参考有机场效应晶体管和研究

参考有机场效应晶体管和研究
参考有机场效应晶体管和研究

有机场效应晶体管的研究

摘要:有机场效应晶体管(Organic Field Effect Transistors,OFETs)是以有机半导体材料作为有源层的晶体管器件。和传统的无机半导体器件相比,由于其可应用于生产大面积柔性设备而被人们广泛的研究,在有机发光、有机光探测器、有机太阳能电池、压力传感器、有机存储设备、柔性平板显示、电子纸等众多领域具有潜在而广泛的应用前景。文中对OFET结构和工作原理做了简要介绍,之后重点讨论了最近几年来OFET中有机材料和绝缘体材料的发展状况,接着总结了OFET制备技术,最后对OFET发展面临问题及应用前景做了归纳和展望。关键词:有机半导体材料;有机场效应晶体管;迁移率;绝缘体材料;柔性面板显示

0引言

场效应晶体管( Field Effect Transistor FET)是利用电场来控制固体材料导电

性能的有源器件。由于其所具有体积小、重量轻、功耗低、热稳定性好、无二次

击穿现象以及安全工作区域宽等优点,现已成为微电子行业中的重要元件之一。

目前无机场效应晶体管已经接近小型化的自然极限,而且价格较高,在制备

大表面积器件时还存在诸多问题。因此,人们自然地想到利用有机材料作为FET

的活性材料。自1986年报道第一个有机场效应晶体管( OFET )以来,OFET研究

得到快速发展,并取得重大突破。由于OFET具有以下突出特点而受到研究人员

的高度重视:材料来源广,工作电压低,可与柔性衬底兼容,适合低温加工,适

合大批量生产和低成本,可溶液加工成膜等。从使用共扼低聚物成功地制造出第

一个有机场效应晶体管,到全有机全溶液加工的光电晶体管的诞生,这些突破性

进展对有机半导体材料的发展无论从理论上还是工业生产上都起到了巨大的推

动作用。

1器件结构、工作原理及性能评定

1. 1有机场效应晶体管基本结构

传统的有机场效应晶体管的主要包括底栅和顶栅两种结构,其中底栅和顶栅

结构又分别包括顶接触和底接触两种结构,如图1所示。

图1 典型的OFET结构

OFET 一般采用栅极置底的底栅结构,即图1( a) 、( b) 所示的两种结构,它们分别是底栅-顶接触结构和底栅-底接触结构。二者最大的区别就是有机层是在镀电极之前(a顶接触)还是之后(b底接触)。顶接触结构的源、漏电极远离衬底,有机半导体层和绝缘层直接相连,在制作的过程中可以采取对绝缘层的修饰改变半导体的成膜结构和形貌,从而提高器件的载流子迁移率。同时该结构中半导体层受栅极电场影响的面积大于源、漏电极在底部的器件结构,因此具有较高的载流子迁移率。底接触型OFET的主要特点是有机半导体层蒸镀于源、漏电极之上,且源、漏电极在底部的器件结构可以通过光刻方法一次性制备栅极和源、漏电极,在工艺制备上可以实现简化。而且对于有机传感器来说,需要半导体层无覆盖地暴露在测试环境中,此时利用底结构就有较大的优势。而底接触由于半导体层与金属电极之间有较大的接触电阻,导致载流子注入效率降低从而影响到其性能。目前这方面缺陷也有改进,如使用镀上聚乙撑二氧噻吩和聚苯乙烯磺酸款( PEDOT:PSS)材料的金电极可以减少与有机半导体并五苯材料之间的接触电阻。二者之间载流子注入的阻力由eV直接降到0. 14 eV,导致场迁移率从0. 031 cm2 / (V·s)增加到0. 218 cm2 / ( V·s) 。

图1 (c) , (d)为顶栅结构,即首先在衬底上制作有机半导体层,然后制作源、漏电极,随后再制作绝缘层,最后在绝缘层上面制作栅极。这两种栅极位于最顶部的顶栅结构在文献报道中并不是很多。

图2是垂直沟道OFET结构,是以缩短沟道长度为目的的一类新型场效应晶

体管。它以半导体层为沟道长度,依次蒸镀漏-源-珊电极,通过改变栅电压来控制源、漏电极的电流变化。

图2 垂直沟道OFET结构

这种结构的主要特点是:沟道长度由微米量级降低至纳米量级,极大的提高了器件的工作电流,降低了器件的开启电压。这类晶体管的不足之处在于漏-源-栅极在同一竖直面内,彼此间寄生电容的存在使得零点电流发生漂移,一般通过放电处理后可以避免这种现象。

1. 2工作原理

以P型有机场效应0体管(见图3)为例来说明OFET的工作原理。

图3 p型OFET工作原理图

有机场效应晶体管在结构上类似一个电容器,源、漏电极和有机半导体薄膜的导电沟道相当于一个极板,栅极相当于另一个极板。当在栅、源之间加上负电压从V GS后,就会在绝缘层附近的半导体层中感应出带正电的空穴,栅极处会积祟带负电的电子。此时在源、漏电极之间再加上一个负电压V DS,就会在源漏电极之间产生电流I DS通过调节V GS和V ns可以调节绝缘层中的电场强度,而随着电场强度的不同,感应电荷的密度也不同。因而,源、漏极之间的导电通道的宽

窄也就不同,进而源、漏极之间的电流也就会改变。由此,通过调节绝缘层中的电场强度就可以达到调节源漏极之间电流的目的。保持V DS不变,当V GS较小时

I DS很小,称为“关”态;当V GS较大时,I DS达到一个饱和值,称为“开”态。

1. 3主要性能指标

对有机半导体层的要求主要有以下几个方面:第一,具有稳定的电化学特性和良好的π共扼体系,只有这样才有利于载流子的传输,获得较高迁移率;第二,本征电导率必须较低,这是为了尽可能降低器件的漏电流,从而提高器件的开关比。此外,OFET半导体材料还应满足下列要求:单分子的最低未占分子轨道(LUMO )或最高已占分子轨道(HOMO)能级有利于电子或空穴注入;固态晶体结构应提供足够分子轨道重叠,保证电荷在相邻分子间迁移时无过高能垒。因此,评价OFET的性能指标主要有迁移率、开—关电流比、阈值电压3个参数。场迁移率是单位电场下电荷载流子的平均漂移速度,它反映了在不同电场下空穴或电子在半导体中的迁移能力;开—关电流比定义为在“开”状态和“关”状态时一的漏电流之比,它反映了在一定栅极电压下器件开关性能的优劣。为了实现商业应用,OFET的迁移率一般要求达到0. O1 cm2 / ( V·s),开—关比大于10。对于阈值电压,要求尽量低。OFET发展至今,电压由最初的几十甚至上百伏下降到5 V甚至更低。开关电流比由102~103提高到109,器件载流子迁移率也由最初的10-5 cm2 / (V·s)提高到了cm2/(V ?s)。

器件性能通常用输出特性曲线和转移特性曲线来表征。

图4是以聚合物PDTT为半导体材料的顶结构OFET输出特性曲线(a)和转移特性曲线(b)图。从图4 ( a)可以看出漏电流I D在V D绝对值小于20 V范围内随V D绝对值的增大而增大。图4 (b)中,I D随着V G负电压绝对值的增大而增大。最终计算出该器件的迁移率为2. 2x10 3 cm2 / ( V·s)。

图4顶结构OFET输出特性曲线及转移特性曲线图

2有机半导体材料

目前研究较多的是单极性有机场效应晶体管,根据有机半导体层材料的不同可将其分为p型材料和n型材料两大类。

p-沟道有机半导体材料

p型半导体材料又称空穴型半导体材料,即空穴浓度远大于自由电子浓度的杂质半导体材料,p型有机材料又分为p型高聚物、p型低聚物、p型小分子3类。常见的p型有机半导体材料结构见图5。

