ的正切函数。

二、基本性质1.周期性:正弦函数、余弦函数、正切函数的周期都是2π。

2.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

3.值域:正弦函数和余弦函数的值域为[-1,1],正切函数的值域为R。

三、基本公式1. 正弦函数的基本公式:sin(θ±α) = sinθcosα ±cosθsinα2. 余弦函数的基本公式:cos(θ±α) = cosθcosα ∓ sinθsinα3. 正切函数的基本公式:tan(θ±α) =(tanθ±tanα)/(1∓tanθtanα)四、三角函数的图像与性质1.正弦函数图像的性质:周期为2π,在(0,0)处取得最小值-1,在(π/2,1)、(3π/2,-1)处取得最大值1,是一个奇函数。

2.余弦函数图像的性质:周期为2π,在(0,1)处取得最大值1,在(π,-1)处取得最小值-1,是一个偶函数。

3.正切函数图像的性质:周期为π,在(0,0)处取得最小值-∞,在(π/2,∞)处取得最大值∞,是一个奇函数。

五、三角函数的性质1.三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)2.三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1-tan^2θ)3.三角函数的半角公式:sin(θ/2) = √[(1-cosθ)/2]cos(θ/2) = √[(1+cosθ)/2]tan(θ/2) = sinθ/(1+cosθ)4.三角函数的积化和差公式:sinA·sinB = (1/2)[cos(A-B)-cos(A+B)]cosA·cosB = (1/2)[cos(A-B)+cos(A+B)]sinA·cosB = (1/2)[sin(A-B)+sin(A+B)]六、三角函数的应用1.解三角形:利用正弦定理、余弦定理和正弦函数、余弦函数的性质,可以解决三角形的边长和角度。

三角函数知识点归纳

三角函数知识点归纳

第一章:三角函数§、任意角一、 正角、负角、零角、象限角的概念. 二、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ.§、弧度制一、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 二、 r l =α. 3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π. §、任意角的三角函数一、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin二、 设点(),A x y 为角α终边上任意一点,那么:(设r =sin y r α=,cos xrα=,tan y x α=,cot x y α=3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP;余弦线:OM; 正切线:AT五、 特殊角.§、同角三角函数的大体关系式一、 平方关系:1cos sin 22=+αα. 二、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα= §、三角函数的诱导公式(归纳为“奇变偶不变,符号看象限”Z k ∈)一、 诱导公式一:二、 诱导公式二:()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+(其中:Z k ∈)3、诱导公式三:4、诱导公式四:()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- 五、诱导公式五: 六、诱导公式六:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛- .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+§、正弦、余弦函数的图象和性质 一、记住正弦、余弦函数图象:二、能够对照图象讲出正弦、余弦函数的相关性质:概念域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为:30010-12022ππππ(,)(,,)(,,)(,,)(,,). §、正切函数的图象与性质一、记住正切函数的图象: 二、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:概念域、值域、对称中心、奇偶性、单调性、周期性.周期函数概念:关于函数()x f ,若是存在一个非零常数T ,使适当x 取概念域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做那个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质图象定义域 R R },2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R 最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=T π2=T π=T奇偶性奇 偶 奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增 在3[2,2]22k k ππππ++上单调递减在[2,2]k k πππ-上单调递增 在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增对称性 Z k ∈对称轴方程:2x k ππ=+对称中心(,0)k π 对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π§、函数()ϕω+=x A y sin 的图象 一、关于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .二、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系. ① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减)横坐标不变 ()sin y A x ϕ=+纵坐标变成原先的A 倍纵坐标不变 ()sin y A x ωϕ=+ 横坐标变成原先的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++ (上加下减)① 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变成原先的A 倍纵坐标不变 sin y A x ω= 横坐标变成原先的1||ω倍()sin y A x ωϕ=+(左加右减)平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=.关于sin()y A x ωϕ=+和cos()y A x ωϕ=+来讲,对称中心与零点相联系,对称轴与最值点联系.求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得. 4、由图像确信三角函数的解析式利用图像特点:max min 2A =,max min2y y B +=.ω要依照周期来求,ϕ要用图像的关键点来求.§、三角函数模型的简单应用一、 要求熟悉讲义例题.第三章、三角恒等变换§、两角差的余弦公式§、两角和与差的正弦、余弦、正切公式 一、()βαβαβαsin cos cos sin sin +=+ 二、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-五、()tan tan 1tan tan tan αβαβαβ+-+=. 六、()tan tan 1tan tan tan αβαβαβ-+-=.§、二倍角的正弦、余弦、正切公式一、αααcos sin 22sin =,变形: 12sin cos sin 2ααα=. 二、ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=.变形如下: 升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩ 3、ααα2tan 1tan 22tan -=. 4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§、简单的三角恒等变换1、注意正切化弦、平方降次. 二、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=).。

三角函数知识点总结

三角函数知识点总结

三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。

角的大小是任意的。

定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。

定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,定理1 同角三角函数的基本关系式, 倒数关系:tan α=αcot 1,商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α; (Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α;(Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α; ( Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α(奇变偶不变,符号看象限)。

