三角函数知识点总结及练习题
三角函数的概念(原卷版)

5.2.1 三角函数的概念【知识点梳理】 知识点一:三角函数定义设α是一个任意角,它的终边与半径是r 的圆交于点(,)P x y ,则22r x y +,那么: (1)y r 做α的正弦,记做sin α,即sin y r α=; (2) x r 叫做α的余弦,记做cos α,即cos x rα=; (3)y x叫做α的正切,记做tan α,即tan (0)yx x α=≠.知识点诠释:(1)三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离22r x y +,那么22sin x y α=+22cos x y α=+,tan yxα=. (2)三角函数符号是一个整体,离开α的sin 、cos 、tan 等是没有意义的,它们表示的是一个比值,而不是sin 、cos 、tan 与α的积.知识点二:三角函数在各象限的符号 三角函数在各象限的符号:在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦. 知识点诠释:口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正.知识点三:诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一: sin(2)sin k απα+= cos(2)cos k απα+=tan(2)tan k απα+=,其中k Z ∈注意:利用诱导公式一,可以把求任意角的三角函数值,转化为求02π~(或0360︒︒~)范围内角的三角函数值.知识点四、特殊角的三角函数值 0° 30°45°60°90°120°135°150°180°270°6π 4π 3π 2π 23π 34π 56π π32π sin α 0 12 22 3213222 12 0 1-cos α132 2212 012- 22- 32- 1- 0tan α0 331 33-1- 33- 0【题型归纳目录】 题型一:三角函数的定义 题型二:判断三角函数值的符号 题型三:确定角所在象限 题型四:诱导公式(一)的应用 题型五:圆上的动点与旋转点 【典型例题】题型一:三角函数的定义例1.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))设α是第二象限角,(),8P x 为其终边上的一点,且4sin 5α,则x =( ) A .3- B .4-C .6-D .10-例2.(2022·北京市西城外国语学校高三阶段练习)角α的终边上有一点(2,2)P -,则sin α=( ) A .22B .22-C .2D .1例3.(2022·河南·高三阶段练习(文))已知角α的终边经过点()()4,30P m m m -≠,则2sin cos αα+的值为( ) A .35 B .25C .1或25-D .25或25-变式1.(2022·山西大附中高三阶段练习(文))已知角x 的终边上一点的坐标为55sin ,cos 66ππ⎛⎫⎪⎝⎭,则角x 的最小正值为( ) A .56πB .53π C .6π D .3π变式2.(2022·江西·崇仁县第二中学高三阶段练习(文))已知点2π(cos ,1)3P 是角α终边上一点,则cos α=( )A 5B .5C 25D .3变式3.(2022·全国·高三专题练习)已知角α的终边经过点()3,4P -,则sin cos 11tan ααα--+的值为( )A .65-B .1C .2D .3变式4.(2022·全国·高三专题练习)已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12B .1C .2D .52变式5.(2022·全国·高一课时练习)已知顶点在原点,始边与x 轴非负半轴重合的角α的终边上有一点()3,P m ,且()2sin 0m α=≠,求m 的值,并求cos α与tan α的值.变式6.(2022·全国·高一课时练习)已知角α的终边在函数()102y x x =->的图像上,求sin α,cos α的值.【方法技巧与总结】利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:方法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.方法二:在α的终边上任选一点(,)P x y ,P 到原点的距离为r (0r >).则sin y rα=,cos xr α=.