图 5 典型p 型有机半导体材料化学结构

p沟道高聚物

高分子聚合物(如烷基取代的聚噻吩等)优势在于可使用涂膜甩膜、LB膜等方法制备。这些制备方法优点是工艺简单、成木低廉,缺点是有机材料难于提纯且有序度较低,从而导致了高分子材料较低的迁移率。聚噻吩( PTh)经过真空干燥后作为活性材料空穴迁移率为0. 25 cm2/ ( V·S)。基于噻吩的聚合物,poly (3-hexylthiophene) (P3HT)被广泛的研究。烷基可以通过头-尾(H-T)相连和头-头(H-H)相连两种方式被引入聚噻吩链。引入烷基的聚噻吩链与基底接触展不了高度有序的自适应薄膜结构。经H-T方式引入烷基的P3HT迁移率接近0. 2 cm2 / ( V ?s),开关电流比接近106。使用LB成膜技术的P3HT迁移率为/ ( V?s)。Takashi Kushida等人对(P3HT)材料做了进一步的研究,他们通过旋涂的方法制成的OFET迁移率仅有1. 3x10-4cm2 / ( V·s),通过改变成膜方法,采用微接触打印技术之后,得到1. 6x10-2 cm2 /(V?s)的迁移率,比旋涂成膜方法提高了两个数量级。性能的提高归因于微接触打印方法生成的P3HT薄膜表面高度有序,有利于载流子的横向传输。

p-沟道低聚物

常见的低聚物有噻嗯齐聚物和噻吩齐聚物等,与高分子聚合物相比,低聚物用于OFET有许多优点,如可通过调整分子的结构和长度来控制载流子的传输等。相关报道表明,星形低聚噻吩迁移率为2x10-4 cm2 / ( V?s),开关电流比达到102。一系列星形低聚噻吩衍生物也可作为OFET材料。如通过氯仿溶液旋涂得到薄膜,场迁移率达到(V?s),开关电流比103。以三基化胺为中心以π共扼噻吩为分支的混合材料也被合成出来,其空穴迁移率为0. 011 cm2 / ( V?s)。

p-沟道小分子

有机小分子拥有聚合物无法比拟的优点:易于提纯,减少杂质对晶体完整性的破坏,达到器件所要求的纯度;一定的平面结构大大降低了分子势垒,有利于载流子高速迁移;易形成自组装多晶膜,降低晶格缺陷,提高有效重叠;较容易得到单晶,极大地提高了场效应迁移率。金属酞菁小分子因具有以上优点而被广泛研究,近几年取得了很大进展。2005年Yasuda等用Ca做电极制备的CuPc(酞菁铜)FET显示出电子和空穴两种载流子传输性质。2007年Opitz等人又提出用酞菁铜和富勒烯混合膜制备OFET的思想,并讨论了两种化合物不同的混合比率所对应的各种迁移率和阈值电压。利用5,50-bis-( 7-dodecyl-9H-fluoren-2-yl ) -2,20-hithiophene(DDFTTF)作为活性材料制成的OTFT器件空穴迁移率为0. 11 cm2 / ( V ?s),开关电流比为3. 1x106cm2 / ( V ?s),具有很高的灵敏度,可用于传感器材料研究。晶态并苯化合物的禁带宽度随着芳环数目的增加而降低,有很强的电荷注入能力,表现出很高的载流子迁移率。载流子的传输效率随着分子的有序调整或者晶体取向的改善而提高。并苯小分子表现出很好的性能也一直是研究的热点,尤其是并五苯材料。2008年中科院化学所采用20 nm厚的聚乙烯基咔唑( PVK)薄膜作为缓冲层,修饰并五苯与SiO2:的界面,制备了并五苯OFETs。结果表明,PVK缓冲层的加入明显提高了器件迁移率和开关比(迁移率约为0. 5 cm2 / ( V?s),开关比约为107;同时显著降低了器件的夹断电压(器件的夹断电压的绝对值都小于20v)。不过有机小分子溶液粘度太低,难于用溶液法加工成膜,且多数有机小分子半导体对环境较敏感。Raphael等人研究了dithiophene}etrathiafulvalene( DT-TTF)单晶材料的性能,分别制作了以DT-TTF 为有机半导体材料的顶接触和底接触OFET两种器件结构。对比发现顶接触结构

的性能优于底接触器件结构,研究结果符合晶体形态学。

2. 2 n-沟道有机半导体材料

n沟道有机半导体材料也可称为电子型半导体。n型半导体即自由电子浓度远大于空穴浓度的杂质半导体。第一个n型OFET在1990年被报道。它采用双酞菁铬为场效应材料,但器件性能一般,载流子迁移率为2x10-4cm2 / ( V·s)。n 型有机半导体材料对氧和湿度较敏感,尤其是有机阴离子(特别是碳阴离子)很容易和氧发生反应,从而造成场效应迁移率低和晶体管工作性能不稳定。正因如此,n型有机场效应材料在数目上大大少于p型有机场效应材料。因此才找高性能,高稳定度的n型有机半导体材料已经成为了一项具有挑战性的工作。n型有机半导体材料也分为n型高聚物、n型低聚物、n型小分子3类。

2. n沟道高聚物

n型高聚物所表现的性能参数并不是很理想,因此对其研究的相关报道很少。梯形聚合物BBL,经路易斯酸AlCl3或GaCl3掺杂后迁移率达到0. 06cm2/(v·s)。PCBM 和PCBM 与P3HT 的混合物( 1∶2)作为太阳能电池材料而被广泛研究,在室温下的电子迁移率分别为10-3cm2/ (V·s)和10-4cm2/(v·s) 。

2. 2. 2 n沟道低聚物

第一个n型低聚物OFET是由全氟烷基低聚噻吩衍生物DFH-6T制备的,在真空条件下其载流子迁移率达0. 24 cm2 / ( V·s)。同时,该小组设计并合成了全氟芳基低聚噻吩F一衍生物,在溶液加工条件下制备的OFET室温时载流子迁移率达0. 08 cm2 / ( V ?s) 。这些低聚物表现出独特的填充特性,通过溶液处理的低聚物为高度有序的薄膜表现出单晶形态特性。2005年,Yoon等人合成了含有碳基的n-沟道低聚噻吩。例如DFHCO-4TCO,迁移率大致为0. O1 cm2 / ( V·s),而通过真空蒸镀成膜DFHCO-4T,电子迁移率达0. 6 cm2 / ( V·s)。溶液旋涂发成膜的DFPCO-4T,也达到0. 24 cm2 / ( V ?s)的电子迁移率。

2. 2. 3 n-沟道小分子

n沟道小分子的研究主要集中在并五苯,萘,二萘嵌苯,金属酞菁,萘酞亚胺,富勒烯以及其衍生物上。最初Katz等人对萘酞亚胺进行了研究,但迁移率较低。利用具有可溶特性的萘二酞亚胺(NDI)和花二亚酞胺(PDI)的衍生物制成的场效应晶体管电子迁移率分别可达10-2cm2/(V ?s)和5x10-4 cm2/(V?s)。并且基于