定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。

- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。

即:sinA = 对边/斜边。

- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。

即:cosA = 邻边/斜边。

- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。

即:tanA = 对边/邻边。

2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

- 三角函数的同角关系:sinA/cosA = tanA。

- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。

3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。

- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。

- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。

4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。

- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。

以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。

三角函数知识点归纳

三角函数知识点归纳

三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。

=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。

是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。

的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:三角函数
§、任意角
1、 正角、负角、零角、象限角的概念.
2、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ.
§、弧度制
1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.
2、 r l =
α. 3、弧长公式:R R
n l απ==
180
. 4、扇形面积公式:lR R n S 2
1
3602==
π. §、任意角的三角函数
y =α
αcos ,sin 1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:
2、 设点(),A x y 为角α终边上任意一点,那么:
(设r =
sin y r α=
,cos x
r
α=,tan y x α=,cot x y α=
3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.
正弦线:MP;
余弦线:OM; 正切线:AT
5、 特殊角
.
1、 平方关系:1cos sin 22=+αα.
2、 商数关系:α
α
αcos sin tan =
. 3、 倒数关系:tan cot 1αα= §、三角函数的诱导公式
(概括为“奇变偶不变,符号看象限”Z k ∈)
1、 诱导公式一:、 诱导公式二:
()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()().
tan tan ,cos cos ,
sin sin ααπααπααπ=+-=+-=+(其中:Z k ∈)
3、诱导公式三:
4、诱导公式四:
()()().
tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()().
tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- 5、诱导公式五: 6、诱导公式六:
.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛- .sin 2cos ,cos 2sin ααπααπ-=⎪⎭
⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+
§、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中
心、奇偶性、单调性、周期性. 3、会用五点法作图.
sin y x =在[0,2]x π∈上的五个关键点为:
30010-1202
2
π
π
ππ(,)(,,)(,,)(,,)(,,). §、正切函数的图象与性质
1、记住正切函数的图象:
2、记住余切函数的图象:
3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.
周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.
图表归纳:正弦、余弦、正切函数的图像及其性质
x y sin =
x y cos =
x y tan = 图象
定义域 R R },2
|{Z k k x x ∈+≠
ππ
值域
[-1,1]
[-1,1]
R 最值
max min 2,1
2
2,1
2
x k k Z y x k k Z y π
ππ
π=+
∈==-
∈=-时,时,
max min 2,12,1
x k k Z y x k k Z y πππ=∈==+∈=-时,时,

周期性 π2=T π2=T π=T
奇偶性
奇 偶 奇
单调性
Z k ∈ 在[2,2]2
2
k k ππππ-+上单调递增 在3[2,2]22k k ππ
ππ++上单调递减
在[2,2]k k πππ-上单调递
增 在[2,2]k k πππ+上单调递减
在(,)22k k ππππ-+上单调递增
对称性 Z k ∈
对称轴方程:2
x k π
π=+
对称中心(,0)k π 对称轴方程:x k π= 对称中心(,0)2
k ππ
+
无对称轴 对称中心,0)(
2
k π
§、函数()ϕω+=x A y sin 的图象 1、对于函数:
()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T π
ω
=,初相ϕ,相位ϕω+x ,频率π
ω
21=
=
T
f .
2、能够讲出函数x y sin =的图象与
()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系. ① 先平移后伸缩:
sin y x = 平移||ϕ个单位 ()sin y x ϕ=+
(左加右减)
横坐标不变 ()sin y A x ϕ=+
纵坐标变为原来的A 倍
纵坐标不变 ()sin y A x ωϕ=+ 横坐标变为原来的1
||ω倍
平移||B 个单位 ()sin y A x B ωϕ=++ (上加下减)
② 先伸缩后平移:
sin y x = 横坐标不变 sin y A x =
纵坐标变为原来的A 倍
纵坐标不变 sin y A x ω= 横坐标变为原来的1
||ω

()sin y A x ωϕ=+
(左加右减)
平移||B 个单位 ()sin y A x B ωϕ=++
(上加下减)
3、三角函数的周期,对称轴和对称中心
函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A
≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z π
π≠+∈(A,ω,ϕ为常数,
且A ≠0)的周期||
T π
ω=
. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系.
求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()
2
x k k Z π
ωϕπ+=+∈与()x k k Z ωϕπ+=∈
解出x 即可.余弦函数可与正弦函数类比可得. 4、由图像确定三角函数的解析式
利用图像特征:max min 2y y A -=
,max min
2
y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.
§、三角函数模型的简单应用
1、 要求熟悉课本例题.
第三章、三角恒等变换
§、两角差的余弦公式
§、两角和与差的正弦、余弦、正切公式
1、
()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=-
5、()tan tan 1tan tan tan αβαβαβ+-+=.
6、()tan tan 1tan tan tan αβαβαβ-+-=.
§、二倍角的正弦、余弦、正切公式
1、αααcos sin 22sin =, 变形: 12sin cos sin 2ααα
=. 2、ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=.
变形如下: 升幂公式:22
1cos 22cos 1cos 22sin αααα
⎧+=⎪
⎨-=⎪⎩ 降幂公式:221cos (1cos 2)2
1sin (1cos 2)2
αααα=+=-⎧⎪⎨⎪⎩
3、α
αα2tan 1tan 22tan -=
. 4、sin 21cos 2tan 1cos 2sin 2ααααα-==+
§、简单的三角恒等变换
1、注意正切化弦、平方降次.
2、辅助角公式
)sin(cos sin 22ϕ++=+=x b a x b x a y
(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan b
a
ϕ=
).。

相关文档
最新文档