小学奥数—行程问题基础
小学奥数行程问题基础

1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源 我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s vt =路程÷速度=时间 可简记为:t s v =÷路程÷时间=速度 可简记为:v s t =÷三、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【考点】行程问题 【难度】2星 【题型】解答【巩固】 小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【考点】行程问题 【难度】2星 【题型】解答【例 2】 甲、乙两地相距100千米。
小学奥数行程问题分类总结汇总版(题型全,知识点详细)

目录目录 (1)行程专题(1)——简单相遇追及问题 (3)行程专题(2)——多人相遇追及问题 (6)行程专题(3)——多次相遇追及问题 (8)模块一:由简单行程问题拓展出的多次相遇问题 (8)模块二:运用比例关系解多次相遇问题 (8)模块三:多次相遇与全程的关系 (9)行程专题(4)——变速变道问题 (10)模块一:变速问题 (10)模块二:变道问题 (10)模块三:走停问题 (11)行程专题(5)——火车过桥问题 (12)模块一:火车过桥(隧道、树)问题 (12)模块二:火车与人的相遇与追及问题 (12)模块三:火车与火车的相遇与追及 (13)行程专题(6)——流水行船问题 (14)模块一、基本的流水行船问题 (14)模块二、相遇与追及问题 (15)行程专题(7)——发车问题 (17)行程专题(8)——环形跑道问题 (19)模块一、一般环形跑道问题 (19)模块二、环形跑道——变道问题 (19)模块三、环形跑道——变速问题 (20)模块四、时钟问题 (20)行程专题(9)——比例解行程题综合 (22)模块一:比例初步——利用简单倍比关系进行解题 (22)模块二:时间相同速度比等于路程比 (22)模块三:路程相同速度比等于时间的反比 (23)模块四、比例综合题 (23)行程专题强化(1) (24)行程专题强化(2) (26)行程专题强化(3) (27)目录行程专题强化(4) (28)行程专题强化(5) (29)行程专题强化(6) (30)行程专题强化(7) (31)行程专题强化(8) (32)行程专题强化(9) (33)行程专题强化答案(1) (34)行程专题强化答案(2) (36)行程专题强化答案(3) (38)行程专题强化答案(4) (40)行程专题强化答案(5) (42)行程专题强化答案(6) (44)行程专题强化答案(7) (46)行程专题强化答案(8) (48)行程专题强化答案(9) (50)行程专题(1)——简单相遇追及问题行程问题的基本公式:关于路程,速度,时间三者的基本关系:路程=速度×时间可简记为:s = v×t时间=路程÷速度可简记为:t = s÷v速度=路程÷时间可简记为:v = s÷t相同时间内,路程比=速度比平均速度的基本关系式为:平均速度=全部路程÷全部时间全部时间=全部路程÷平均速度全部路程=平均速度×全部时间相遇:甲乙从AB两地同时出发,两人在途中相遇,实际上是甲和乙一起行了A,B之间这段路程,如果两人同时出发,那么:相遇总路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间一般地,相遇问题的关系式为:路程和=速度和×相遇时间追及:如果设甲走得快,乙走得慢,相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例题1】(23中2012)一列慢车和一列快车分别从A、B两站相对开出,快车和慢车速度的比是5:4,慢车先从A站开出27千米,快车才从B站开出。
(word完整版)六年级奥数--行程问题

六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
奥数行程问题知识点总结大全

小学奥数行程问题公式奥数行程问题知识点总
结大全
【根本公式】:路程=速度×时间
【根本类型】
相遇问题:速度和×相遇时间=相遇路程;
追及问题:速度差×追及时间=路程差;
流水问题:关键是抓住水速对追及和相遇的时间不产生影响;
顺水速度=船速+水速逆水速度=船速-水速
静水速度=〔顺水速度+逆水速度〕÷2 水速=〔顺水速度-逆水速度〕÷2
〔也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个〕
其他问题:利用相应知识解决,比方和差分倍和盈亏;
【复杂的行程】
1、屡次相遇问题;
2、环形行程问题;
3、运用比例、方程等解复杂的题。
查看:小升初奥数行程问题公式和例题解析汇总。
(完整版)小学奥数行程问题经典整理