PDI衍生物的场效应晶体管显示出双极性特性。而Chesterfield等人报道二烃基取代的二萘嵌苯衍生物PDI8在真空中电子迁移率达cm2/(V ?s),开关电流比大于105。同样PDI13通过140 0C锻烧之后迁移率达2 .1cm2/(V·s)。2,4,6-tris( 4-cyano-1,2,5-thiadiazol-3-yl) -1,3,5-triazine ( TCTDT)材料由于具有较低的LUMO轨道,有利于电子的注入和传导,并且TCTDT原子半径较小,更有利于电子祸合作用力等优点而被广泛研究和报道。利用TCTDT材料制成的顶接触OFET器件电子迁移率为0. 04 cm2 /(V?s),开关电流比为102,阈值电压为-18V,并且器件在空气中具有很高的稳定型和重复性。carbonyl-bridged conjugated compound( C-BTz)材料具有较低的LUMO能级,其分子结构有利于载流子的传输。具有较高的空气稳定性。以C-BTz作为活性材料制成的OFET器件载流子迁移率为0. 06cm2 / (V?s),开关电流比106。n型球状小分子C60是一种性能很好的材料,具有很好的各相同性固体,不需要像其它有机半导体一样特别控制其分子取向。通过溶液加工处理的方法以C60及C70衍生物为半导体材料制成的场效应管电子迁移率分别为cm2/(V·s)和0. 1 cm2/(V·s)。C60-ferrocene共扼分子也被作为OFET活性材料研究,使用C60-ferrocene共扼分子制成的OFET器件电子迁移率0. 04 cm2/ (V?s)阈值电压为-22 V。进一步研究表明,当使用C60-ferroce,共扼分子制成n型OFET器件载流子迁移率高于P型OFET器件,这是因为C60作为电子受体,而ferrocene是电子受体,二者之间的传送带使得载流子传送效率更高。

图6列出了几种常见的n型有机半导体结构图。

图6 典型n型有机半导体材料分子结构

3绝缘层材料

早期有机场效应晶体管通常采用无机材料作为介电层材料。例如:Si,SiO2,TiO2,Al2O3等无机材料具有较高的介电常数、好的热力学稳定性、不易被击穿、耐高温等优点。但是由于无机材料不能适应柔性加工,不能采用溶液成膜的印刷生产技术,且其加工尺寸已经接近极限,以及成膜太薄会产生较大的漏电流等缺点。因此,为了实现未来低成本、大面积、可柔性加工的工业生产目标,使用高性能有机绝缘体材料来代替无机材料已成为未来发展的必然趋势。对OFET有机绝缘层材料的选取主要有以下几点:(1)由于绝缘体是夹在有机半导体层和栅极之间的三明治结构,所以首先要保证与二者都能很好的相容。(2)要防止静电荷或者动态电荷注入绝缘层界。(3)具有低的表面陷阱密度,低粗糙度,低掺杂浓度,以及滞后现象尽量小。(4)能适应大面积、常温、柔性、低成本的溶液加工技术。另外,加工制作时应尽量将栅极全部覆盖,这样可以有效防止漏电流。

聚苯乙烯PS和聚甲基丙烯酸甲酯PMMA已被用来作为绝缘层材料。但是

它们的电容特性并不理想。聚乙烯醇(PV A)和聚乙烯苯酚(PVP)是两种应用广泛的聚合物绝缘体材料。2008年Yang等人利用P3 HT作为有机半导体层,使用PVP 和poly( melamine-co-formaldehyde) ( PMF)混合物在经过200℃热处理后作为绝

缘层材料制成的P3HT-0FET测得载流子迁移率为(V·s),阈值电压2 V,开-关

电流比x 104。同时他们又研究了在PVP与PMF混合的绝缘层中以不同比例加

入PAG (Photo-acid generator)利用120℃光处理过程制成的OFET,结果发现载流子迁移率可达cm2/ (V?s)阈值电压降至V,开关电流比也提高至3. 0×104。高

介电常数的聚合物cyanoethylpullulan (K = 12)也被用来作为绝缘层材料。苯并环丁烯( BCB)作为绝缘体材料表现出了很低的漏电流特性,但是由于它的高温需求,使它尚不能被用于生产。Parylene C作为绝缘材料的顶栅和底栅设备迁移率分别为cm2 / ( V·s)和cm2 / ( V?s),顶栅结构的迁移率较小是面粗糙度所致。使用

聚氧化乙烯(PEO)-高氯酸锂做为绝缘材料的顶栅结构OFET具有很高的电容特性。近几年,杂化材料作为绝缘层材料也成为研究的热点。2008年Kim等人研究了以并五苯为有机材料,以SnO2 /PV A混合的杂化材料作为绝缘层制成的有机薄膜晶体管。证明了有机-无机杂化材料可以对晶体管起到很好的防护作用,增

强设备的长期稳定性。同年,我国吉林大学也在绝缘层研究上有突破。该研究小

组利用酞菁铜作为有机半导体材料,研究了以P( MMA-co-GMA)共聚材料作为绝缘层材料制成的晶体管迁移率、开-关电流比、阈值电压分别为(1. 22×10-2、7×103、一8V)。性能明显优于仅使用PMMA作为绝缘层材料的晶体管( ×10-3、2 ×103、-15 V)。这些性能的提高是因前者增强了酞菁铜表面的结晶度所致。常见的有机绝缘体材料如图7所示。

图7 典型有机绝缘体材料分子结构

4 OFET的制备技术

有机半导体材料的选取对于有机场效应晶体管的性能影响固然至关重要,但是器件特性以及性能的好坏在很大程度上也取决于有机薄膜的结构与表面形态。高度有序的有机共扼分子的π键在源漏电极方向上得以最大的重叠,以而提高载流子传输效率,从而使器件具有较好的性能。有机薄膜的制备方法通常有真空技术、溶液处理成膜技术、单晶技术等几种。通常按照原材料的化学结构和性能来选取合适的方法。

真空镀膜

真空镀膜方法是目前使用最为普遍的方法之一。这种技术的优点是通过控制蒸镀速率来控制膜的纯度和厚度,并实现膜的高度有序。真空技术通常包括物理

气相沉积(PVD )、化学气相沉积( CVD)、脉冲激光沉积(PLD)、离子溅射四种方法。其中最重要且使用最多的方法是PVD技术。它是液体或固体物质受热蒸发或升华转化为气体后在沉积在基底表面形成薄膜的方法。许多有机小分子如并五苯很难找到合适的溶剂将其溶解,很难用溶液加工成膜,真空技术就可以用来成膜。利用并五苯作为有机材料制成的沟道长度为1 μm的顶接触OFET在300 k 和5. 8 k的场迁移率分别为1. 11cm2 / ( V?s)和0. 34 cm2 / ( V?s)。开关电流比分别为107和105,这说明场迁移率也受温度的影响。但是真空蒸镀技术仪器设备复杂,成本较高,不适合大面积的工业化生产。

4. 2溶液处理成膜

溶液处理成膜技术被认为是制备OFET最具有发展潜力的技术。它适用于可溶性的有机半导体材料,结合大面积印刷技术可以大大地降低成本。常用的溶液处理成膜技术主要包括电化学沉积技术、甩膜技术、铸膜技术、预聚物转化技术、L-B膜技术、分子自组装技术、印刷技术等。前4种技术成膜的有序性较差,我们这里主要介绍目前在OFET制备中最具有发展前景的,成膜有序性较好的后3种技术。

4. 2. 1 Langmuir-Blodgett (L-B)膜技术

具有表面活性的两亲分子溶于易挥发的溶剂中形成的溶液可以通过在水面上铺展,而在空气/水界面形成不溶于水的铺展膜,通过控制表面压力将这层膜转移到固体基底上,从而制备单层L-B膜,进行多次转移,就可以制备多层膜。它是一种可以在分子水平上精确控制薄膜厚度的成膜技术。

2009年初我国山东大学和济南大学共同发表了一篇以酞菁染料铺的络合物为原料,使用L-B成膜技术设计制成的有机场效应晶体管的文章。参见图8,以亲水的冠醚(a)置于底部,疏水的辛基(b)置于顶部,金属铺位于中间,制成的三明治结构图8 (c) 。

图8 亲水的酞蓄染料冠醚衍生物(a),疏水的酞蓄染料辛基衍生物(b)及(a) (b)

组成的三明治结构(c)

