《时钟问题》精讲与练习
五年级培优 竞赛 二合一 精讲系列之11 时钟问题(例题 练习 课后作业一条龙)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【巩固】小强家有一个闹钟,每时比标准时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【巩固】小翔家有一个闹钟,每时比标准时间慢3分。
有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。
这个闹钟响铃的时间是标准时间的几点几分?【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【例2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【巩固】钟表的时针与分针在4点多少分第一次重合?【巩固】现在是3点,什么时候时针与分针第一次重合?【例3】钟表的时针与分针在8点多少分第一次垂直?【例4】2点钟以后,什么时刻分针与时针第一次成直角?【例5】8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【例6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【例7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。
小学六年级奥数时钟问题(含例题讲解分析和答案)

小学六年级奥数时钟问题(含例题讲解分析和答案)篇章重构:时钟问题是一个特殊的圆形轨道上两个指针的追及或相遇问题。
在时钟问题中,我们研究的是时钟的快慢、周期以及时针和分针所成的角度等等。
时钟问题的速度和总路程的度量方式不同于其他行程问题,而是以“每分钟走多少角度”或“每分钟走多少小格”为单位。
对于标准的时钟,整个钟面为360度,上面有12个大格,每个大格为30度,60个小格,每个小格为6度。
分针每分钟走1小格或6度,时针每分钟走1小格或0.5度。
然而,在许多时钟问题中,我们会遇到各种“怪钟”或“坏了的钟”,它们的时针和分针每分钟走的度数与常规的时钟不同,因此需要对不同的问题进行独立的分析。
要将时钟问题视为行程问题,分针快,时针慢,因此分针和时针之间的问题就是追及问题。
在解决时钟的快慢问题时,需要学会十字交叉法。
例如,对于时钟问题,需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65分钟。
下面是例题精讲:例1:XXX有一只手表,他发现手表比家里的闹钟每小时0秒,而闹钟却比标准时间每小时慢30秒。
那么XXX的手表一昼夜比标准时间差多少秒?解析:闹钟每小时只走(3600-30)/3600个小时,而手表每小时走(3600+30)/3600个小时。
因此,标准时间走1小时,手表走(3600-30)/3600*(3600+30)/3600个小时。
手表每小时比标准时间慢1-(3600-30)/3600*(3600+30)/3600=1-/=1/个小时,即四分之一秒。
因此,一昼夜24小时比标准时间慢四分之一乘以24等于6秒。
巩固题1:XXX家有一个闹钟,每小时比标准时间分。
有一天晚上10点整,XXX对准了闹钟,他想第二天早晨6:00起床,他应该将闹钟的铃定在几点几分?解析:从晚上10点到第二天早晨6点,共计8小时。
因为闹钟比标准时间分,所以实际上只需要设置闹钟在标准时间的8小时之前3*8=24分即可。
钟表问题专题

钟表问题专题钟表问题知识精讲常见的钟表问题主要是讨论钟表上的时针、分针和秒针之间的位置关系,这和我们前⾯学习过的环形路线问题是很像的,就像前⾯漫画中画的⼀样,可以将三种针想象成绕着钟表不断奔跑的三个⼈,时针是⼀位⽼⼈,他慢悠悠的,12个⼩时才能在钟表上散步⼀圈;分针是⼀位中年⼈,他有条不紊的,1⼩时⾛过钟表上的⼀圈;⽽秒针就像少年,活⼒⽆限,1分钟能绕着钟表跑⼀圈。
但同学们会发现,这样的速度表⽰法并没有明确地说明三种针的速度,所以我们考虑:能不能将各个针的速度统⼀来表⽰?以前计算⼀个⼈或⼀个物体的速度,所⽤的单位总是⽶/秒或千⽶/时,很明显,在钟表问题中这样的表⽰法是不适⽤的,那我们⽤什么来表⽰时针、分针和秒针的速度呢?我们仔细观察钟表,会发现除了表⽰⼩时的12个⼤格,在每个⼤格中还有⼀些⼩格,数数,每个⼤格都包含5个⼩格,那整个钟⾯上就包含60个⼩格,我们就利⽤这个“格”来表⽰分针、时针和秒针的速度.经过计算,我们容易得出:时针的速度:5格/时=121格/分; 分针的速度:60格/时=1格/分;秒针的速度:3600格/时=60格/分=1格/秒。
知道了速度,就可以根据以前学过的环形路线问题来分析时针和分针的运动过程,从⽽解决问题。
例题⼀⼀个时钟现在显⽰的时间是3点整,多少分钟后,时针与分针第⼀次重合?多少分钟后,时针与分针第⼀次张开成⼀条直线?练习1:2点到3点之间,什么时候时针和分针重合?什么时候时针与分针张开成⼀条直线?例题2:⼀个时钟现在显⽰的时间是3点整,多少分钟后,时针与分针第⼀次垂?第⼀次垂直呢?练习⼆:2点到3点之间,什么时候时针与分针垂直?例题3:⼩⾼晚上去超市买东西,到的时候是7点24分,买完出来的时候仍然是7点多,且分针和时针所夹的⾓度与到超市时相同.请问:⼩⾼出来的时候是7点⼏分?买东西⼀共花了多少分钟?练习3(1)⼩⾼晚上去超市买东西,到的时候是7点30分,买完出来的时候仍然是7。
(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题应用题及答案