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. (3)若终边在直线上时,因为角的终边是射线,应分两种情况处理. 题型二:判断三角函数值的符号例4.(2022·全国·高一课时练习)已知α为第二象限角,则( ) A .sin 0α< B .tan 0α> C .cos 0α< D .sin cos 0αα>例5.(2022·湖北·高一阶段练习)下列各式的符号为正的是( ) A .cos3 B .5ππsin cos 36⎛⎫- ⎪⎝⎭C .sin2cos2-D .7πtan8例6.(2022·甘肃·静宁县第一中学高一阶段练习(文))sin 4tan7⋅的值( ) A .大于0 B .小于0 C .等于0 D .不大于0变式7.(2022·江西省万载中学高一期中)设02πα≤<,如果sin 0α<且cos20α<,则α的取值范围是( ) A .π<α<3π2B .3π2<α<2π C .π4<α<34π D .5π4<α<7π4【方法技巧与总结】三角函数值在各象限内的符号也可以用下面的口诀记忆:“一全正二正弦,三正切四余弦”,意为:第一象限各个三角函数均为正;第二象限只有正弦为正,其余两个为负;第三象限正切为正,其余两个为负;第四象限余弦为正,其余两个为负.题型三:确定角所在象限例7.(2022·全国·高一课时练习)点()cos2018,sin 2018P ︒︒所在的象限是( ) A .一B .二C .三D .四例8.(2022·福建·莆田二中高三阶段练习)设α角属于第二象限,且cos cos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例9.(2022·陕西汉中·高一期中)若cos tan 0αα<,且sin cos 0αα<,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角变式8.(2022·全国·高三专题练习)若sin 0θ<且tan 0θ<,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式9.(2022·江苏·无锡市教育科学研究院高一期末)已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限变式10.(2022·辽宁·高一期末)坐标平面内点P 的坐标为()sin5,cos5,则点P 位于第( )象限. A .一 B .二 C .三 D .四【方法技巧与总结】 确定角所在象限的步骤(1)判断该角的某些三角函数值的符号;(2)根据角的 三角函数值的符号,确定角所在象限. 题型四:诱导公式(一)的应用例10.(2022·天津市红桥区教师发展中心高一期末)17sin 4π=____________.例11.(2022·广西·桂林十八中高一开学考试)13sin 3π=_________.例12.(2022·湖南·高一课时练习) 17tan()3π-=______.变式11.(2022·云南民族大学附属中学模拟预测(理))()cos 300-︒=______.变式12.(2022·湖南·()3tan330sin 60︒+︒+-︒.【方法技巧与总结】利用诱导公式一化简或求值的步骤(1)将已知角化为·360k α︒+(k 为整数,0360α︒≤<︒)或2k πβ+(k 为整数,02βπ≤<)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角的三角函数的定义达到化简求值的目的. 题型五:圆上的动点与旋转点例13.(2022·湖南益阳·高一期末)在直角坐标系xOy 中,一个质点在半径为2的圆O 上,以圆O 与x 正半轴的交点0P 为起点,沿逆时针方向匀速运动到P 点,每5s 转一圈,则2s 后0P P 的长为( ) A .42sin 5πB .42cos 5πC .24sin 5π D .24cos5π例14.(2022·全国·高一专题练习)点P 从()1,0出发,沿单位圆按逆时针方向运动263π弧长到达Q 点,则Q 的坐标为( ) A .13,22B .312⎛⎫- ⎪ ⎪⎝⎭C .13,2⎛- ⎝⎭D .321⎛⎫ ⎪ ⎪⎝⎭例15.(2022·江西师大附中高一期末)在平面直角坐标系xOy 中,若点P 从()2,0出发,沿圆心在原点,半径为2的圆按逆时针方向运动43π弧长到达点Q ,则点Q 的坐标是( ) A .(3- B .(1,3--C .(3D .(1,3-变式13.