利用L-B膜技术分别制成的以(HMDS)处理过的SiO2/Si为基底和以(OTS)处理过SiO2 /Si为基底的顶结构有机场效应晶体管。图9是它们的原子力显微技术图像(AFM) 。

图9 以SiO2/Si为基底的AFM图像(a),以HMDS处理过的SiO2/Si为基底的AFM图像(b),以OTS处理过的SiO2/Si为基底的AFM图像(c) 他们对比讨论了两种不同基底OFET性能的差别,可以看出图9(c)以

octadecyltrichlorlsilane ( OTS)处理过SiO2/Si基底更有利于薄膜形态的有序性,因此显示了更好的性能。该结构空穴迁移率为0. 33 cm2 / ( V?s ),开关电流比为×105。但由于L-B膜技术在材料设计上要求材料具有两亲性,使得对材料的选取和适用上受到了一定的限制。

4. 2. 2分子自组装技术

自组装分子(SAMs)是分子与分子在一定条件下,通过分子与分子间或分子中某一片段与另一片段之间的分子识别,依靠分子间的相互作用力,自发连接成结构稳定的、具有特定排列顺序的分子聚集体的过程。分子间相互作用力为分子的自组装提供必需的能量。自组装成膜技术较L-B成膜技术具有操作更简单、膜的热力学性质好、对基质没有特殊限制,且成膜材料广泛、膜稳定等优点,因而它是一种更具广阔应用前景的成膜技术。有机薄膜分子的有序程度受接触面相互作用的影响。使用分子自组装技术可以对界面进行修饰,从而提高分子排列的有序性进而提高器件性能。2008年日本的Hayaka-wa小组使用OTS自组装分子对SiO2界面进行修饰,与没经修饰的OFET进行详细对比,结果发现经OTS-SAM 修饰的界面薄膜生长高度有序。其原子力显微镜图像对比如图10所示。晶体管性能也有很大的提高。然而分子自组装技术还会受到多种因素的影响,如成膜厚度、基片表面性质、溶液性质等。而构筑多层膜时分子自组装技术也不如L-B 膜高度有序。

图10 AFM 图像(15×15μm2) [(a)-(c)] SiO2表面,[(d)-(f)] OTS表面4. 2. 3印刷成膜技术

寻找简单、低成本、可大面积生产的印刷成膜技术将是未来非常有挑战性且

有意义的工作。印刷技术主要有喷墨打印、微接触打印两种。碳纳米管能够适合室温的喷墨打印生产因而作为制备碳纳米管晶体管的材料而被研究。利用超纯的高密度的碳纳米管作为载流子传输层,离子凝胶作为绝缘层,PEDOT作为栅极材料,全部利用喷墨打印技术,在室温下以聚酰亚胺为衬底材料制成顶栅结构的薄膜晶体管。整个过程没有进行任何表面预处理工作,最后晶体管展示出很高的工作频率(大于5GHZ)开关电流比也超过100。这种能适应全室温全柔性的技术有希望应用于有机电子电路中。接触打印技术是将待成膜的有机半导体或绝缘体材料的溶液蘸在已设计的固定图案印章上,然后在衬底上生长出特定图案薄膜。由于要使用固定图案,对柔性基底的适应性就不好。并且打印多层结构时的精确性不好。

4. 3单晶技术

传统方法制备的OFET半导体层一般都是多晶薄膜,而多晶薄膜的晶界有许多缺陷,造成费米能级钉扎,产生电荷势垒,降低载流子迁移率,影响OF-ET 器件性能。而单晶技术因具有以下优点而成为近两年研究的热点:(1)高能量带电粒子,固有的等离子体沉积技术,决定了有机半导体表面光滑且高度有序;(2)整个过程可以在常温下进行;(3)不需要高真空要求,适合低成本技术生产;(4)沉积过程速度快;(5)有机半导体单晶与多晶薄膜相比,晶界和缺陷都很少。因此有机单晶晶体可以避免一些多晶甚至非晶有机半导体薄膜中的缺陷、晶界等因素的干扰而获得有机半导体材料的本征性质。其载流子迁移率通常比多晶薄膜要高。有机单晶酞菁铁、酞菁铜、红荧烯都显示了双极性特性。Podzorov等人利用红荧烯单晶制备的有机单晶晶体管的场效应载流子迁移率高达8cm2/(V·S)。使用溶液法很难制备高纯度、低缺陷的单晶薄膜。一般单晶薄膜可以通过电化学沉积、扩散沉积、气相沉积等方法来制备。其中又以气相法最为常用。离子液体具有可在室温下工作、化学稳定性不断提高、防水、无毒、不挥发等特性,利用它的离子迅速扩散性能,可以制备出高性能的有机单晶晶体管。已有报道有机单晶半导体被应用于低成本微电极电路中,比如矩阵显T传感等领域。日本电力中央研究所与大阪大学联手开发出了采用离子液体的高性能有机单晶晶体管,基本结构见图11。

图11 有机单晶离子晶体管基本结构

利用PDMS制成弹性体基底,使有机红荧烯单晶吸附在上面,在有机单晶体红荧烯与栅极间夹入了低粘滞度和高离子导电率离子液体

1-ethyl-3-methyl-imidazolium bis( trifluoromethanesulfonyl) imide作为栅极绝缘体。外加栅极电压,离子就会发生迁移,在栅极与离子液体之间的界面和离子液体与有机单晶体之间的界面上,由离子蓄积而形成双电荷层。此时,由于离子液体中的离子与有机单晶体电极的距离只有1nm,外加微弱电压就实现了高电场。该开发晶的工作电压(约0. 2 V),为现有有机FET的约1/500~1/100。电荷迁移率更是高达10cm2 / ( V?s),达到了采用双电荷层的有机FET中的最大值。超过了非晶硅的电荷迁移率( cm2/ (V·s)左右),可满足有机柔性显示器所需的性能。另外,在~1MHz的宽频率下具有高电解电容,并具备高速开关性能。Ono等人分析比较了也报道了加入五种不同阴离子液体制成的红荧烯单晶体管的性能。Nakanotani等人也报道了使用金-钙不对称电极介于BSB-Me单晶制成的具有双极性特性的晶体管,虽然只有0. 005 cm2 / ( V·s)的迁移率,但是由于BSB-Me 具有很高的发光效率因而BSB-Me单晶晶体管也展示了很好的发光性能,有望用来制备蓝光固体激光器。

5结论与展望

从第一个具有真正意义上的有机场效应晶体管产生以来,它已获得了巨大的发展,OFET以其柔性好、成木低、质量轻等优点展现出良好的应用前景,并已经在一些低端市场取得应用。目前有机场效应晶体管面临的主要问题和发展趋势有以下几方面:

(1)在材料方面,类型过于单一,n型有机半导体材料较少,开关速度不稳定,大多数有机材料载流子迁移率过低。限制了有机场效应晶体管的进一步发展。因此,探索高迁移率且具有良好工作性能的新材料是OFET所要解决的问题之一。

(2)在器件制备技术方面,OFET器件的各层几乎都要涉及成木昂贵的真空技术,因此研制出新的成膜技术和更为简单、成木更低的制作工艺是近年来发展

的一个方向。

(3)在制作工艺上,OFET的沟道长度很难进一步降低且器件存在开启电压大、工作电流低等缺点。

(4)从外界影响因素看,如材料的纯度、不同介电常数的绝缘层以及衬底温度等,如何排除干扰,提高器件的稳定性和寿命也应得到高度币视。

(5)从产业化角度看,要实现真正的产业化,有机电子器件在很多方面还需要不断的改进,例如,室温及大气环境下制备的器件性能还有待进一步提高,大气环境下器件稳定性和寿命也有待提高才能满足商业化的需求。

目前有机场效应晶体管材料和器件的发展面临着以上种种困难,尚不能与无机硅半导体材料相提并论。今后的研究仍然要以材料、器件工艺、器件稳定性和寿命为主要研究方向。另外,有机场效应晶体管目前仍然在延续使用无机MOSFET 的载流子传输理论和模型,尚没有统一的有机半导体载流子传输机理。因此,探索一种适用于OFET的载流子传输机理和模型也是当前有待解决的难题。

参考文献

[1]MUKHERJEE B,SHIN T,SIM K,et al.Periodic arrays of organiccrystals on polymer gate dielectric for low-voltage field-effect transistors and complementary inverter[J].J Mater Chem,2010,20:9047 -9051.