时钟问题应用题及答案问题1:小明早上7点起床,他需要完成以下活动:刷牙5分钟,洗脸3分钟,吃早餐10分钟,然后他需要花15分钟走到学校。
如果小明希望在8点之前到达学校,他最晚应该在什么时候开始刷牙?答案1:小明需要完成的活动总共需要5分钟(刷牙)+ 3分钟(洗脸)+ 10分钟(吃早餐)= 18分钟。
他需要在8点之前到达学校,所以他最晚需要在8点减去18分钟,也就是7点42分开始刷牙。
问题2:一个时钟的时针和分针在12点整时重合。
假设时针和分针的速度分别是每小时30度和每小时360度,那么下一次时针和分针重合是几点几分?答案2:时针和分针重合时,它们的夹角为0度。
设x为小时,y为分钟,那么时针走过的角度为30x + 0.5y,分针走过的角度为6y。
由于它们的速度差为330度/小时,所以330x = 5.5y。
解这个方程,我们得到y = 60x/11。
当x=1时,y=60/11,所以下一次时针和分针重合的时间是1点5分27秒左右。
问题3:一个钟表的分针和时针在一天中会重合多少次?答案3:在一天中,分针和时针会重合22次。
这是因为分针每小时比时针多转一圈,所以每小时至少重合一次。
在12点整,它们会重合一次,然后在接下来的每个小时,它们会重合一次,直到11点55分左右再次重合,总共22次。
问题4:如果一个钟表的分针和时针在3点30分时的夹角是75度,那么在3点45分时,分针和时针的夹角是多少度?答案4:在3点30分,分针指向6,时针指向3和4之间,夹角为75度。
在3点45分,分针指向9,时针会稍微超过3和4之间的位置。
由于分针每分钟转6度,15分钟转90度,时针每分钟转0.5度,15分钟转7.5度。
所以在3点45分,分针和时针的夹角为90度 - 7.5度 = 82.5度。
问题5:一个时钟的秒针从12点开始转动,当秒针转了720圈时,分针转了多少圈?答案5:秒针转一圈需要60秒,720圈则需要720 * 60秒。
奥数时钟问题、倒推法解题

二、能力点评
4
学法升华
一、知识收获
时针问题的关键是什么?
二、方法总结
在用方程解时钟问题时,最难的是什么?
三、技巧提炼
倒推法问题最显眼的标志是什么?
课后作业
一、应用题。 1、把若干个蛋糕分给甲、乙、丙三人,甲吃了全部的一半多 1 个,乙吃了剩下的 剩下的
3 多 3 个,丙吃了 8
5 多 2 个,正好全部吃完。原来有多少个蛋糕? 6
二、能力点评
一、能力培养
我们在解决一些问题,有些时候按部就班地顺着做就会很难、比较麻烦。但有时从结果出发倒 过来往前推就会把问题轻松想通,事实上在初中,我们会学习数学中的一种非常重要的题目:几何 证明题,这种题目往往都是利用倒推法来解决的。
3
例 1:有一筐苹果,甲取出一半又 1 个,乙取出余下的一半又 1 个,丙取出再余下的一半又 1 个, 此时筐里还剩一个。求原来苹果有多少个?
例 4:师傅有一块手表,他发现手表比家里的闹钟每小时快 30 秒,而闹钟比标准时间每小时慢 30 秒,那么师傅的手表一天与标准时间相差多少秒?
2
同步练习: 1、师傅有一块手表,他发现手表比家里的闹钟每小时快 40 秒,而闹钟比标准时间每小时慢 40 秒, 那么师傅的手表一天与标准时间相差多少秒?
2、两个旧挂钟,一个每天快 20 分钟,另一个每天慢 30 分钟,晚上新闻联播开始时将两钟同时调到 标准时间,那么它们何时再同时显示标准时间?
辅导讲义
教学内容
一、能力培养
时钟上的分针与时针的运动是有规律的,时钟问题一般都围绕着分针与时针的重合、垂直、成 一条直线等问题来进行研究的。 首先思考这样的问题:一小时,分针走了( 出一分钟的时间,分针与时针各走了多少度吗? )度;时针走了( )度。那么你能计算
六年级奥数专题:时钟问题

