六年级奥数行程问题

合集下载

六年级奥数(行程问题)

六年级奥数(行程问题)

学习改变命运,思考成就(chéngjiù)未来!姓名(xìngmíng) _______________行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题我们在解决(jiějué)行程问题前,要牢记以下公式行程问题是研究(yánjiū)物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间(shíjiān)和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米 ?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对(xiāngduì)开出,相向而行。

六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧一、行程问题解题技巧之相遇问题。

1. 题目。

甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过3小时两人相遇。

求A、B两地的距离。

解析。

根据相遇问题的公式:路程 = 速度和×相遇时间。

甲、乙的速度和为15 + 10=25(千米/小时),相遇时间是3小时,所以A、B两地的距离为25×3 = 75千米。

2. 题目。

A、B两地相距200千米,甲、乙两车分别从A、B两地同时相向开出,甲车的速度为每小时30千米,乙车的速度为每小时20千米。

问几小时后两车相遇?解析。

速度和为30+20 = 50千米/小时,根据相遇时间 = 路程÷速度和,可得相遇时间为200÷50=4小时。

3. 题目。

甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是每秒6米,乙的速度是每秒4米。

两人同时同地反向出发,经过多少秒两人第一次相遇?解析。

在环形跑道上反向出发,相遇时两人跑的路程和就是跑道的周长。

速度和为6 + 4=10米/秒,根据时间 = 路程÷速度和,可得相遇时间为400÷10 = 40秒。

二、行程问题解题技巧之追及问题。

4. 题目。

甲、乙两人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,乙先走2小时后,甲才出发,问甲几小时后能追上乙?解析。

乙先走2小时,则先走的路程为6×2 = 12千米。

甲、乙的速度差为8 6 = 2千米/小时。

根据追及时间 = 路程差÷速度差,可得追及时间为12÷2 = 6小时。

5. 题目。

一辆汽车以每小时60千米的速度从A地开往B地,3小时后一辆摩托车以每小时90千米的速度也从A地开往B地,问摩托车出发后几小时能追上汽车?解析。

汽车先出发3小时,行驶的路程为60×3 = 180千米。

摩托车与汽车的速度差为90 60 = 30千米/小时。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

六年级奥数题行程问题18题

六年级奥数题行程问题18题

六年级奥数题行程问题18题1.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?2.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?3.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度.4.甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?5.一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用_______小时.6.某船在静水中的速度是每小时13.5千米,水流速度是每小时3.5千米,逆水而行的速度是每小时_______千米.7.某船的航行速度是每小时10千米,水流速度是每小时_____千米,逆水上行5小时行40千米.8.一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,那么这只船行140千米需______小时(顺水而行).9.一艘轮船在静水中的速度是每小时15公里,它逆水航行11小时走了88公里,这艘船返回需______小时.10.一只小船第一次顺流航行56公里,逆水航行20公里,共用12小时;第二次用同样的时间,顺流航行40公里,逆流航行28公里,船速______,水速_______.11.甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需_______小时.12.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,那么汽船顺流开回乙码头需要_______小时.13.甲、乙两港相距192千米,一艘轮船从甲港到乙港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的.5倍,那么水速______,船速是______.14.一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3小时的路程相等,那么船速______,水速_______.15.甲、乙两地相距48千米,一船顺流由甲地去乙地,需航行3小时;返回时间因雨后涨水,所以用了8小时才回到乙地,平时水速为4千米,涨水后水速增加多少?16.静水中甲、乙两船的速度为22千米、18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若水速是每小时4千米,问甲开出后几小时可追上乙?17.一支运货船队第一次顺水航行42千米,逆水航行8千米,共用了11小时;第二次用同样的时间,顺水航行了24千米,逆水航行了14千米,求这支船队在静水中的速度和水流速度?18.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需5小时,问乙船逆流而上需要几小时?。

六年级 行程问题(综合)奥数 含答案

六年级 行程问题(综合)奥数 含答案

行程问题(综合)知识梳理教学重、难点作业完成情况典题探究例1. 小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?例2. 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。

例3. 甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?例4. 甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?1耐心细心责任心例5. 甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。