[2]KAJII H,LE Y,NITANI M,et al.N-channel organic field-effecttransistors containing carbonyl-bridged bithiazole derivative fabrica-ted using polyfluorene derivatives as solution-processed buffe layers[J].Org Electron,2010,11( 12) : 1886 -1890.

[3]CHUNG D S,YUN W M,NAM S,et al.All-organic solution-pro-cessed two-terminal transistors fabricated using the photoinduced p-channels[J].Appl Phys Lett,2009,94( 4) : 043303.

[4]HAMADANI B H,CORLEY D A,CISZEK J W,et al.Controllingcharge injection in organic field-effect transistors using self-assem-bled monolayers[J].Nano Lett,2006,6( 6) : 1303 -1306.

[5]IHM K,KIM B,KANG T H,et al.Molecular orientation dependenceof hole-injection barrier in pentacene thin film on the Au surface inorganic thin film transistor [J].Appl Phys Lett,2006,89( 3) : 33504.

[6]MAEDA T,KATO H,KAWAKAMI H.Organic field-effect tran-sistors with reduced contact resistance[J].Appl Phys Lett,2006,89( 12) : 123508.

[7]HONG K,YANG S Y,YANG C,et al.Reducing the contact resist-ance in organic thin-film transistors by introducing a PEDOT: PSShole-injection layer[J].Org Electron,2008,9( 5) : 864 -868.

[8]HILL I G,RAJAGOPAL A,KAHN A,et al.Molecular level align-ment at organic semiconductor-metal interfaces[J].Appl Phys Lett,1998,73( 5) : 662 -664.

[9]WEIS M,MANAKA T,LWAMOTO M.Effect of Traps on Carrier In-jection and Transport in Organic Field-effect Transistor[J].IEE J TElectr,2010,5( 4) : 391 -394.

[10]KITAMURA M,IMADA T,ARAKAWA Y.Organic light-emittingdiodes driven by pentacene-based thin-film transistors[J].ApplPhys Lett,2003,83( 16) : 3410 -3412.[11]SUNDAR V C,ZAUMSEIL J,PODZOROV V,et al.Elastomerictransistor stamps: Reversible probing of charge transport in organiccrystals[J].Science,2004,303( 5664) : 1644 -1646.

[12]MADDALENA F,SPIJKMAN M,BRONDIJK J J,et al.Devicecharacteristics of polymer dual-gate field-effect transistors[J].OrgElectron,2008,9( 5) : 839 -846.

[13]SALIM N T,AW K C,PENG H,et al.New 3-( ( 2': 2″,5″: 2″-ter-thiophene) -3 ″-yl) acrylic acid as active layer for organic field-effect transistor[J].Mater Chem Phys,2008,111( 1) : 1 -4.

[14]WANG G M,SWENSEN J,MOSES D,et al.Increased mobilityfrom regioregular poly ( 3-hexylthiophene ) field-effect transistors[J].J Appl Phys,2003,93( 10) : 6137 -6141.[15]CHANG J F,SUN B Q,BREIBY D W,et al.Enhanced mobility ofpoly( 3-hexylthiophene) transistors by spin-coating from high-boil-ing-point solvents[J].Chem Mater,2004,16( 23) : 4772 -4776.

[16]XU G F,BAO Z A,GROVES J T.Langmuir-Blodgett films of regio-regular poly ( 3-hexylthiophene ) as field-effect transistors[J].Langmuir,2000,16( 4) : 1834 -1841.[17]TAKASHI K,TAKASHI N,HIROYOSHI N.Air-mediated self-or-ganization of polymer semiconductors for high-performance solution-processable organic transistors[J].APPl Phys Lett,2011,98:063304 -063307.

[18]PONOMARENKO S A,KIRCHMEYER S,ELSCHNER A,et al.Star-shaped

oligothiophenes for solution-processible organic field-effect transistors[J].Adv Funct Mater,2003,13( 8) : 591 -596.

[19]PEI J,W ANG J L,CAO X Y,et al.Star-shaped polycyclic aromat-ics based on oligothiophene-functionalized truxene: Synthesis,prop-erties,and facile emissive wavelength tuning[J].J Am Chem Soc,2003,125( 33) : 9944 -9945.

[20]SUN Y M,XIAO K,LIU Y Q,et al.Oligothiophene-functionalizedtruxene: Star-shaped compounds for organic field-effect transistors[J].Adv Funct Mater,2005,15( 5) : 818 -822.

本科毕业论文(设计)要求

毕业论文(设计)是本科教学计划的重要组成部分,是实现本科培养目标的重要教学环节,是培养学生综合运用所学知识进行科学研究工作的初步训练,是使学生掌握科学研究基本方法,提高分析和解决问题能力的教育过程,同时也是对学生专业能力和综合素质的全面检验。

做好毕业论文(设计)工作对提高本科教学质量具有重要意义,全校各院、系务必高度重视,精心组织,加强指导。为搞好毕业论文(设计)工作特制定如下要求。

一、毕业论文(设计)的选题

1.选题要符合本专业的培养目标、专业方向。要在能综合本专业课程基础理论、基本知识的前提下,从本专业某些基础理论和学术问题或从科技、生产、教学和社会生活的实际问题中选定。鼓励学生选做教材、教法研究等方面的课题,鼓励学生选做结合学校科研项目方面的课题,鼓励和支持学生选做有创新特色的课题。

2.选题要考虑学生的专业基础和实际水平,题目大小适中,使学生在一定时间内经努力可完成或可独立地做出阶段性成果。

3.论文(设计)题目由指导教师拟定,经教研室集体审定报系主任批准,向学生公布。学生也可自定课题,经教研室主作审定后由系主任批准。

4.学生确定论文(设计)选题后,填写学士学位论文开题报告,说明选题的来源、研究的目的和意义、在国内外研究现状和发展要求认真趋势。

5.学生选题要做到一人一题。

二、毕业论文(设计)的指导

1.毕业论文(设计)的指导教师须有中级以上职称的教师担任。如确有需要,经院系行政批准学生到校外科研单位做毕业论文,可聘请该单位相当讲师以上科技人员进行指导,院系应派人联系,定期了解情况。

2.论文指导教师应履行以下职责:

⑴根据专业教学要求指导学生选题。

⑵向学生讲清课题意义、任务,提出明确要求,介绍主要参考文献,资料

场效应晶体管特性

场效应管(FET)是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。 工作原理场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的漏极电流,用以栅极与沟道间的pn结形成的反偏的栅极电压控制漏极电流ID”。更正确地说,漏极电流ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流漏极电流ID流动。从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,漏极电流ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。 在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。因漂移电场的强度几乎不变产生ID的饱和现象。其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。 分类场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管)两大类。 按沟道材料型和绝缘栅型各分N沟道和P沟道两种;按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。 场效应管与双极性晶体管的比较,场效应管具有如下特点。 1. 场效应管是电压控制器件,栅极基本不取电流,它通过VGS(栅源电压)来控制ID(漏 极电流);而晶体管是电流控制器件,基极必须取一定的电流。因此,在信号源额定电流极小的情况,应选用场效应管。 2. 场效应管是多子导电,而晶体管的两种载流子均参与导电。由于少子的浓度对温度、 辐射等外界条件很敏感,因此,它的温度稳定性较好;对于环境变化较大的场合,采用场效应管比较合适。 3. 场效应管的源极和漏极在结构上是对称的,可以互换使用,耗尽型MOS 管的栅——源电压可正可负。因此,使用场效应管比晶体管灵活。 4 . 场效应管除了和晶体管一样可作为放大器件及可控开关外,还可作压控可变线性电阻使用 特点与双极型晶体管相比,(1)场效应管的控制输入端电流极小,因此它的输入电阻很大。 (2)场效应管的抗辐射能力强; (3)由于不存在杂乱运动的电子扩散引起的散粒噪声,所以噪声低。