(2022·江西·模拟预测(文))已知单位圆上第一象限一点P 沿圆周逆时针旋转3π到点Q ,若点Q 的横坐标为12-,则点P 的横坐标为( )A.13B.12C2D3变式14.(2022·全国·高三专题练习)如图所示,滚珠P,Q同时从点(2,0)A出发沿圆形轨道匀速运动,滚珠P按逆时针方向每秒钟转π3弧度,滚珠Q按顺时针方向每秒钟转6π弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.(1)求滚珠P,Q第一次相遇时所用的时间及相遇点的坐标;(2)求从出发到第二次相遇滚珠P,Q各自滚动的路程.【方法技巧与总结】利用三角函数的定义求解【同步练习】一、单选题1.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点132P⎛-⎝⎭,则sinα的值为()A.3B.12-C3D.122.(2022·江西赣州·高一期末)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n边形等分成n个等腰三角形(如图所示),当n越大,等腰三角形的面积之和越近似等于圆的面积.运用割圆术的思想,可得到sin9︒的近似值为(π取近似值3.14)()A .0.039B .0.157C .0.314D .0.0793.(2022·四川省平昌中学高一阶段练习)如图,角α的终边与单位圆O 的交点34(,)55A -,则4cos 2sin 5cos 3sin αααα-=+( )A .203B .23C .45D .203-4.(2022·全国·高三专题练习)已知角α的终边与单位圆交于点1,3P m ⎛⎫- ⎪⎝⎭,则sin α=( )A .223B .13C .22D .13±5.(2022·江西上饶·高一阶段练习)赵爽是我国古代数学家、天文学家,约公元222年,赵爽在注解《周髀算经》一书时介绍了“勾股圆方图”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形.如图所示的是一张弦图,已知大正方形的面积为100,小正方形的面积为20,若直角三角形较小的锐角为α,则sin αcos α的值为( )A .15B .25C 5D 256.(2022·北京市第五中学高一期末)在直角坐标系xOy 中,已知43sin ,cos 55αα=-=,那么角α的终边与单位圆O 坐标为( ) A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭7.(2022·江西·景德镇一中高一期中)已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角8.(2022·四川省内江市第六中学高一阶段练习(理))在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P 与原点O 之间距离为r ,比值rx叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值xy叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=-;乙:5csc 3β=;丙:3tan 4β=-;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁二、多选题9.(2022·江苏·南京市第一中学高一阶段练习)已知α是第一象限角,则下列结论中正确的是( ) A .sin20α>B .cos20α>C .cos02α> D .tan02α>10.(2022·全国·高一单元测试)下列结论正确的是( ) A .76π-是第三象限角 B .若圆心角为3π的扇形的弧长为π,则该扇形的面积为32πC .若角α的终边上有一点()3,4P -,则3cos 5α=-D .若角α为锐角,则角2α为钝角11.(2022·辽宁朝阳·高一阶段练习)已知角θ的终边经过点(2,3)--,且θ与α的终边关于x 轴对称,则( ) A .21sin 7θ=-B .α为钝角C .27cos α= D .点(tan θ,tan α)在第四象限12.(2022·全国·高一)以原点为圆心的单位圆上一点P 从()1,0出发,沿逆时针方向运动133π弧长到达点Q ,则点Q 的坐标不可能的是( )A .312⎛⎫- ⎪ ⎪⎝⎭B .312⎫⎪⎪⎝⎭C .132⎛ ⎝⎭D .13,2⎛ ⎝⎭三、填空题13.(2022·上海理工大学附属中学高一期中)角α的终边上有一点()()3,40P a a a ->,则sin α的值为______;14.