《数学广角——鸽巢问题》单元分析
六年级数学下册第五单元数学广角鸽巢问题教案设计新人教版

第五单元数学广角——鸽巢问题
单元教学总述
本单元通过几个直观例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解“鸽巢原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”。
“鸽巢原理”实际上是一种解决某种特定结构的数学问题或生活问题的模型,理论本身并不复杂,但却是一类较为抽象的数学问题,教材选择学生常见的、熟悉的事物为学习素材,降低了学习难度。
“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到令人惊异的结果。
因此,“鸽巢原理”在数论、集合论、组合论中都得到了广泛的应用。
用“说理”的方式来理解“鸽巢原理”的过程是一种数学证明的雏形,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
1.初步了解“鸽巢原理”的两种形式。
2.理解“鸽巢原理”的含义,掌握用“鸽巢原理”解决问题的方法。
3.能运用逆向思维解决问题。
4.通过“鸽巢原理”的学习,增强学生的逻辑推理能力。
重点:了解“鸽巢原理”的两种形式,能把具体问题转化为“鸽巢问题”,能运用“鸽巢原理”解决简单的实际问题。
难点:找出解决“鸽巢问题”的窍门,反复推理,掌握用“鸽巢原理”解决问题的方法。
课时教学设计
鸽巢原理
解决问题
子里摸出2种不同颜
色的球,至少要摸出解决问题。
(6)个。
新人教版六年级数学下册《5 数学广角——鸽巢问题》单元知识总结

提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。
一、鸽巢问题
1.把n+1(n是大于0的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。
2.把多于kn(k、n都是大于0的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。
二、鸽巢问题的应用
1.如果有么至少需要有n+1个物品。
2.如果有n(n是大于0的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于0的自然数)个物品,那么至少需要有(kn+1)个物品。
3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b<a),a就是所求的鸽笼数。
4.利用“鸽巢问题”解决问题的思路和方法:①构造“鸽巢”,建立“数学模型”;②把物体放入“鸽巢”,进行比较分析;③说明理由,得出结论。
第五单元数学广角《鸽巢问题》教案

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢原理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
此外,在课后,我将对学生们进行个别辅导,了解他们在课堂上的疑惑和困难,以便在接下来的教学中更有针对性地进行讲解。同时,我也会鼓励学生们在日常生活中多观察、多思考,将所学知识运用到实际中,提高他们的数学素养。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够运用鸽巢原理解决实际问题,提高问题分析和解决能力。
2.培养学生的数学抽象思维,通过探索鸽巢问题中的规律与性质,提升对数学概念的理解和运用。
3.培养学生的数学建模素养,让学生在实际生活中发现数学问题,建立数学模型,并解决问题。
4.培养学生的合作交流能力,通过小组讨论和分享,提高学生团队协作和表达沟通的能力。
第五单元数学广角《鸽巢问题》教案
一、教学内容
第五单元数学广角《鸽巢问题》教案
1.教材章节:人教版四年级下册数学广角
2.教学内容:
a.鸽巢原理的基本概念与理解
b.应用鸽巢原理解决实际问题
c.鸽巢原理在实际生活中的应用案例
d.探索鸽巢问题中的规律与性质
e.提高逻辑思维能力和解决实际问题的能力
涉及的知识点包括:鸽巢原理的定义、证明方法、应用场景等。通过对鸽巢问题的学习,使学生掌握基本的逻辑推理方法,并能运用到实际问题的解决中。
五、教学反思
在今天的教学过程中,我发现学生们对鸽巢问题的理解普遍较好,他们能够通过具体的案例和实验操作,逐步领会鸽巢原理的基本概念。在导入新课的时候,我尝试用生活中的例子来引起学生的兴趣,效果还不错,大家都很积极地参与进来。
小学数学_ 鸽巢问题教学设计学情分析教材分析课后反思