参考有机场效应晶体管和研究

有机场效应晶体管的研究 摘要:有机场效应晶体管(Organic Field Effect Transistors,OFETs)是以有机半导体材料作为有源层的晶体管器件。和传统的无机半导体器件相比,由于其可应用于生产大面积柔性设备而被人们广泛的研究,在有机发光、有机光探测器、有机太阳能电池、压力传感器、有机存储设备、柔性平板显示、电子纸等众多领域具有潜在而广泛的应用前景。文中对OFET结构和工作原理做了简要介绍,之后重点讨论了最近几年来OFET中有机材料和绝缘体材料的发展状况,接着总结了OFET制备技术,最后对OFET发展面临问题及应用前景做了归纳和展望。关键词:有机半导体材料;有机场效应晶体管;迁移率;绝缘体材料;柔性面板显示 0引言 场效应晶体管( Field Effect Transistor FET)是利用电场来控制固体材料导电 性能的有源器件。由于其所具有体积小、重量轻、功耗低、热稳定性好、无二次 击穿现象以及安全工作区域宽等优点,现已成为微电子行业中的重要元件之一。 目前无机场效应晶体管已经接近小型化的自然极限,而且价格较高,在制备 大表面积器件时还存在诸多问题。因此,人们自然地想到利用有机材料作为FET 的活性材料。自1986年报道第一个有机场效应晶体管( OFET )以来,OFET研究 得到快速发展,并取得重大突破。由于OFET具有以下突出特点而受到研究人员 的高度重视:材料来源广,工作电压低,可与柔性衬底兼容,适合低温加工,适 合大批量生产和低成本,可溶液加工成膜等。从使用共扼低聚物成功地制造出第 一个有机场效应晶体管,到全有机全溶液加工的光电晶体管的诞生,这些突破性 进展对有机半导体材料的发展无论从理论上还是工业生产上都起到了巨大的推 动作用。 1器件结构、工作原理及性能评定 1. 1有机场效应晶体管基本结构 传统的有机场效应晶体管的主要包括底栅和顶栅两种结构,其中底栅和顶栅 结构又分别包括顶接触和底接触两种结构,如图1所示。

场效应管工作原理 1

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场

薄膜晶体管

薄膜晶体管的定义: Thin Film Transistor (薄膜场效应晶体管),是指液晶显示器上的每一液晶象素点都是由集成在其后的薄膜晶体管来驱动。从而可以做到高速度高亮度高对比度显示屏幕信息。TFT属于有源矩阵液晶显示器。 补充:TFT(ThinFilmTransistor)是指薄膜晶体管,意即每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,从而可以做到高速度、高亮度、高对比度显示屏幕信息,是目前最好的LCD彩色显示设备之一,其效果接近CRT显示器,是现在笔记本电脑和台式机上的主流显示设备。TFT的每个像素点都是由集成在自身上的TFT来控制,是有源像素点。因此,不但速度可以极大提高,而且对比度和亮度也大大提高了,同时分辨率也达到了很高水平。 TFT ( Thin film Transistor,薄膜晶体管)屏幕,它也是目前中高端彩屏手机中普遍采用的屏幕,分65536 色及26 万色,1600万色三种,其显示效果非常出色。 平板显示器种类: 经过二十多年的研究、竞争、发展,平板显示器已进入角色,成为新世纪显示器的主流产品,目前竞争最激烈的平板显示器有四个品种: 1、场致发射平板显示器(FED); 2、等离子体平板显示器(PDP); 3、有机薄膜电致发光器(OEL); 4、薄膜晶体管液晶平板显示器(TFT-LCD)。 场发射平板显示器原理类似于CRT,CRT只有一支到三支电子枪,最多六支,而场发射显示器是采用电子枪阵列(电子发射微尖阵列,如金刚石膜尖锥),分辨率为VGA(640×480×3)的显示器需要92.16万个性能均匀一致的电子发射微尖,材料工艺都需要突破。目前美国和法国有小批量的小尺寸的显示屏生产,用于国防军工,离工业化、商业化还很远。 等离子体发光显示是通过微小的真空放电腔内的等离子放电激发腔内的发光材 料形成的,发光效应低和功耗大是它的缺点(仅1.2lm/W,而灯用发光效率达80lm/ W以上,6瓦/每平方英寸显示面积),但在102~152cm对角线的大屏幕显示领域有很强的竞争优势。业内专家分析认为,CRT、LCD和数字微镜(DMD)3种投影显示器可以与PDP竞争,从目前大屏幕电视机市场来看,CRT投影电视价格比PDP便宜,是PDP最有力的竞争对手,但亮度和清晰度不如PDP,LCD和DMD投影的象素和价格目前还缺乏竞争优势。尽管彩色PDP在像质、显示面积和容量等方面有了明显提高,但其发光效率、发光亮度、对比度还达不到直观式彩色电视机的要求,最重要的是其价格还不能被广大家用消费者所接受,这在一定程度上制约了彩色PDP 市场拓展。目前主要在公众媒体展示场合应用开始普遍起来。 半导体发光二极管(LED)的显示方案由于GaN蓝色发光二极管的研制成功,从而一举获得了超大屏幕视频显示器市场的绝对控制权,但是这种显示器只适合做户外大型显示,在中小屏幕的视频显示器也没有它的市场。 显示器产业的专家一直期望有机薄膜电致发光材料能提供真正的象纸一样薄的 显示器。有机薄膜电致发光真正的又轻又薄,低功耗广视角,高响应速度(亚微妙)

场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 (1)利用图解法求解Q点;(2)利用等效电路法求解u A 、R i和R o。 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P 3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off) GS D m DS =-= ??= I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u & 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A &。 图P3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

场效应管特性

根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1.概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. 2.场效应管的分类:

场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图: 3.场效应管的主要参数: Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流. Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压. Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压. gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数. BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS. PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量. IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管)

(完整版)对场效应管工作原理的理解

如何理解场效应管的原理,大多数书籍和文章都讲的晦涩难懂,给初学的人学习造成很大的难度,要深入学习就越感到困难,本人以自己的理解加以解释,希望对初学的人有帮助,即使认识可能不是很正确,但对学习肯定有很大的帮助。 场效应管的结构 场效应管是电压控制器件,功耗比较低。而三极管是电流控制器件,功耗比较高。但场效应管制作工艺比三极管复杂,不过可以做得很小,到纳米级大小。所以在大规模集成电路小信号处理方面得到广泛的应用。对大电流功率器件处理比较困难,不过目前已经有双场效应管结构增加电流负载能力,也有大功率场管出现,大有取代三极管的趋势。场效应管具有很多比三极管优越的性能。 结型场效应管的结构 结型场效应管又叫JFET,只有耗尽型。 这里以N沟道结型场效应管为例,说明结型场效应管的结构及基本工作原理。图为N沟道结型场效应管的结构示意图。在一块N型硅,材料(沟道)上引出两个电极,分别为源极(S)和漏极(D)。在它的两边各附一小片P型材料并引出一个电极,称为栅极(G)。这样在沟道和栅极间便形成了两个PN结。当栅极开路时,沟道相当于一个电阻,其阻值随型号而不同,一般为数百欧至数千欧。如果在漏极及源极之间加上电压U Ds,就有电流流过,I D将随U DS的增大而增大。如果给管子加上负偏差U GS时,PN结形成空间电荷区,其载流子很少,因而也叫耗尽区(如图a中阴影区所示)。其性能类似于绝缘体,反向偏压越大,耗尽区越宽,沟道电阻就越大,电流减小,甚至完全截止。这样就达到了利用反向偏压所产生的电场来控制N型硅片(沟道)中的电流大小的目的。 注:实际上沟道的掺杂浓度非常小,导电能力比较低,所以有几百到几千欧导通电阻。而且是PN结工作在反向偏置的状态。刚开机时,如果负偏置没有加上,此时I D是最大的。 特点:1,GS和GD有二极管特性,正向导通,反向电阻很大 2:DS也是导通特性,阻抗比较大 3:GS工作在反向偏置的状态。 4:DS极完全对称,可以反用,即D当做S,S当做D。 从以上介绍的情况看,可以把场效应管与一般半导体三极管加以对比,即栅极相当于基极,源极相当于发射极,漏极相当于集电极。如果把硅片做成P型,而栅极做成N型,则成为P沟道结型场效应管。结型场效应管的符号如图b所示。