第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
行程问题(相遇、追及、多次相遇、电车)

相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。
同时也是小学奥数专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。
(一)典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。
相遇问题追及问题(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律这部分内容涉及以下几个方面:1求相遇次数2求相遇地点3由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。
举个例子:假设A、B两地相距6000米,甲从A地出发在AB间往返运动,速度为6千米/小时,乙从B出发,在AB间往返运动,速度为4千米/小时。
我们可以依次求出甲、乙每次到达A点或B点的时间。
为了说明甲、乙在AB间相遇的规律,我们可以用“折线示意图”来表示。
第四次相遇第五次相遇第六次相遇第二次相遇第三次相遇第一次相遇折线示意图能将整个行程过程比较清晰的呈现出来:例如AD表示的是,甲从A地出发运动到B地的过程,其中D点对应的时间为1小时,表示甲第一次到达B点的时间为1小时,BF表示乙从B地出发到达A地的过程,F点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD与BF相交于C点,对应甲、乙的第一次相遇事件,同样的G点对应是甲、乙的第二次相遇事件。
小学生奥数行程问题知识点及应用题

小学生奥数行程问题知识点及应用题1.小学生奥数行程问题知识点篇一常用公式:1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2、速度和×时间=路程和;3、速度差×时间=路程差。
2.小学生奥数行程问题知识点篇二行程问题中的公式:1、顺水速度=静水速度+水流速度;2、逆水速度=静水速度-水流速度。
3、静水速度=(顺水速度+逆水速度)/24、水流速度=(顺水速度–逆水速度)/23.小学生奥数行程问题应用题篇三1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。
上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。
小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。
去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个自行车选手在相距950千米的甲、乙两地之间训练。
从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有多少千米?5、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。
这两只蚂蚁每秒分别爬5.5厘米和3.5厘米。
它们每爬行1秒,3秒、5秒……(连续的奇数),就调头爬行。
那么,它们相遇时,已爬行的时间是多少秒?4.小学生奥数行程问题应用题篇四1、一列快客和一列普客从甲乙两个城同时相对开出,快客每小时行90千米,普客每小时行48千米,经过2.5小时后,两列客车在途中相遇。
求甲乙两城市间的道路长多少千米?解:要知道甲、乙两城之间的道路长多少千米,就必须知道两车的速度和所行的时间。
因为两车是相对而行,所以速度应是两车速度和,时间是两车的相遇时间,这样就可以求出甲、乙两地的距离了。
奥数-行程问题的基本公式