《数学广角——鸽巢问题》教学设计教学目标:1.1知识与技能1.初步了解“抽屉原理”,会运用“抽屉原理”解决简单的实际问题或解释相关的现象。
2.通过操作、观察、比较、推理等数学活动,引导学生理解并掌握这一类“抽屉原理”的一般规律。
1.2过程与方法在探究“抽屉原理”的过程中”,经历将具体数学问题数学化的过程,培养学生解决问题的能力。
1.3情感态度与价值观通过对“抽屉原理”的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,理解“抽屉原理”,灵活运用该原理解决生活中的简单问题。
教学难点:理解“总有”、“至少”,构建“抽屉原理”的数学模型,并能解决一些简单的问题。
教学准备:与《鸽巢问题》相关的多媒体课件,笔,笔筒,一副扑克牌。
教学过程:一:创设情境,引入新课谈话引入:上课最初,老师想问问你们喜不喜欢魔术?今天我给大家表演一个魔术。
这还需要同学们的配合。
向学生介绍:这是一副扑克牌,取出大、小王,还剩52张,(请学生任意抽取5张牌),好,见证奇迹的时刻到了,这5张牌至少有2张牌的花色是一样的。
(学生打开牌让大家看)引导:老师为什么能作出准确的判断呢?因为这个有趣的魔术蕴含一个数学问题:鸽巢问题。
今天我们就一起来研究这一类问题。
(板书:鸽巢问题)(设计意图:魔术表演是学生喜欢的,创设魔术表演的情境,抓住学生好奇的心理,激发学生的兴趣,唤起学生的主体意识,为学生自主探索、发现问题、解决问题营造氛围)二:自主探究,构建模型教学例1,初步感知师:我们先从简单的例子入手,如果把4支笔放进3个笔筒中,不管怎么放,总有一个笔筒至少有2支笔。
师追问:“总有”是什么意思?生:一定有。
师:“至少”什么意思?生:最少,也有可能多。
教师引导:“总有一个笔筒至少放2支笔”这句话怎么理解?生:一定有一个笔筒最少放2支,也有可能多。
师:“总有一个笔筒至少放2支笔”这句话对吗?我们得需要验证,请同学们拿出学具笔筒和笔,把4支笔放进3个笔筒里面有几种摆法,不考虑笔筒的顺序,下面以小组为单位摆一摆、想一想、议一议有几种摆法。
六年级数学下册5数学广角_鸽巢问题教学分析素材新人教版

《数学广角——鸽巢问题》单元教学分析(一)教学目标1.使学生经历“抽屉原理”(“鸽巢原理”)的探究过程,初步了解“抽屉原理”,会运用“抽屉原理”解决一些简单的实际问题。
2.使学生通过“抽屉原理”的学习,增强对逻辑推理、模型思想的体验,提高学习数学的兴趣和应用意识。
(二)内容安排及其特点1.教学内容和作用“抽屉原理”来源于一个基本的数学事实。
如,将三个苹果放到两只抽屉里,要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么在一只抽屉里放三个苹果,而另一只抽屉里不放。
这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果。
虽然我们无法断定哪只抽屉里放入至少两个苹果,但这并不影响结论。
如果将上述问题中的苹果换成铅笔、书本、小动物或数,同时,将抽屉相应地换成笔筒、学生、鸽舍或数的集合,仍然可以得到相同的结论。
由此可以看出,上述推理的正确性与具体的事物是没有关系的。
同样,不管苹果与抽屉的具体数量是多少,只要苹果的数量比抽屉的数量多,推理依然成立。
如果我们把一切可以与苹果互换的事物称为元素,而把一切可以与抽屉互换的事物叫做集合,那么上面的结论就可以表述为:假如有多于n个元素按任一确定的方式分成n个集合,那么一定有一个集合中,至少含有2个元素。
它还可更一般地表述为:把多于kn(k是正整数)个元素按任一确定的方式分成n个集合,那么一定有一个集合中,至少含有(k+1)个元素。
最早指出这个数学原理的,是十九世纪的德国数学家狄里克雷(Dirich1et,1805~1859),因此,这个原理被称为“狄里克雷原理”。
又因为在讲述这个原理时,人们经常以抽屉、鸽巢为例,所以它往往也被称为“抽屉原理”或“鸽巢原理”。
“抽屉原理”是数学的重要原理之一,在数论、集合论和组合论中有很多应用。
它也被广泛地应用于现实生活中,如在招生录取、就业安排、资源分配、职称评定等方面,我们经常会看到隐含在其中的“抽屉原理”。
由此可见,所谓“抽屉原理”,实际上是一种解决某种特定结构的数学或生活问题的模型,是一种数学的思想方法。
新人教版数学六年级下册第五单元《数学广角-鸽巢问题》教材解读

申明:只可使用,不可出售, 或者出租、出借、转让。
1
教 材 编 排 特 点
PART 02
课标解读
2
义务教育数学课程标准(2022年版)指出“综合与实 践是小学数学学习的重要领域。学生将在实际情境和真 实问题中,运用数学和其他学科的知识与方法,经历发 现问题、提出问题、分析问题、解决问题的过程,感悟 数学知识之间、数学与其他学科知识之间、数学与科学 技术和社会生活之间的联系,积累活动经验,感悟思想 方法,形成和发展模型意识、创新意识,提高解决实际 问题的能力,形成和发展核心素养。”
教材还以算式7÷3=2…1,引导学生更数学化 地理解假设法的核心思路,加深对思考过程的 理解。在此基础上,又进一步提出“如果有8 本书会怎样?10本书呢?”,让学生利用前 面的方法进行类推。最后,借助对算式的对北 分析,引导学生对这一类“抽屉问题”形成一 般性的理解。
教学建议
1.允许学生多样化地 解决问题。 2.要引导学生逐步从 直观走向抽象。 3.要引导学生建立模 型。 4.要关注学生对模型 的运用。
5
03 要有意识地培养学生的“模型思想”
“抽屉问题”的变式很多,应用更具灵活性。当我们面对一个具 体问题时,能否将这个具体问题和“抽屉问题”联系起来,能否找到 该问题中的具体情境和“抽屉问题”的一般化模型之间的内在关系, 能否找出该问题中什么是“待分的东西”,什么是“抽屉”,是影响 能否解决该间题的关键。教学时,要引导学生先判断某个问题是否属 于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏 在其背后的“抽屉问题”的一般化模型。这个过程,实际上是学生经 历将具体问题“数学化”的过程,是从复杂的现实素材中找出最本质 的数学模型的过程。这样的过程,可有效地发展学生的数学思维能力, 尤其是可增强学生对“模型思想”的体验,增强运用能力,需要引起 教师的重视。
六年级数学下册《数学广角—鸽巢问题》单元测试卷及答案解析