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示:

图6-1 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N 沟道结 图6-2 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GS D m == 表6-1列出了3DJ6F 的典型参数值及测试条件。

表6-1 2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量, S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管工作原理

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP 型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在

场效应管工作原理

场效应管工作原理

场效应管工作原理 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D

场效应晶体管

场效应晶体管中英文介绍(field-effect transistor,缩写:FET) 场效应晶体管是一种通过电场效应控制电流的电子元件。它依靠电场去控制导电沟道形状,因此能控制半导体材料中某种类型载流子的沟道的导电性。场效应晶体管有时被称为单极性晶体管,以它的单载流子型作用对比双极性晶体管(bipolar junction transistors,缩写:BJT)。尽管由于半导体材料的限制,以及曾经双极性晶体管比场效应晶体管容易制造,场效应晶体管比双极性晶体管要晚造出,但场效应晶体管的概念却比双极性晶体管早。 历史 场效应晶体管于1925年由Julius Edgar Lilienfeld和于1934年由Oskar Heil分别发明,但是实用的器件一直到1952年才被制造出来(结型场效应管,Junction-FET,JFET)。1960年Dawan Kahng发明了金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-effect transistor, MOSFET),从而大部分代替了JFET,对电子行业的发展有着深远的意义。 基本信息 场效应管是多数电荷载体的设备。该装置由一个活跃的信道,通过该多数载流子,电子或空穴,从源到流向漏极。源极和漏极端子导体被连接到半导体通过欧姆接触。的通道的导电性的栅极和源极端子之间施加的电位是一个函数。 FET的三个端子是: 源极(S),通过其中的多数载流子输入通道。进入该通道,在S点的常规的电流被指定由IS。漏极(D),通过其中的多数载流子离开的通道。常规电流在D通道进入指定的ID。漏源电压VDS。 栅极(G),调制的通道的导电性的端子。通过施加电压至G,一个可以控制的ID。 场效应晶体管的类型 在耗尽模式的FET下,漏和源可能被掺杂成不同类型至沟道。或者在提高模式下的FET,它们可能被掺杂成相似类型。场效应晶体管根据绝缘沟道和栅的不同方法而区分。FET的类型有: DEPFET(Depleted FET)是一种在完全耗尽基底上制造,同时用为一个感应器、放大器和记忆极的FET。它可以用作图像(光子)感应器。 DGMOFET(Dual-gate MOSFET)是一种有两个栅极的MOSFET。 DNAFET是一种用作生物感应器的特殊FET,它通过用单链DNA分子制成的栅极去检测相配的DNA链。 FREDFET(Fast Recovery Epitaxial Diode FET)是一种用于提供非常快的重启(关闭)体二极管的特殊FET。 HEMT(高电子迁移率晶体管,High Electron Mobility Transistor),也被称为HFET(异质结场效应晶体管,heterostructure FET),是运用带隙工程在三重半导体例如AlGaAs中制造的。完全耗尽宽带隙造成了栅极和体之间的绝缘。 IGBT(Insulated-Gate Bipolar Transistor)是一种用于电力控制的器件。它和类双极主导电沟道的MOSFET的结构类似。它们一般用于漏源电压范围在200-3000伏的运行。功率MOSFET仍然被选择为漏源电压在1到200伏时的器件.

场效应管放大电路设计

* 课程设计报告题目:场效应管放大电路设计 学生姓名:学生学号: *** ******** 系专届别: 业: 别: 电气信息工程院 通信工程 2014届 指导教师:** 电气信息工程学院制 2013年3月

**师范学院电气信息工程学院2014届通信工程专业课程设计报告 场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 1.2 1.3场效应管电路模型、工作点、参数调整、行为特征观察方法研究场效应放大电路的放大特性及元件参数的计算 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免P N结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可 分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体M OS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入 阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模 集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。

伽马射线辐照对有机场效应晶体管性能的影响研究

γ射线辐照对有机场效应晶体管性能的影响研究 黄小发张济鹏 (兰州大学核科学与技术学院兰州 730107) 摘要:通过制备有机场效应晶体管并对晶体管在γ射线下进行辐照,研究辐照对不同栅压下场效应管输出特性曲线的影响,以及辐照对场效应管转移特性曲线的影响。实验证明辐照使场效应管的阈值电压负向漂移,辐照时非零栅源电压引起的场效应管输出特性变化明显大于零栅源电压情况。 关键词:有机场效应管;制备;辐照;阈值电压漂移 1.实验 1.1有机场效应晶体管制备 以高掺杂五族元素的硅作为衬底,即作为n型杂质,硅衬底表面的SiO2厚度为1025nm。本实验在上述衬底上通过真空蒸发方法镀一层酞菁铜(CuPc)薄膜,再在酞菁铜膜上镀一层金(Au)作为源级和漏极,SiO2层作为栅极,制成有机场效应晶体管,下面详述实验过程: 1.1.1Si_n+衬底的清洁处理 将Si_n+衬底先后放入丙酮和乙醇溶液中清洗,然后用去离子水洗净,再经超声处理10~20分钟,之后用氮气(N2)吹干,放入烤箱中烘干。配制浓硫酸与双氧水的浓度比为3:1的腐蚀液(H2SO4:H2O2=3:1),将烘干后的衬底放入腐蚀液中40分钟,达到去油污的目的。对衬底进行OTS处理,OTS是有机低介电常数材料十八烷基三氧硅烷,可以修饰SiO2表面,提高器件的场效应迁移率,同时降低器件的漏电流。 1.1.2真空蒸镀酞菁铜 作为第一个被报道的有机半导体酞菁类化合物是一种性能优越的有机小分子半导体材料,因为这类化合物具有二维共轭结构,分子间的π?π相互作用很大,这对于提高场效应迁移率非常有利,另外它还具有良好的热稳定性和易真空蒸镀成膜的特性,所以酞菁类化合物是制备有机薄膜晶体管良好的半导体材料,而其中又以酞菁铜最为常用,关于酞菁铜作为有源层的有机薄膜晶体管已有大量的报道。本实验选用酞菁铜蒸镀得到有机场效应晶体管。

场效应管工作原理

场效应管工作原理 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor (金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P 沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N 型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P 型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。 2、UP 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、gM 对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。