行程问题的基本公式基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
仅供参考:【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数.【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和—一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数.【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固】 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上 山以 30 千米/时的速度,到达山顶后以 60 千米/时的速度下山.求该车的平均速度.
【巩固】 某人上山速度为每小时 8 千米,下山的速度为每小时 12 千米,问此人上下山的平均速度是多少?
【例 14】 一辆汽车从甲地出发到 300 千米外的乙地去,前 120 千米的平均速度为 40 千米/时,要想使这 辆汽车从甲地到乙地的平均速度为 50 千米/时,剩下的路程应以什么速度行驶?
速度×时间=路程 路程÷速度=时间 路程÷时间=速度
可简记为: s vt 可简记为: t s v 可简记为: v s t
三、平均速度
平均速度的基本关系式为: 平均速度 总路程 总时间; 总时间 总路程 平均速度; 总路程 平均速度 总时间。
板块一、简单行程公式解题
【例 1】 韩雪的家距离学校 480 米,原计划 7 点 40 从家出发 8 点可到校,现在还是按原时间离开家,不 过每分钟比原来多走 16 米,那么韩雪几点就可到校?
【例 17】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。 某人骑自行车过桥时,上坡、走平路和下坡的速度分别为 4 米/秒、6 米/秒和 8 米/秒,求他过桥 的平均速度。
【巩固】 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某 人骑电动车过桥时,上坡、走平路和下坡的速度分别为 11 米/秒、22 米/秒和 33 米/秒,求 他过桥的平均速度.
【巩固】 小明从甲地到乙地,去时每时走 2 千米,回来时每时走 3 千米,来回共用了 15 小时.小明去时 用了多长时间?
【例 16】 小王每天用每小时 15 千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每 小时 10 千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同
3-1-1.行程问题基础.题库
学生版
page 8 of 8
【巩固】 一只蚂蚁沿等边三角形的三条边由 A 点开始爬行一周. 在三条边上它每分钟分别爬行 50cm, 20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?
【例 18】 赵伯伯为了锻炼身体,每天步行 3 小时,他先走平路,然后上山,最后又沿原路返回.假设赵 伯伯在平路上每小时行 4 千米,上山每小时行 3 千米,下山每小时行 6 千米,在每天锻炼中, 他共行走多少千米?
3-1-1.行 8
【例 7】 从家里骑摩托车到火车站赶乘火车。若每时行 30 千米,则早到 15 分;若每时行 20 千米,则迟 到 5 分。如果打算提前 5 分到,那么摩托车的速度应是多少?
【巩固】 小红从家到火车站赶乘火车,如果每时行 4 千米,那么火车开时她还离车站 1 千米;如果每时 行 5 千米,那么她就早到车站 12 分。小红家离火车站多少千米?
【巩固】 两辆汽车都从北京出发到某地,货车每小时行 60 千米,15 小时可到达。客车每小时行 50 千米, 如果客车想与货车同时到达某地,它要比货车提前开出几小时?
【例 3】 一天,梨和桃约好在天安门见面,梨每小时走 200 千米,桃每小时走150 千米,他们同时出发 2 小时后还相距 500 千米,则梨和桃之间的距离是多少千米?
【巩固】 小白从家骑车去学校,每小时15 千米,用时 2 小时,回来以每小时10 千米的速度行驶,需要多 少时间?
3-1-1.行程问题基础.题库
学生版
page 1 of 8
【例 2】 甲、乙两地相距 100 千米。下午 3 点,一辆马车从甲地出发前往乙地,每小时走 10 千米;晚上 9 点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶 多少千米?.
3-1-1.行程问题基础.题库
学生版
page 5 of 8
【巩固】 汽车往返于 A,B 两地,去时速度为 40 千米/时,要想来回的平均速度为 48 千米/时,回来时 的速度应为多少?
【巩固】 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时 60 千米的速度行驶,正好可以按时返回 甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时 50 千米.如果他想按时返回甲地, 他应以多大的速度往回开?
【巩固】 两列火车从相距 480 千米的两城相向而行,甲列车每小时行 40 千米,乙列车每小时行 42 千米, 5 小时后,甲、乙两车还相距多少千米?