六年级数学下册《数学广角—鸽巢问题》单元测试卷及答案解析学校:___________姓名:___________班级:_____________一、选择题1.下面说法错误的是()。
①若a比b多20%,则6a=5b;①100以内(含100)的所有偶数的和比奇数的和多1;①有一个角是60°的等腰三角形一定是正三角形;①10只鸟要飞回4个窝里,至少有4只鸟飞进同一个窝。
A.①①①B.①①①C.①①①D.①①①2.王军抛一枚硬币5次,都是反面朝上,那么王军第6次抛硬币()。
A.反面朝上B.正面朝上C.可能正面朝上,也可能反面朝上3.13个人中()有两个人生日在相同的月份。
A.一定B.可能C.不可能4.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子。
A.4B.2C.35.5只小鸟飞进两个笼子,至少有()只小鸟飞进同一个笼子。
A.1B.2C.3D.46.篮球队有13个同学,其中至少有()个同学生日在同一个月。
A.3B.2C.127.10个小朋友分32块糖,有一个小朋友分到的糖至少不低于()块。
A.4B.5C.6二、判断题8.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。
( )9.一个盒子里放有白球和黑球各6个,最少要摸出4个球才能保证有2个球是不同颜色的。
( ) 10.7只小鸟飞进3个笼子,至少有2只小鸟要飞进同一个笼子里。
( )11.操场上,21人站成5队,总有一队中至少有5人。
( )12.龙一鸣玩掷骰子游戏,要保证掷出的骰子的点数至少有两次相同,他最少应掷7次。
( )三、填空题13.箱子里有同样大小的红球和白球各20个,至少摸出( )个球,就能保证有2个颜色相同的球。
14.口袋里装有黑、白、红、黄四种颜色的袜子各很多只,从中最少拿出( )只袜子就能保证有两只袜子是同种颜色的。
15.有红色、蓝色、白色、灰色、紫色的手套各10只,一次至少拿出( )只才能保证有4种不同颜色的手套。
第五单元《数学广角—鸽巢问题》教材解析 人教版数学六年级下册

《数学广角—鸽巢问题》教材解析一、教材介绍专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。
和以往的旧教材相比,这部分内容是新增的内容。
本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。
在数学问题中,有一类与“存在性”有关的问题。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或人)。
这类问题依据的理论,我们称之为“抽屉原理”。
“抽屉原理”最先是由19世界的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称为“鸽巢问题”。
“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。
但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。
因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
“抽屉原理”来源于一个基本的数学事实。
将三个苹果放到两只抽屉里,要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么在一只抽屉里放三个苹果,而另一只抽屉里不放。
这两种情况可用一句话概括:一定有一只抽屉里放入两个或两个以上的苹果。
虽然我们无法断定哪只抽屉里放入至少两个苹果,但这并不影响结论。
如果我们把一切可以与苹果互换的事物称为元素,而把一切可以与抽屉互换的事物称为集合,那么上面的结论就可以表述为:假如把多于个元素按任一确定的方式分成个集合,那么有一个集合中至少含有2个元素。
还可以表述为:把多于(是正整数)个元素按任一确定的方式分成个集合,那么一定有一个集合中至少含有(+1)个元素。
“抽屉原理”是数学的重要原理之一,在数论、集合论和组合论中有很多应用。
它也被广泛地应用于现实生活中,如招生录取、就业安排、资源分配、职称评定等方面,我们经常会看到隐含在其中的“抽屉原理”。
由此可见,所谓“抽屉原理”,实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备课时间
单元目标
1、知识与技能:(1)引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣的作用,培养刻苦钻研、探究新知的良好品质。
单元
知识结构
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
单元知识重难点
重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
本单元内容各课时计划
鸽巢问题…………………………………………………1课时
“鸽巢问题”的具体应用…………………………………1课时
练习课……………………………………………………1课时