5、BUDS 最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。 7、IDSM UGS=0时的漏极电流。UP —夹断电压,使ID=0对应的UGS的值。P沟道场效应管的工作原理与N沟道类似。我们不再讨论。下面我们看一下各类绝缘栅场效应管(MOS场效应管)在电路中的符号。§3 场效应管的主要参数场效应管主要参数包括直流参数、交流参数、极限参数三部分。 一、直流参数 1、饱合漏极电流IDSSIDSS是耗尽型和结型场效应管的一个重要参数。定义:当栅、源极之间的电压UGS=0,而漏、源极之间的电压UDS大于夹断电压UP时对应的漏极电流。 2、夹断电压UPUP也是耗尽型和结型场效应管的重要参数。定义:当UDS一定时,使ID减小到某一个微小电流(如1μA, 50μA)时所需UGS的值。 3、开启电压UTUT是增强型场效应管的重要参数。定义:当UDS一定时,漏极电流ID达到某一数值(如10μA)时所需加的UGS 值。 4、直流输入电阻RGSRGS是栅、源之间所加电压与产生的栅极电流之比,由于栅极几乎不索取电流,因此输入电阻很高,结型为106Ω以上,MOS管可达1010Ω以上。 二、交流参数

绝缘栅场效应晶体管工作原理及特性

绝缘栅场效应晶体管工作原理及特性 场效应管(MOSFET)是一种外形与普通晶体管相似,但控制特性不同的半导体器件。它的输入电阻可高达1015W,而且制造工艺简单,适用于制造大规模及超大规模集成电路。场效应管也称为MOS管,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。在本文只简单介绍后一种场效应晶体管。 绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。每种又有增强型和耗尽型两类。下面简单介绍它们的工作原理。 1、增强型绝缘栅场效应管 2、图6-38是N沟道增强型绝缘栅场效应管示意图。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。它的栅极与其他电极间是绝缘的。图6-38(b)所示是它的符号。其箭头方向表示由P(衬底)指向N(沟道)。 图6-38 N沟道增强型场效应管 场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。从图 6-39(a)可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。当栅-源电压UGS=0时,即使加上漏-源电压UDS,而且不论UDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID≈0。 若在栅-源极间加上正向电压,即UGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P衬底中的电子(少子)被吸引到衬底表面。当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。UGS增加时,吸引到P衬底表面层的电子就增多,当UGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图6-39(c)所示。UGS越大,作用于半导体表面的电场就越强,吸引到P衬底

场效应管放大器

实验四 场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验原理 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图3-1所示为N 沟道结 图3-1 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导

常数U △U △I g DS GS D m == 表3-1列出了3DJ6F 的典型参数值及测试条件。 表3-1 2、场效应管放大器性能分析 图3-2为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

p沟道mos管工作原理

P通道为空穴流,N通道为电子流,所以场效应三极管也称为单极性三极管。FET 乃是利用输入电压(Vgs)来控制输出电流(Id)的大小。所以场效应三极管是属于电压控制元件。它有两种类型,一是结型(接面型场效应管)(JFET),一是金氧半场效应三极管,简称MOSFET,MOSFET又可分为增强型与耗尽型两种。 N沟道,P沟道结型场效应管的D、S是由N(或P)中间是栅极夹持的通道,这个通道大小是受电压控制的,当然就有电流随栅极电压变化而变。可以看成栅极是控制电流阀门。 增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。栅极电压高低决定电场的变化,进而影响载流子的多少,引起通过S、D电流变化。 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。 主板上的PWM(Plus Width Modulator,脉冲宽度调制器)芯片产生一个宽度可调的脉冲波形,这样可以使两只MOS管轮流导通。当负载两端的电压(如CPU需要的电压)要降低时,这时MOS管的开关作用开始生效,外部电源对电感进行充电并达到所需的额定电压。当负载两端的电压升高时,通过MOS管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时的电感就变成了“电源”,当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道。 MOS管 MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应晶体管中的绝缘栅型。因此,MOS管有时被称为场效应管。在一般电子电路中,MOS管通常被用于放大电路或开关电路。而在主板上的电源稳压电路中,MOSFET扮演的角色主要是判断电位,它在主板上常用“Q”加数字表示。 一、MOS管的作用是什么? 目前主板或显卡上所采用的MOS管并不是太多,一般有10个左右,主要原因是大部分MOS管被整合到IC芯片中去了。由于MOS管主要是为配件提供稳定的电压,所以它一般使用在CPU、AGP插槽和内存插槽附近。其中在CPU与AGP插槽附近各安排一组MOS管,而内存插槽则共用了一组MOS管,MOS管一般是以两个组成一组的形式出现主板上的。 二、MOS管的性能参数有哪些? 优质的MOS管能够承受的电流峰值更高。一般情况下我们要判断主板上MOS 管的质量高低,可以看它能承受的最大电流值。影响MOS管质量高低的参数非常多,像极端电流、极端电压等。但在MOS管上无法标注这么多参数,所以在MOS 管表面一般只标注了产品的型号,我们可以根据该型号上网查找具体的性能参数。 还要说明的是,温度也是MOS管一个非常重要的性能参数。主要包括环境温度、管壳温度、贮成温度等。由于CPU频率的提高,MOS管需要承受的电流也随

有机场效应晶体管和分子电子学研究进展

进展评述 有机场效应晶体管和分子电子学研究进展 吴卫平 徐伟 胡文平 刘云圻3 朱道本33 (中国科学院化学研究所有机固体研究重点实验室 北京 100080) 吴卫平 男,博士生,25岁,现从事分子电子学的研究。 3联系人,E 2mail :liuyq @https://www.360docs.net/doc/099372204.html, 。 33中国科学院院士 国家自然科学基金(90206049,20472089,20421101,20571079,20527001,90401026)和科技部973计划(2001C B610507,2002C B613401)资助项目 2006202223收稿,2006202228接受 摘 要 近几年来,有机场效应晶体管在材料和器件方面都取得了长足的进展,成为分子电子学的一个 重要方向。本文从有机半导体材料设计、有机半导体器件的构筑、单分子电子器件和纳米管在电子器件中的应用等方面,简单综述了有机场效应晶体管和分子电子学的最新研究进展。关键词 有机半导体材料 有机场效应晶体管 迁移率 分子电子学 Progresses in Organic Field E ffect T ransistors and Molecular E lectronics Wu Weiping ,Xu Wei ,Hu Wenping ,Liu Y unqi 3,Zhu Daoben 33 (K ey Laboratory of Organic S olids ,Institute of Chemistry ,Chinese Academy of Sciences ,Beijing 100080) Abstract In the past years ,organic materials have been extensively investigated as an electronic material for organic field effect transistors (OFETs ).In this paper ,we briefly summarize the current status of organic field effect transistors including materials design ,device physics ,m olecular electronics and the application of carbon nanotubes in m olecular electronics.Future prospects and investigations required to improve the OFET performance are als o inv olved. K ey w ords Organic semiconductors ,Organic field effect transistors ,M obility ,M olecular electronics 有机场效应晶体管(OFET )是用有机共轭分子作为活性半导体层,以无机或高分子介电物质作绝缘栅,通过栅电压调节开、关状态的一种三端器件。自从1986年第一个有机场效应晶体管问世以来[1],有机场效晶体管以其低成本、柔韧性好、可大面积制备等优点而受到广泛关注,贝尔实验室、I BM 公司等多个研究机构相继投入了研究[2,3]。近几年来,有机场效应晶体管得到了越来越深入的研究,新型有机半导体材料不断出现,器件性能不断改善,有机场效应晶体管成为有机电子学的一个热点。本文结合笔者课题组相关工作,简要综述了有机场效应材料、器件物理和分子电子学方面的最新进展。 1 有机场效应器件物理 111 有机场效应晶体管工作原理 有机场效应晶体管是一种通过绝缘栅电压在半导体2绝缘层界面处形成电荷累积层,由栅电压调节源、漏电极之间的载流子密度而实现开、关状态的器件。当源漏电压V ds =0时,由栅电容诱导的累积电荷均匀分布,当V ds V gs -V th 时,有机场效应晶体管工作在饱和模式下,此时:

相关文档
最新文档