2014春季数学优化六年级小考专题五.时钟问题【知识要点】时钟是我们日常生活中不可缺少的计时工具,生活中也时常会遇到与时钟相关的问题。
时钟上的时针和分针的运动时有规律的,时钟问题一般都是围绕时针、分针或秒针的重合、垂直、成直角或夹角的度数以及不准确的时钟等角度来进行研究的。
钟面上一圈分为60小格,分针每小时走60小格,时针每小时走5小格,所以时针的速度是分针的1小时走一圈是360°,每分钟走6°,时针60分钟走30°,所以时针每分钟走0.5°,分针每分钟比时针多走5.5°。
解时钟问题时,可以把它转化为行程问题中的“追及问题”或“相遇问题”来解答。
基本的关系式是:路程差÷速度差=追及时间;相遇路程÷速度和=相遇时间。
【经典例题】例1.现在是下午2点。
从现在起时针与分针什么时候第一次重合?例2.从上午8点整开始,至少经过多少分钟,两针正好垂直?例3.在9点与10点之间,时针和分针在什么时刻位于一条直线上?例4.在钟面上,9时30分的时刻,时针与分针的夹角是多少度?例5.现在是上午9点多,时针与分针重合。
至少再经过多少分钟,时针与分针再次重合?例6.从0点开始的12小时内,时针与分针重合几次?例7.钟面上5点过几分,时针和分针离“5”的距离相等,并且在“5”的两旁?例8.小明有一块手表,每分钟比标准时间快2秒钟。
小明早晨8点整将手表对准,当小明这块手表第一次指示12点时,标准时间此时应是几点几分?例9.星期六,小明下午2点多钟开始做作业,此时时针与分针恰好重合在一起,作业做完时是5点多钟,此时时针与分针又恰好重合。
问小明做作业用了多长时间?例10.小华家有两个旧手表,一个每天快20分钟,一个每天慢30分钟。
现在将两个手表同时调到标准时间,他们要经过多少天才能再次同时显示标准时间?【专题精练】1.现在是上午9点。
从现在起时针与分针什么时候第一次重合?2.从上午9点整开始,至少经过多少分钟,两针正好垂直?3.在5点与6点之间,时针和分针在什么时刻位于一条直线上?4.在钟面上,2时50分的时刻,时针与分针的夹角是多少度?5. 现在是上午8点多,时针与分针重合。
(完整)小学六年级奥数时钟问题(含例题讲解分析和答案)

时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。
分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级《时钟问题》精讲与练习
例1、在8点和9点之间,时钟上的分针和时针在什么时候重合?成一条直线?
练习:
1、在6点和7点之间,时钟上的分针和时针在什么时候重合?
2、10点整后时针和分针第一次成一条直线是在什么时候?
3、4点整后,再经过多少分钟,时针与分针重合?
例2、在7点和8点之间,在什么时刻分针与时针成30°?
练习:
1、在4点和5点之间,分针与时针成直角是几点几分?
2、在5点和6点之间,在什么时刻分针与时针成60°?
3、在9点和10点之间,在什么时刻分针与时针成30°?
4、钟面上5点8分时,分针与时针的夹角是多少度?
5、钟面上4点10分时,时针与分针的夹角是多少度?
例3、有一个挂钟,每小时慢3分钟,早上7点钟的时候,对准了标准时间,当钟的指针指向12点整的时候,标准时间是多少?
练习:
1、小明家有一只钟,每小时慢2分钟,早上8点钟的时候,小明把钟对准了标准时间,当钟走到12点整的时候,标准时间是几点几分?
2、星期天小林和妈妈去公园,上午8点多从家出发,出发时挂钟的时针与分针恰好重合,下午两点多,小林回到家又看了看挂钟,这时时针与分针正好成一条直线,问:他们是几点从家出发?几点回家的?共出去了多长时间?
3、有一只钟,每小时快3分钟,早上7点钟的时候对准了标准时间当钟的指向12点整时,标准时间是多少?
例4、在7时与8时之间的什么时刻,分针与时针恰好在“7”的两侧,并且与“7”的距离相等?
练习:
1、3点过多少分时,时针与分针在“3”的两侧,且离“3”的距离相等?
2、8点过多少分时,时针与分针在“8”的两侧,且离“8”的距离相等?
综合练习:
1、3点和4点之间,在什么时候分针和时针成一条直线?
2、5点和6点之间,在什么时刻分针与时针成60°?30°?
3、有一钟表,每小时比标准时间慢1分钟,中午12点对准了时间,下午这一钟表指到6点钟时,标准时间是几点几分?
4、小明从下午3点开始做作业,到做完作业时,时针与分针正好第一次重合,小明做作业用了多少时间?。