(2022·全国·高一课时练习)已知角α的终边在射线3(0)y x x =≥上,则角α的正弦值为______,余弦值为______.15.(2022·全国·高一课时练习)已知角α的终边上有一点()3,P m -,且2sin 4α=,则m 的值为______.16.(2022·全国·高一课时练习)若角θ是第四象限角,则sin cos tan sin cos tan y θθθθθθ=++=______. 17.(2022·江苏盐城·高一期末)已知角α为第一象限角,其终边上一点(),P x y 满足()()222ln 2ln x y x y -=+,则2cos α-sin α=________.四、解答题18.(2022·江苏·高一专题练习)已知角α的终边经过点()()4,30P a a a -≠,求2sin cos αα+的值.19.(2022·江苏·高一专题练习)已知α角的终边经过点()3,P m ,且满足2sin 4m α=. (1)若α为第二象限角,求sin α值; (2)求cos tan αα+的值.20.(2022·全国·高一课时练习)已知11sin sin αα=-,且lg cos α有意义. (1)试判断角α是第几象限角;(2)若角α的终边上有一点3,5M m⎛⎫⎪⎝⎭,且1OM=(O为坐标原点),求实数m的值及sinα的值.21.(2022·全国·高一课前预习)计算下列各式的值:(1)tan405sin450cos750︒-︒+︒;(2)t 15s25ann3i4ππ⎛⎫-⎝+⎪⎭.。
三角函数知识点及题型归纳

三角函数知识点及题型归纳一、三角函数的基本概念三角函数是数学中重要的函数类型,它们在几何、物理等领域有着广泛的应用。
首先,角的概念是基础。
我们把平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形叫做角。
角可以用弧度制或角度制来度量。
弧度制是用弧长与半径之比来度量角的大小,公式为:弧长\(l =r\theta\),其中\(r\)为半径,\(\theta\)为圆心角的弧度数。
接下来是三角函数的定义。
在平面直角坐标系中,设点\(P(x,y)\)是角\(\alpha\)终边上非原点的任意一点,\(r =\sqrt{x^2 +y^2}\),则有正弦函数\(\sin\alpha =\frac{y}{r}\),余弦函数\(\cos\alpha =\frac{x}{r}\),正切函数\(\tan\alpha =\frac{y}{x}(x \neq 0)\)。
二、三角函数的基本性质1、周期性正弦函数和余弦函数的周期都是\(2\pi\),正切函数的周期是\(\pi\)。
2、奇偶性正弦函数是奇函数,即\(\sin(\alpha) =\sin\alpha\);余弦函数是偶函数,即\(\cos(\alpha) =\cos\alpha\)。
3、单调性正弦函数在\(\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi(k \in Z)\)上单调递增,在\(\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi(k \in Z)\)上单调递减;余弦函数在\(2k\pi, \pi +2k\pi(k \in Z)\)上单调递减,在\(\pi + 2k\pi, 2\pi + 2k\pi(k \in Z)\)上单调递增;正切函数在\((\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)(k \in Z)\)上单调递增。
(完整版)初中三角函数知识点总结及典型习题含答案)

( 1)2009
3
10. 计算:
2. 原式 = 2
3 3
2
3 1 1=0. 3
依据:①边的关系: a 2 b2 c2 ;②角的关系: A+B=90°;③边角关系:三角函数的定义。 ( 注意:
尽量避免使用中间数据和除法 ) 2、应用举例: (1) 仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
仰角 俯角
水平线
h
i h:l
视线
α
l
(2) 坡面的铅直高度 h 和水平宽度 l 的比叫做坡度 ( 坡比 ) 。用字母 i 表示,即 i 的形式,如 i 1:5 等。
80 .
3
BC CD BD 240 80=160. 答:这栋大楼的高为 160 米.
8. 如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由 45°降为 30°,已知 原滑滑板 AB的长为 4 米,点 D、B、C在同一水平面上.