【例 4】 甲、乙两辆汽车分别从 A、B 两地出发相向而行,甲车先行三小时后乙车从 B 地出发,乙车 出发 5 小时后两车还相距 15 千米.甲车每小时行 48 千米,乙车每小时行 50 千米.求 A、 B 两地间相距多少千米?
路程相对应的英文单词,一般来说应该是 distance ,但这个单词并不是以字母 s 开头的。关于为什么会用 s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的 v 和代表时间的 t 在字 母表中比较接近,所以就选取了跟这两个字母位置都比较接近的 s 来表示速度。
二、关于 s、v、t 三者的基本关系
3-1-1.行程问题基础.题库
学生版
page 3 of 8
模块二、平均速度问题
【例 10】 甲、乙两地相距 60 千米,自行车队 8 点整从甲地出发到乙地去,前一半时间平均每分钟行 1 千 米,后一半时间平均每分钟行 0.8 千米。自行车队到达乙地的时间是几点几分几秒?
【例 11】 如图,从 A 到 B 是 12 千米下坡路,从 B 到 C 是 8 千米平路,从 C 到 D 是 4 千米上坡路.小张步 行,下坡的速度都是 6 千米/小时,平路速度都是 4 千米/小时,上坡速度都是 2 千米/小时.问小 张从 A 到 D 的平均速度是多少?
3-1-1.行程问题基础.题库
学生版
page 7 of 8
【例 19】 张师傅开汽车从 A 到 B 为平地(见下图),车速是 36 千米/时;从 B 到 C 为上山路,车速是 28 千米/时;从 C 到 D 为下山路,车速是 42 千米/时. 已知下山路是上山路的 2 倍,从 A 到 D 全程为 72 千米,张师傅开车从 A 到 D 共需要多少时间?
【例 5】 小燕上学时骑车,回家时步行,路上共用 50 分。如果往返都步行,则全程需要 70 分。求往返 都骑车所需的时间。
【例 6】 骑自行车从甲地到乙地,以 10 千米/时的速度行进,下午 1 时到;以 15 千米/时的速度行 进,上午 11 时到。如果希望中午 12 时到,那么应以怎样的速度行进?
A D
B
C
【巩固】 如图,从 A 到 B 是 6 千米下坡路,从 B 到 C 是 4 千米平路,从 C 到 D 是 4 千米上坡路.小张步 行,下坡的速度都是 6 千米/小时,平路速度都是 4 千米/小时,上坡速度都是 2 千米/小时.问从 A 到 D 的平均速度是多少?
A
D
B
C
【巩固】 一个运动员进行爬山训练.从 A 地出发,上山路长 30 千米,每小时行 3 千米.爬到山顶后,沿 原路下山,下山每小时行 6 千米.求这位运动员上山、下山的平均速度.
【巩固】 老王开汽车从 A 到 B 为平地(见右图),车速是 30 千米/时;从 B 到 C 为上山路,车速是 22.5 千米/时;从 C 到 D 为下山路,车速是 36 千米/时. 已知下山路是上山路的 2 倍,从 A 到 D 全程为 72 千米,老王开车从 A 到 D 共需要多少时间?
【例 20】 小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上 学走两条路所用的时间一样多.已知下坡的速度是平路的 2 倍,那么平路的速度是上坡的多少 倍?
【巩固】 小明上午九点上山,每小时 3 千米,在山顶休息 1 小时候开始下山,每小时 4 千米,下午一点 半到达山下,问他共走了多少千米.
【巩固】 小明从甲地到乙地,去时每时走 2 千米,回来时每时走 3 千米,来回共用了 5 小时.小明去时 用了多长时间?
3-1-1.行程问题基础.题库
学生版
page 6 of 8
【例 13】 飞机以 720 千米/时的速度从甲地到乙地,到达后立即以 480 千米/时的速度返回甲地.求该车 的平均速度.
【巩固】 一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行 到乙地. 骑车时每小时行 12 千米,步行时每小时 4 千米,这个人走完全程的平均速度是多少?
【巩固】 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时 60 千米的速度行驶,正好可以按时返回 甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时 55 千米.如果他想按时返回甲地, 他应以多大的速度往回开?
【例 15】 小明去爬山,上山时每时行 2.5 千米,下山时每时行 4 千米,往返共用 3.9 时。小明往返一趟共 行了多少千米?
行程问题基础
教学目标
1. 行程的基本概念,会解一些简单的行程题. 2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位 1 法” 3. 利用对比分析法解终(中)点问题
知识精讲
一、 s 、 v 、 t 探源
我们经常在解决行程问题的过程中用到 s 、 v 、 t 三个字母,并用它们来分别代表路程、速度和时间。 那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。表示时间的 t ,这个字母 t 代表英文单词 time ,翻译过来就是时间的意思。表示速度的字母 v ,对应的单词同学们可能 不太熟悉,这个单词是 velocity ,而不是我们常用来表示速度的 speed 。 velocity 表示物理学上的速度。与
【巩固】 某人要到 60 千米外的农场去,开始他以 6 千米/时的速度步行,后来有辆速度为 18 千米/时的 拖拉机把他送到了农场,总共用了 6 小时.问:他步行了多远?