小学六年级奥数行程问题
六年级奥数行程问题知识归纳及训练

六年级奥数行程问题知识归纳及训练一、知识整理基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
过程问题主要解决方法是画线段图法。
二、细分类型题训练1.停走问题解题要领:这类题抓住一个关键--假设不停走,算出本来需要的时间。
1)、龟兔赛跑,全程5.4千米,兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停的跑,但兔子却边跑边玩,它先跑1分,然后再玩15分,又跑2分,玩15分,再跑3分,玩15分,……,那么先到达终点的比后到达终点的快几分钟呢?2)、在一条公路上,甲、乙两个地点相距600米。
每小时行走4千米,李强每小时5千米。
8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都的掉头反向而行,再过3分钟,他们又掉头相向而行,依次按照1,3,5,7,9,……分钟数掉头行走,那么,张、李二人相遇时间是8点几分呢?2、多人行程解题要领:这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。
1)、有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。
六年级奥数(行程问题)

学习改变命运,思考成就(chéngjiù)未来!姓名(xìngmíng) _______________行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题我们在解决(jiějué)行程问题前,要牢记以下公式行程问题是研究(yánjiū)物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间(shíjiān)和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对(xiāngduì)开出,相向而行。
六年级奥数行程问题

行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行 程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙例题专题简行程问题(一)车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以 先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车 到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A 、B 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时。
两车同时从两地开出,相遇时甲车距B 地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。
六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧一、行程问题解题技巧之相遇问题。
1. 题目。
甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过3小时两人相遇。
求A、B两地的距离。
解析。
根据相遇问题的公式:路程 = 速度和×相遇时间。
甲、乙的速度和为15 + 10=25(千米/小时),相遇时间是3小时,所以A、B两地的距离为25×3 = 75千米。
2. 题目。
A、B两地相距200千米,甲、乙两车分别从A、B两地同时相向开出,甲车的速度为每小时30千米,乙车的速度为每小时20千米。
问几小时后两车相遇?解析。
速度和为30+20 = 50千米/小时,根据相遇时间 = 路程÷速度和,可得相遇时间为200÷50=4小时。
3. 题目。
甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是每秒6米,乙的速度是每秒4米。
两人同时同地反向出发,经过多少秒两人第一次相遇?解析。
在环形跑道上反向出发,相遇时两人跑的路程和就是跑道的周长。
速度和为6 + 4=10米/秒,根据时间 = 路程÷速度和,可得相遇时间为400÷10 = 40秒。
二、行程问题解题技巧之追及问题。
4. 题目。
甲、乙两人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,乙先走2小时后,甲才出发,问甲几小时后能追上乙?解析。
乙先走2小时,则先走的路程为6×2 = 12千米。
甲、乙的速度差为8 6 = 2千米/小时。
根据追及时间 = 路程差÷速度差,可得追及时间为12÷2 = 6小时。
5. 题目。
一辆汽车以每小时60千米的速度从A地开往B地,3小时后一辆摩托车以每小时90千米的速度也从A地开往B地,问摩托车出发后几小时能追上汽车?解析。
汽车先出发3小时,行驶的路程为60×3 = 180千米。
摩托车与汽车的速度差为90 60 = 30千米/小时。
小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
六年级奥数行程问题汇总

行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追与问题。
行 程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况: (1)相向而行:相遇时间=距离÷速度和 (2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追与时间=追与距离÷速度差 在环形跑道上,速度快的在前,慢的在后。
追与距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答此题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以 先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时) 甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时) 答:甲车行完全程用了4.7小时。
1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车 到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A 、B 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时。
两车同时从两地开出,相遇时甲车距B 地还有多少千米?挑战自我例题1专题简析:行程问题(一)3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。
六年级奥数专题练习题:行程问题