(1)改善后滑滑板会加长多少米? (2)若滑滑板的正前方能有 3 米长的空地就能保证安全,原滑滑板的前方有 6 米长的空地,像这 样改造是否可行?请说明理由. (参考数据: 2 1.141, 3 1.732 , 6 2.449 ,以上结果均保留到小数点后两位. )
线,∠ ABC=150°, BC的长是 8m,则乘电梯从点 B到点 C上升的高度 h
是( B )
CD
A. 8 3 m
3
B
.4 m
1
h
C. 4 3 m
D
.8 m
A
B
B
4. 河堤横断面如图所示,堤高 BC=5米,迎水坡 AB的坡比是 1: 3 (坡比是坡
(新)高中数学三角函数知识点及试题总结

高考三角函数1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=3.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy (2)各象限的符号:sin α cos α tan αxy+O— —+x yO — ++— +y O— ++ —5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。
(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质降幂公式: 1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-= 9.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
三角函数知识点总结

三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。
若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。
角的大小是任意的。
定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,定理1 同角三角函数的基本关系式, 倒数关系:tan α=αcot 1,商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α; (Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α;(Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α; ( Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α(奇变偶不变,符号看象限)。
定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。
初中三角函数知识点总结及典型习题
初中三角函数知识点总结及典型习题初中三角函数知识点总结及典型习题一、角度和弧度制1. 角度制:以度(°)作为单位来度量角的大小,一周为360°,一个直角为90°。
2. 弧度制:以弧长等于半径长度的圆心角为一弧度(rad),一周为2π rad,一个直角为π/2 rad。
二、常用三角函数1. 正弦函数(sin):在直角三角形中,正弦值为对边与斜边的比值。
2. 余弦函数(cos):在直角三角形中,余弦值为邻边与斜边的比值。
3. 正切函数(tan):在直角三角形中,正切值为对边与邻边的比值。
三、三角函数的周期性1. 正弦函数与余弦函数的周期均为2π。
2. 正切函数的周期为π。
四、三角函数的基本性质1. 正弦函数和余弦函数的值域为[-1,1],在[-π/2,π/2]内单调递增。
2. 正切函数的值域为(-∞,∞),在每个周期内交替上升和下降。
3. 正弦函数与余弦函数的图像为波形,以坐标原点为对称中心。
4. 正切函数的图像为周期为π的波形。
五、三角函数的正负关系1. 在第一象限,正弦函数、余弦函数和正切函数均为正。
2. 在第二象限,正弦函数为正,余弦函数和正切函数为负。
3. 在第三象限,正弦函数和正切函数为负,余弦函数为正。
4. 在第四象限,正弦函数为负,余弦函数和正切函数为正。
六、三角函数的基本公式1. 正弦函数的基本公式:sin(α±β) = sinαcosβ± cosαsinβ2. 余弦函数的基本公式:cos(α±β) = cosαcosβ∓ sinαsinβ3. 正切函数的基本公式:tan(α±β) = (tanα± tanβ) / (1∓tanαtanβ)七、三角函数之间的倒数关系1. 正弦函数与余弦函数的关系:sin(π/2-θ) = cosθ,cos(π/2-θ) = sinθ2. 正弦函数与正切函数的关系:tanθ = sinθ / cosθ,cotθ = cosθ / sinθ3. 余弦函数与正切函数的关系:tan(π/2-θ) = 1 / tanθ,cot(π/2-θ) = 1 / cotθ八、特殊角的三角函数值1. 30°的正弦值为1/2,余弦值为√3/2,正切值为1/√3。