例6. 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例7. 甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?演练方阵A档(巩固专练)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用秒.5.A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经小时,乙在甲丙之间的中点?6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3.6公里,骑车人速度为每小时10.8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A 、C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.15.B A ,两地间的距离是950米.甲、乙两人同时由A 地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B 地最近,距离是______米.16. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次.17.甲、乙二人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距终点多少米?B 档(提升精练)1. 甲乙两人分别从圆的直径两端点同时出发,沿圆周行进。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

六年级奥数之行程问题精选

六年级奥数之行程问题精选

六年级奥数之行程问题精选1.图中A、C两地相距2千米,C、B两地相距5千米。

甲、乙两人同时从C地出发,甲向B地走,到达B后立即返回,乙向A地走,到达A后立即返回。

如果甲的速度是乙的速度的1.5倍,那么当乙到达D地时,还未能与甲相遇,他们相距0.5千米,这时甲距C 地多少千米?2.A、B两地相距36千米,甲、乙、丙的速度分别是4千米/小时、7千米/小时、5千米/小时。

如果甲、乙从A地,丙从B地同时出发相向而行,那么几小时后,丙与乙的距离是丙与甲的距离的2倍?3.甲、乙二人分别从A、B两地同时出发,在A、B之间往返跑步,甲每秒跑2米,乙每秒跑3米。

如果他们第四次相遇点与第五次相遇点的距离是160米,那么A、B之间的距离是多少千米?4.A先生坐在行驶的公共汽车上,忽然发现B先生正在向相反的方向步行,2分钟后汽车到站,A先生去追B。

如果A先生的速度是B先生速度的2倍,是汽车速度的1,那4么A先生追上B先生要多少分钟?5.轮船鸣着汽笛,以每小时18千米的速度面对悬崖行驶,4秒钟后听到回声。

声音传播的速度为每秒340米,请问轮船鸣笛时距悬崖多少米?6.甲、乙二人从A、B两地同时相向而行,甲每分钟行走80米,乙每分钟走70米,出发一段时间后,二人在距中点60米处相遇。

如果甲晚出发一会儿,那么二人在距中点220米处相遇。

甲晚出发了多少分钟?7.某人从A地到B地如果用每分钟90米的速度走,那么要迟到5分钟,如果用每分钟100米的速度走,那么仍迟到3分钟。

他应以每分钟多少米的速度走才能准时到达?8.在一条公路上,甲、乙两个地点相距600米。

张明每小时行走4千米,李强每小时行走5千米,8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再过3分钟,他们又调头相向而行,依次接照1、3、5、7……(连续奇数)分钟数调头行走。

那么,张李两人相遇时是8点几分?9.A、C两地相距7000米,B地是A、C两地的中点,小明骑自行车从A地、小华步行从B地同时出发去C地,并且到了C地立即返回,已知小明每分钟走250米,小华每分钟走100米,小明和小华相遇时距C地多少米?10.两地相距1800米,甲、乙两人同时从这两地相向出发,甲快乙慢,12分钟相遇于A 地,如果每人每分钟多走25米,那么相遇地点B地离A地有33米。

六年级奥数小升初行程问题

六年级奥数小升初行程问题

1、某运动员要跑24公里。

他先以平均每小时8里的速度跑完这段距离的三分之二,而后他加大速度,问:能否在跑完剩下路程时,使全程的平均速度提高到每小时12里?2、有一只蚂蚁在一根弹性充分好的橡皮筋上的A 点,以每秒1厘米的速度向前爬行。

从小蚂蚁开始爬行的时候算起,橡皮筋在第二秒、第四秒、第六秒、第八秒、第十秒………时均匀的伸长为原来的2倍。

那么,在第9秒时,这时小蚂蚁离A点厘米。

3、狗追狐狸,狗跳一次前进1.8米,狐狸跳一次前进1.1米。

狗每秒跳两次时狐狸恰好跳3次。

如果开始时狗离狐狸有30米,那么狗跑多少米才能追上狐狸?4、冯老师每天早上做户外晨练,他第一天跑步2000米,散步1600米,共用25分钟;第二天跑步3000米,散步500米,共用22分钟。