六年级奥数专题练习题:行程问题(一)1、东西两地长217.5千米,甲车以每小时25千米的速度从东地到西地;1.5小时后,乙车从西地出发到东地,再过3小时两车还相距15千米。
乙车每小时行多少千米?2、甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行6千米,乙车每小时行8千米,两车在离中点32千米处相遇。
求A、B两地间的距离是多少千米?3、甲、乙两辆旅游车同时从A、B两地出发,相向而行,4小时相遇.相遇后甲车继续行驶了3小时到达B地,乙车每小时行24千米。
问:A、B两地相距多少千米?4、两名运动员在湖的周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时同地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?5、两名运动员在湖的周围环形跑道上练习长跑。
甲每分比乙多跑50米.如果两人同时同地同向出发,则经过45分甲追上乙.如果两人同时同地反向出发,则经过5分可以相遇。
求甲乙两人的速度.6、甲、乙两人以每分60米的速度同时、同地、同向步行出发,走15分后,甲返回原地取东西,而乙继续前进。
甲取东西用去5分时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上乙?7、一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流需要8小时,水流速度每小时为2.5千米。
求轮船在静水中的速度是多少?8、某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。
已知火车长90米。
求火车的速度?9、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?10、一列货车共50节,每节车身长30米,两节车间隔长1.5米,这列货车平均每分钟前进1000米,要穿过1426.5米山洞,需要多少分钟?小学六年级奥数题——行程问题1。
甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?2。
小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数行程问题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-行程问题(一) 【知识点讲解】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
相遇问题:例1、甲乙两车同时从AB 两地相对开出,第一次相遇后两车继续行驶,各自到达对方出发点后立即返回,第二次相遇时离B 地的距离是AB 全程的51。
已知甲车在第一次相遇时行了120千米。
AB 两地相距多少千米?例2、甲、乙两车分别从A 、B 两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。
问A、B 两城相距多少千米?例3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米?例4、甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少?例5、小李从A城到B城,速度是50千米/小时,小兰从B城到A城,速度是40千米/小时。
两人同时出发,结果在距A、B两城中点10千米处相遇。
求A、B两城间的距离。
例6、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时休息5分钟,小张以每小时6千米的速度每走5分休息10分钟.两人出发后多长时间第一次相遇?家庭作业1、一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时,客车每小时行多少千米?2、一个600米长的环形跑道上,兄弟两人如果同时从同一起点按顺时针反方向跑步,每隔12分钟相遇一次;如果两人同从同一起点反方向跑步,每隔4分中相遇一次。
兄弟两人跑一圈各要几分钟?3、A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?4、一辆小轿车,一辆货车两车分别从A、B两地出发,相向而行。
出发时,小轿车,货车的速度比是4:5相遇后,小轿车的速度减少了20%,货车的速度增加20%,这样,当小轿车到达B地时,货车距离A地还有10千米,那么A、B两地相距多少千米?5、一辆汽车在甲乙两站之间行驶.往返一次共用去4小时.汽车去时每小时行45米,返回时每小时行驶30千米,那么甲,乙两站相距多少千米?追及问题例7、甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米,已知甲每小时比乙多行4千米。
甲、乙两人每小时各行多少千米?例8、猎犬发现在离它9米远有一只奔跑的兔子,立刻追赶,猎犬的步子大,它跑5步的路程,兔要跑9步,但兔子的动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子?例9、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?例10、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?例11、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?家庭作业1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?2、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?3、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?4、龟兔进行10000米跑步比赛.兔每分钟跑400米,龟每分钟跑80米,龟每跑5分钟歇25分钟,谁先到达终点?5、在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次?6、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路,某人骑自行车从甲地到乙地后沿原路返回。
去时用了4小时12分,返回时用了3小时48分。
已知自行车的上坡速度是每小时10千米,求自行车下坡的速度。
行程问题(二)【知识点讲解】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.关键:确定运动过程中的位置和方向。
顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程。
流水问题:例1、一船逆水而上,船上某人于大桥下面将水壶遗失被水冲走,当船回头时,时间已过20分钟.后来在大桥下游距离大桥2千米处追到了水壶.那么该河流速是每小时多少千米?例2、一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?例3、(14广益)一架飞机所带燃料最多可以用7.5小时。
飞机去时顺风,每小时可以飞行1200千米;回时逆风,每小时可以飞行800千米。
那么这架飞机最多飞出多远就要返航?例4、(14广益)自动扶梯以均匀的速度由下往上行驶,两位性急的孩子要从扶梯上楼。
已知男孩每分钟走20阶,女孩每分钟走15阶。
结果,男孩用了5分钟到达,女孩用了6分钟到达楼上。
扶梯露在外面的部分共有多少阶?例5、只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?例6、一船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了8小时。
已知顺水每小时比逆水多行20千米,又知前4小时比后4小时多行60千米,那么,甲、乙两港相距多少千米?家庭作业1、一艘货轮顺流航行36千米,逆流航行12千米共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时。
顺流航行12千米,又逆流航行24千米要用多少小时?2、从甲地到乙地的路程分为上坡、平坡、下坡三段,各段路程之和比1:2:3,某人走这三段路所用的时间之比是4:5:6。
已知他上坡时的速度为每小时2.5千米,路程全长为20千米。
此人从甲地走到乙地需要多长时间?3、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?4、一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?5、在商场里,小明从正在向上移动的自动扶梯顶部下120 级台阶到达底部,然后从底部上90 级台阶回到顶部。
自动扶梯从底部到顶部的台阶数是不变的,假设小明单位时间内向下的台阶数是他向上的台阶数的2倍.则该自动扶梯从底到顶的台阶数为多少?过桥问题例1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
求这列火车的速度是每秒多少米?车长多少米?例2、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.例3、一支队伍1200米长,以每分钟80米的速度行进。
队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。
问联络员每分钟行多少米?例4、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?例5、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?家庭作业1、一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?2、人以每分钟60米的速度沿铁路边步行,一列长144米的客车从他身后开来,从他身边通过用了8秒钟,求列车的速度。
3、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。
行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。
这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒。
这列火车的车身总长是多少米?4、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒?。