三角函数例题和知识点总结
三角函数例题和知识点总结一、三角函数的基本概念在数学中,三角函数是一类重要的函数,它们描述了三角形中边与角之间的关系。
首先,我们来了解一下角度的度量。
角度可以用度(°)或弧度来表示。
一个完整的圆周对应的角度是 360°,而用弧度表示则是2π 弧度。
接下来,我们认识一下常见的三角函数:正弦函数(sin)、余弦函数(cos)、正切函数(tan)。
正弦函数sinθ 表示在直角三角形中,对边与斜边的比值;余弦函数cosθ 表示邻边与斜边的比值;正切函数tanθ 则是对边与邻边的比值。
二、三角函数的基本公式1、同角三角函数的基本关系sin²θ +cos²θ = 1tanθ =sinθ /cosθ2、诱导公式例如:sin(π θ) =sinθ ,cos(π θ) =cosθ 等三、三角函数的图像和性质1、正弦函数 y = sin x 的图像是一个周期为2π 的波形,其值域为-1, 1,在 x =π/2 +2kπ (k 为整数)时取得最大值 1,在 x =3π/2 +2kπ (k 为整数)时取得最小值-1。
2、余弦函数 y = cos x 的图像也是一个周期为2π 的波形,值域同样为-1, 1,在 x =2kπ (k 为整数)时取得最大值 1,在 x =π +2kπ (k 为整数)时取得最小值-1。
3、正切函数 y = tan x 的图像其周期为π,定义域为x ≠ π/2 +kπ (k 为整数),值域为 R 。
四、三角函数的例题例 1:已知sinθ = 08,且θ 在第一象限,求cosθ 和tanθ 的值。
因为sin²θ +cos²θ = 1,所以cosθ =√(1 sin²θ) =√(1 08²) =06 。
tanθ =sinθ /cosθ = 08 / 06 = 4 / 3 。
例 2:求函数 y = 2sin(2x +π/3) 的周期和振幅。
任意角的三角函数知识点及练习
任意角的三角函数知识点及练习一、任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
按旋转方向,角可分为正角、负角和零角。
正角:按逆时针方向旋转形成的角。
负角:按顺时针方向旋转形成的角。
零角:射线没有作任何旋转时形成的角。
为了研究方便,我们常在直角坐标系内讨论角。
角的顶点与原点重合,角的始边与 x 轴的非负半轴重合。
那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。
二、弧度制长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。
弧度与角度的换算:因为周角的弧度数为2π,角度数为 360°,所以 180°=π rad,1°=π/180 rad,1 rad =(180/π)°扇形的弧长公式:l =|α|r (α 是圆心角弧度数,r 为半径)扇形的面积公式:S = 1/2 lr = 1/2 |α|r²三、任意角的三角函数设α是一个任意角,它的终边上任意一点 P(x,y),r =|OP| =√(x²+ y²) ,那么:正弦函数:sinα = y/r余弦函数:cosα = x/r正切函数:tanα = y/x (x ≠ 0)余切函数:cotα = x/y (y ≠ 0)正割函数:secα = r/x (x ≠ 0)余割函数:cscα = r/y (y ≠ 0)三角函数值在各象限的符号:第一象限:sinα、cosα、tanα 均为正第二象限:sinα 为正,cosα、tanα 为负第三象限:tanα 为正,sinα、cosα 为负第四象限:cosα 为正,sinα、tanα 为负同角三角函数的基本关系:平方关系:sin²α +cos²α = 1商数关系:tanα =sinα/cosα诱导公式:诱导公式可以概括为“奇变偶不变,符号看象限”。
高中数学必修一三角函数概念知识点总结及练习题
高中数学必修一三角函数概念知识点总结及练习题一、正弦函数与余弦函数1. 什么是正弦函数?正弦函数是指以单位圆为基础,对应于某个角的正弦值与其对边的比例。
2. 什么是余弦函数?余弦函数是指以单位圆为基础,对应于某个角的余弦值与其邻边的比例。
3. 正弦函数和余弦函数之间有什么关系?正弦函数和余弦函数是相互关联的,它们的图像相互对称,即正弦函数的图像沿y轴对称于余弦函数的图像。
二、三角函数的性质1. 三角函数的周期性是什么意思?三角函数的周期性指的是三角函数在一定范围内的值呈现出重复的规律。
2. 三角函数的奇偶性是什么意思?三角函数的奇偶性指的是在关于原点对称的图像中,函数值的变化规律。
3. 三角函数的单调性是什么意思?三角函数的单调性指的是在一定范围内,函数值的增减规律。
三、三角函数的图像1. 正弦函数的图像特点是什么?正弦函数的图像是一条连续的曲线,它在[-π/2, π/2]范围内在y 轴的正半轴上递增,在[π/2, 3π/2]范围内在y轴的负半轴上递减。