冯老师跑步时的速度总是一样的,散步时的速度也总是一样的。

求冯老师跑步的速度?5、王老师每天早上晨练,他第一天跑步1000米,散步1600米,共用25分钟;第二天跑步2000米,散步800米,共用20分钟。

假设王老师跑步的速度和散步的速度均保持不变。

求王老师跑步的速度?王老师散步800米所用的时间?6、兄弟两人骑自行车同时从甲地到乙地,弟弟在前一半路程每小时行5千米,后一半路程每小时行7千米,哥哥按时间分段行驶,前31时间每小时行4千米,中间31每小时行6千米,后31每小时行8千米。

结果哥哥比弟弟早到20分钟,甲乙两地的路程是千米。

7、甲、乙两人从A地到B地,甲前31路程的行走速度是5千米/小时,中间31的路程行走时4.5千米/小时,最后31的路程的行走速度是4千米/小时;乙前21路程的行走速度是5千米/小时,后21路程的行走速度是4千米/小时。

已知甲比乙早到30秒,A地到B地的路程是千米。

8、张、王二人骑摩托车同时从甲地出发,沿着同一条公路前进,张的速度比王的速度每小时快6千米。

张比王早20分钟到乙地,又继续前进。

当王到达乙地时,张比王多走了20千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行 程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙例题专题简行程问题(一)车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以 先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时) 解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车 到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A 、B 两地相距900千米,甲车由A 地到B 地需15小时,乙车由B 地到A 地需10小时。

两车同时从两地开出,相遇时甲车距B 地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。

到10点钟时两车相距112.5千米。

继续行进到下午1时,两车相距还是112.5千米。

A 、B 两地间的距离是多少千米?两辆汽车同时从东、西两站相向开出。

第一次在离东站60千米的地方相遇。

之后,两车继续以原来的速度前进。

各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。

两站相距多少千米?例题挑战自我从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。

两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。

这时这辆汽车距中点30千米,也就是说这辆汽车再行30千米的话,共行的路程相当于东、西两站路程的1.5倍。

找到这个关系,东、西两这站之间的距离也就可以求出来了。

所以(60×3+30)÷1.5=140(千米)答:东、西两站相距140千米。

1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。

各自到站后都立即返回,又在距中点南侧15千米处相遇。

两站相距多少千米?2、两列火车同时从甲、乙两站相向而行。

第一次相遇在离甲站40千米的地方。

两车仍以原速继续前进。

各自到站后立即返回,又在离乙站20千米的地方相遇。

两站相距多少千米?3、甲、乙两辆汽车同时从A 、B 两地相对开出。

第一次相遇时离A 站有90千米。

然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。

第二次相遇时在离A 地的距离占A 、B 两站间全程的65%。

A 、B 两站间的路程是多少千米?A 、B 两地相距960米。

甲、乙两人分别从A 、B 两地同时出发。

若相向而行,6分钟相遇;若同向行走,80分钟甲可以追上乙。

甲从A 地走到B 地要用多少分例题挑战自我钟?甲、乙两人从同时同向出发到相遇,6分钟共行的路程是960米,那么每分钟共行的路程(速度和)是960÷6=160(米);甲、乙两人从同时同向出发到甲追上乙需用去80分钟,甲追乙的路程是960米,每分钟甲追乙的路程(速度差)是960÷80=12(米)。

根据甲、乙速度和与差,可知甲每分钟行(160+12)÷1=86(米)。

甲从A 地到B 地要用960÷86=11743(分钟),列算式为 960÷[(960÷6+960÷80)÷2]=11743(分钟) 答:甲从A 地走到B 地要用11743分钟。

1、一条笔直的马路通过A 、B 两地,甲、乙两人同时从A 、B 两地出发,若先跟乡行走,12分钟相遇;若同向行走,8分钟甲就落在乙后面1864米。

已知A 、B 两地相距1800米。

甲、乙每分钟各行多少米?2、父子二人在一400米长的环行跑道上散步。

他俩同时从同一地点出发。

若想8背而行,267 分钟相遇;若同向而行,2623分钟父亲可以追上儿子。

问:在跑道上走一圈,父子各需多少分钟?3、两条公路呈十字交叉。

甲从十字路口南1350米处向北直行,乙从十字路口处向东直行。

同时出发10分钟后,二人离使字路口的距离相等;二人仍保持原来速度直行,又过了80分钟,这时二人离十字路口的距离又相等。

求甲、乙二人的速度。

挑战自我上午8时8分,小明骑自行车从家里出发。

8分钟后每爸爸骑摩托车去追他。

在离家4千米的地方追上了他,然后爸爸立即回家。

到家后他又立即回头去追小明。

再追上他的时候,离家恰好是8千米(如图33-2所示),这时是几时几分?图33—2爸爸8:16出发小明8:08出发4千米4千米由题意可知:爸爸第一次追上小明后,立即回家,到家后又回头去追小名,再追上小明时走了12千米。

