18.第十八讲 行程问题(1) 公式类行程问题

合集下载

十八 相遇问题

十八 相遇问题

第十八讲行程问题(一)----- 相遇问题例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人几小时后相遇?例2、小明家和小牛家相距14千米,星期日,小明和小牛同时从自己家出发到对方家去玩,经过2小时在途中相遇,小明的速度是3千米/小时,求小牛的速度?例3、两地间的路程有360千米,两辆汽车同时从两地相对开出,甲车每小时行50千米,乙车每小时行40千米,甲、乙两车相遇时,各行了多少千米?例4、.两辆汽车同时从A、B两地相对开出,甲车每小时行50千米,乙车每小时行60千米,5小时后还相距20千米,求A、B两地间的距离?例5、甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例6、东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?例7、甲乙两人分别从A、B两地同时出发相向而行,甲每小时行48千米,乙每小时行42千米,两车在离中点18千米处相遇,求AB两地间的距离?例8、甲乙两车分别从AB两地相对开出,已知甲车每小时行40千米,经过4小时,甲车已驶过中点26千米,这时与乙车还相距8千米,乙车每小时行多少千米?例9、A、B两地相距1120千米,甲、乙两列火车从A、B两地同时相对开出,甲列火车的速度是60千米/小时,乙列火车每小时行48千米,乙列火车出发时,从车厢里飞出一只鸽子,以80千米/小时向甲列火车飞去,在鸽子与甲车相遇时,乙车距A地还有多远?例10、小王和小亮两人同时从相距2000米的两地相向而行,小王每分钟行110米,小亮每分钟行90米,如果一只狗与小王同时同地而行,每分钟行500米,在两人间往返跑,直到两人相遇时,狗共行了多少米?例11、甲乙两人在环形跑道上以各自的速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一圈要6分钟,乙跑一圈要几分钟?例12、甲乙两人同时从A到B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?例13、小明的家在学校南边,小芳的家在学校北边,两家之间的路程是1410米,每天上学时,如果小明比小芳提前出发3分钟,两人就可以同时到校。

行程问题类型大全公式类行程问题

行程问题类型大全公式类行程问题

行程问题类型大全公式类行程问题基本行程问题行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。

数量关系:路程÷ 速度和=相遇时间路程÷ 相遇时间=速度和速度和× 相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

追及问题追及问题也是行程问题中的一种情况。

这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);追及路程=路程差=两个物体之间相距的路程追及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。

行程问题

行程问题

第十八讲:行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。

行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。

有了路程差和速度差就可以求出相遇时间了为8小时。

其他计算就容易了。

2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。

慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

数学行程问题公式大全

数学行程问题公式大全

行程问题公式行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

路程=速度×时间;路程÷时间=速度;路程÷速度=时间确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程 +乙的路程=环形周长追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

数学行程问题公式大全

数学行程问题公式大全

行程问题公式行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

路程=速度×时间;路程÷时间=速度;路程÷速度=时间确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)^甲的路程+乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)—快的路程-慢的路程=曲线的周长顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

》流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。

/这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

数学行程问题公式大全

数学行程问题公式大全

行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程 +乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2解题关键船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

【最新】2020年通用版小升初数学总复习同步拓展-第十八讲.行程问题 (含答案)全国通用

【最新】2020年通用版小升初数学总复习同步拓展-第十八讲.行程问题 (含答案)全国通用

行程问题【知识、方法梳理】行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。

【典例精讲】例题1:两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

练习1:1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

行程问题应用题解析

行程问题应用题解析

第十八讲:行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。

行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。

有了路程差和速度差就可以求出相遇时间了为8小时。

其他计算就容易了。

2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。

慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八讲行程问题(1)
公式类行程问题——流水行船、扶梯问题、环
形行程
知识点汇总:
例题练习:
1、两地相距480千米,一艘轮船在两地之间往返,顺流行驶一次需要16小时,逆流返回需要20小时。

该轮船在静水中的速度是多少?水流速度是多少?
2、A、B两个码头间的水路为90千米,其中A码头在上游,B码头在下游。

第一天水速为每小时3千米,甲、乙两船分别从A、B两码头同时起航同向而行,3小时后乙船追上甲船。

已知甲船的静水速为每小时18千米。

乙船的静水速度是多少?第二天由于涨水,水速变为每小时5千米。

甲、乙两船分别从A、B两码头同时起航相向而行,出发多长时间后相遇?
3、在地铁入口,从站台到地面有一架向上的自动扶梯,涛涛乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走30级台阶后到达地面。

从站台到地面有______级台阶。

4、甲、乙两人在一个圆形跑道上跑步,两人从同一地点出发,甲用40分钟能跑完一圈。

两人反向跑时每隔15秒相遇一次。

那么两人同向跑时,乙每隔______秒追上甲一次。

5、甲、乙两人在一条圆形跑道上锻炼。

他们分别从跑道某条直径的两端同时出发,相向而行。

当乙走了100米时,他们第一次相遇。

相遇后两人继续前进,在甲走完一圈前60米处第二次相遇。

求这条圆形跑道的周长。

【本讲重要内容回顾】
小试牛刀
1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。

从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。

2.甲、乙两船在静水中速度分别为每小时24千米和每小时32千米。

两船从某河边相距336千米的A、B两港同时相向而行。

几小时相遇?如果同向而行,几小时后,乙船追上甲船?
3.在某商场入口,从一楼到二楼有一架向上的自动扶梯,阳阳乘坐扶梯时,如果每向上迈一级台阶,那么他走过40级台阶后到达地面;如果每秒向上迈两级台阶,那么走60级台阶后到达地面。

问从一楼到二楼有多少级台阶。

4.甲,乙两人在400米的环形跑道上跑步,两人在同一地点朝相反方向跑.从第一次到第二次相遇间隔40秒,甲每秒跑6米,乙每秒跑几米?
5.两辆电动小汽车在周长为360米的圆形跑道上不断行驶,甲车每分行驶20米,甲乙两车同时分别从相距90米的A、B两地相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B地时,甲车过B地后恰好又回到A地,此时甲车立即返回(乙车过B 地继续行驶),再过多少分与乙车相遇?。

相关文档
最新文档