2. 余弦函数的图像特点是什么?余弦函数的图像是一条连续的曲线,它在[0, π]范围内在y轴的正半轴上递减,在[π, 2π]范围内在y轴的负半轴上递增。
四、三角函数的性质应用练题1. 求下列各式中所给的角度的正弦值:a) sin(30°)b) sin(60°)c) sin(45°)d) sin(90°)2. 求下列各式中所给的角度的余弦值:a) cos(0°)b) cos(180°)c) cos(270°)d) cos(360°)3. 判断下列各式是正弦函数还是余弦函数:a) f(x) = sin(x)b) f(x) = cos(x)4. 比较下列各式的大小:a) sin(30°) 与 cos(60°)b) sin(45°) 与 cos(45°)五、解答1. 求下列各式中所给的角度的正弦值:a) sin(30°) = 0.5b) sin(60°) = √3/2c) sin(45°) = √2/2d) sin(90°) = 12. 求下列各式中所给的角度的余弦值:a) cos(0°) = 1b) cos(180°) = -1c) cos(270°) = 0d) cos(360°) = 13. 判断下列各式是正弦函数还是余弦函数:a) f(x) = sin(x)(正弦函数)b) f(x) = cos(x)(余弦函数)4. 比较下列各式的大小:a) sin(30°) 与 cos(60°)(sin(30°) < cos(60°))b) sin(45°) 与 cos(45°)(sin(45°) = cos(45°))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4三角函数知识点总结
一、角的概念和弧度制:
(1)在直角坐标系内讨论角:
注意:若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与α角终边相同的角的集合:},2|{},360|{0
Z k k Z k k ∈+=∈+=απββαββ或
与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合:
(3)区间角的表示:
①象限角:第一象限角: ;
第四象限角: ;
第一、三象限角: ;
②写出图中所表示的区间角: (4)由α的终边所在的象限, 来判断
2α所在的象限,来判断3
α
所在的象限 (5)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;
任一角α的弧度数的绝对值r
l
=
||α,其中l 为以角α为圆心角时所对圆弧的长。
(6)弧长公式: ;半径公式: ;扇形面积公式: ; 练习:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
(22
cm ) 二、任意角的三角函数:
(1)任意角的三角函数定义:
以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系
I )在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan (注意r>0)
练习:已知角α的终边经过点P(5,-12),则ααcos sin +的值为__。
角α的终边上一点)3,(a a -,则=+ααsin 2cos 。
II )作单位元交角α的终边上点),(y x P ,则=αsin ;=αcos ;=αtan (2)在图中画出 角α的正弦线、 余弦线、正切线;
练习:
(1)若α为锐角,则,sin ,tan ααα的大小关系为_____ (sin tan ααα<<)
(2)函数)3sin 2lg(cos 21+++=x x y 的定义域是______222,3
3x
k x k k Z π
πππ⎧⎫∣-<≤+
∈⎨⎬⎩
⎭
(3)特殊角的三角函数值:
三、同角三角函数的关系与诱导公式:
(1)同角三角函数的关系
平方关系__________________;商数关系_____________________ 练习;(1)已知53sin +-=
m m θ,)2(524cos πθπθ<<+-=m m ,则θtan =____(12
5
-) (2)若11tan tan -=-αα,则
ααααcos sin cos 3sin +-=____;2cos sin sin 2
++ααα=___(35-;5
13); (3)已知x x f 3cos )(cos =,则)30(sin
f 的值为______(-1)。
(4)若1(0,),sin cos 2
απαα∈+=,求tan α的值。
(2)诱导公式:
ααπ⇒+k 2: , , ; ααπ⇒+: , , ; αα⇒-: , , ; ααπ⇒-: , , ; ααπ
⇒-2: , , ; ααπ
⇒+2
: , , ; 诱导公式可用概括为:
2K π±α,-α,
2
π
±α,π±α,23π±α的三角函数 奇变偶不变,符号看象限 α的三角