可见小明的速度是爸爸的速度的13。

那么,小明先走8分钟后,爸爸只花了4分钟即可追上,这段时间爸爸走了4千米。

列式为爸爸的速度是小明的几倍:(4+8)÷4=3(倍)爸爸走4千米所需的时间:8÷(3—1)=4(分钟)爸爸的速度:4÷4=1(千米/分)爸爸所用的时间:(4+4+8)÷1=16(分钟)16+16=32(分钟)答:这时是8时32分。

1、A 、B 两地相距21千米,上午8时甲、乙分别从A 、B 两地出发,相向而行。

挑战自我例题甲到达B 地后立即返回,乙到达A 地后立即返回。

上午10时他们第二次相遇。

此时,甲走的路程比乙走的多9千米,甲一共行了多少千米?甲每小时走多少千米?2、张师傅上班坐车,回家步行,路上一共要用80分钟。

如果往、返都坐车,全部行程要50千米;如果往、返都步行,全部行程要多长时间?3、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。

如果乙和丙按原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?甲、乙、丙三人,每分钟分别行68米、70.5米、72米。

现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。

东、西两镇相距多少器秒年米毫 ?如图33-3所示,可以看出,乙、丙两人相遇时,乙比甲多行的路程正好是后来甲、丙2分钟所行的路程和,是(68+72)×2=280(米)。

而每分钟乙比甲多行70.5—68=2.5(米)可见,乙、丙相遇时间是280÷2.5=112(分钟),因此,求东、西两镇间的距离可用速度和乘以相遇时间求出。

列式为乙、丙相遇时间:(68+72)×2÷2.5=112(分钟)东、西两镇相距的千米数:(70.5+72)×112÷1000=15.96(千米)1、有甲、乙、丙三人,甲每分钟行70米,乙每分钟行60米,丙每分钟行75米,甲、乙从A 地去B 地,丙从B 地去A 地,三人同时出发,丙遇到甲8分钟挑战自我例题后,再遇到乙。

A、B两地相距多少千米?2、一只狼以每秒15米的速度追捕在它前面100米处的兔子。

兔子每秒行4.5米,6秒钟后猎人向狼开了一枪。

狼立即转身以每秒16.5米的速度背向兔子逃去。

问:开枪多少秒后兔子与狼又相距100米?3、甲、乙两车同时从A地开往B地,乙车6小时可以到达,甲车每小时比乙车慢8千米,因此比乙车迟一小时到达。

A、B两地间的路程是多少千米?在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。

甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。

甲按顺时针方向行走,乙与丙按逆时针方向行走。

甲第一次遇到乙后114分钟于到丙,再过334分钟第二次遇到乙。

已知乙的速度是甲的23,湖的周长为600米,求丙的速度。

甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。

甲、乙的速度和为600÷(114+334)=120米/分。

甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。

甲、丙的速度和为600÷(114+334+114)=96(米/例题专题简行程问题(二)分),这样,就可以求出丙的速度。

列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分)答:丙每分钟行24米。

1、甲、乙、丙三人环湖跑步。

同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。

在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。

已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。

2、兄、妹2人在周长为30米的圆形小池边玩。

从同一地点同时背向绕水池而行。

兄每秒走1.3米。

妹每秒走1.2米。

他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。

求这个圆的周长。

挑战自我甲、乙两人在同一条椭圆形跑道上做特殊训练。

他们同时从同一地点出发,沿相反方向跑。

每人跑完第一圈到达出发点后,立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的23 ,甲跑第二圈时的速度比第一圈提高了13,乙跑第二圈时速度提高了15。

已知甲、乙两人第二次相遇点距第一次相遇点190米。

这条椭圆形跑道长多少米?根据题意画图34-2:甲、乙从A 点出发,沿相反方向跑,他们的速度比是1:23=3:2。

相关文档
最新文档