函数
(3)同角三角函数的关系与诱导公式的运用:
①已知某角的一个三角函数值,求它的其余各三角函数值。
注意:用平方关系,有两个结果,一般可通过已知角所 在的象限加以取舍,或分象限加以讨论。
②求任意角的三角函数值。
步骤:(右图)
③已知三角函数值求角:
注意:所得的解不是唯一的,而是有无数多个. 步骤: ①确定角α所在的象限;
②如函数值为正,先求出对应的锐角1α;如函数值为
负,先求出与其绝对值对应的锐角1α;
③根据角α所在的象限,得出π2~0间的角——如果适合已知条件的角在第二限;则它是1απ-;如果在第三或第四象限,则它是1απ+或12απ-;
④如果要求适合条件的所有角,再利用终边相同的角的表达式写出适合条件的所有角的集合。
练习(1)m =αtan ,则=αsin ,=αcos ;=-)23sin(
απ。
(2)97cos tan()sin 2146
ππ
π+-+的值为________(2323-); (3)已知5
4)540sin(-=+α
,则=-)270cos( α______,若α为第二象限角,则
=+-+-)
180tan()]360cos()180[sin(2
ααα
________。
(54-;1003-) 四、三角函数图像和性质
1.周期函数定义
例 求函数f(x)=3sin )3
5(π
+x k ()0≠k 的周期,并求最小的正整数k,使他的周期不大于1. 2.图像 练习
(1)函数sin(3)
6
y a b x π
=-+的最大值
23,最小值2
1
-,则=a __,=b ______(1
,1
2
a b ==或1b =-);
(2)若3
sin )(x
x f π=,则
(1)(2)(3)(2003)
f f f f ++++=___(0); (3) 函数
)5
2sin(2)(π
π+=x x f ,若任意
R x ∈都有
)()()(21x f x f x f ≤≤成立,则||21x x -的最小值为____(2)
3.三角函数的对称
)sin(ϕω+=x y 的对称轴方程是__________,对称中心____________; )cos(ϕω+=x y 的对称轴方程是_____________,对称中心__________; )tan(ϕω+=x y 的对称中心______. 练习(1)函数522y sin x π⎛⎫
=-
⎪⎝⎭
的奇偶性是______(偶函数); (2)已知函数3
1f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(-5);
4.图像的平移
对函数y =Asin(ωx +ϕ)+k (A >0, ω>0, ϕ≠0, k ≠0),其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移. (4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移 5.三角函数的图象
1.用五点法作)sin(ϕω+=x A y 的图象,这五点的坐标为 。
2.根据三角函数图象写表达式时,一般先求A 、ω,最后求ϕ,求ϕ时一般用法_____ 练习
(1)()sin()(0,0f x A x A ωϕω=+>>,||)2
π
ϕ<
的图象如图所示,则 ()f x =_________;
(2)函数2sin(2)14
y x π
=-
-的图象经过怎样的变换才能得到sin y x =的图象?
(3) 要得到函数cos()24x y π=-的图象,只需把函数sin 2x y =图象向___平移____个单位(左;2
π
);
课后习题
23题图2π9
Y X
-2
23
1)函数23y sin(x )π
=-+
的递减区间是____(51212[k ,k ](k Z )π
πππ-
+∈)
; 2)12
34x y log cos()π=+的递减区间是____(336644[k ,k ](k Z )π
πππ-+∈)
; 3)函数)2
2
,0,0)(sin()(π
ϕπ
ωϕω<
<-
>≠+=A x A x f 图象关于直线3
2π=x 对称,周期是π,则
A 、)21
,0()(的图象过点x f B 、()f x 在区间52[
,]123
ππ
上是减函数 C 、)0,12
5()(π是的图象的一个对称中心x f D 、()f x 的最大值是A (C ); 4)函数y =-x ·cos x 的部分图象是( )
5)如图,一个半径为10米的水轮按逆时针方向每分钟转4圈记 水轮上的点P 到水面的距离为d 米(P 在水面下则d 为负数),则 d (米)与时间t (秒)之间满足关系式:
()()sin 0,0,2
2
d A t k A π
π
ωϕωϕ=++>>-
<<
,且当P 点
从水面上浮现时开始计算时间,有以下四个结论:(1)10A =;()2215πω=;()36
π
ϕ=;()45k =,则其中所有正确结论的序号是 (π)。