教案新人教版七上1.5.1-乘方(1)
七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》一. 教材分析《乘方(1)》这一节的内容,主要让学生理解乘方的概念,掌握有理数的乘方运算法则。
通过学习乘方,学生能更好地理解数学中的指数运算,为以后学习更高级的数学知识打下基础。
教材通过丰富的例子,引导学生探究乘方的规律,让学生在实践中掌握乘方运算。
二. 学情分析七年级的学生已经掌握了有理数的乘法运算,但对乘方的概念和运算法则可能还比较陌生。
因此,在教学过程中,教师需要善于启发学生利用已有的知识经验来理解乘方,同时要注重培养学生的观察、思考、动手能力。
三. 教学目标1.让学生理解乘方的概念,掌握有理数的乘方运算法则。
2.培养学生观察、思考、动手的能力,提高学生解决实际问题的能力。
3.培养学生合作学习、积极探究的精神。
四. 教学重难点1.乘方的概念。
2.有理数的乘方运算法则。
3.运用乘方解决实际问题。
五. 教学方法1.启发式教学:通过提问、讨论等方式,引导学生主动探究乘方的规律。
2.实践性教学:让学生通过动手操作,加深对乘方概念和运算法则的理解。
3.案例教学:选取生活中的实际问题,让学生运用乘方知识解决。
六. 教学准备1.教案、PPT等教学资料。
2.练习题、黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“2的三次方等于多少?”引发学生对乘方的兴趣,然后简要介绍乘方的概念。
2.呈现(10分钟)教师利用PPT展示乘方的定义、运算法则等知识点,同时引导学生回顾有理数的乘法运算,从而自然地过渡到乘方运算。
3.操练(10分钟)教师设计一些练习题,让学生分组讨论、解答。
教师在这个过程中要注意引导学生运用已有的知识经验来理解乘方,并及时给予反馈、指导。
4.巩固(10分钟)教师继续设计一些练习题,让学生独立完成。
完成后,教师选取部分学生的答案进行讲解,巩固学生对乘方的理解和运用。
5.拓展(10分钟)教师引导学生思考:乘方在实际生活中有哪些应用?让学生举例说明,从而提高学生解决实际问题的能力。
人教版数学七年级上册1.5.1《乘方》教案1

人教版数学七年级上册1.5.1《乘方》教案1一. 教材分析《乘方》是人教版数学七年级上册第一章第五节的第一课时,本节课主要让学生掌握乘方的概念,理解乘方的意义,学会进行乘方的运算。
教材通过引入“幂”的概念,让学生理解乘方的意义,并通过例题和练习,使学生掌握乘方的运算方法。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法,对乘法运算有一定的理解。
但是,乘方作为乘法的推广,学生可能难以理解其本质。
因此,在教学过程中,需要通过具体例题和实际操作,让学生深入理解乘方的意义。
三. 教学目标1.理解乘方的概念,掌握乘方的运算方法。
2.能够运用乘方解决实际问题。
3.培养学生的逻辑思维能力。
四. 教学重难点1.乘方的概念。
2.乘方的运算方法。
五. 教学方法采用讲授法、例题解析法、小组讨论法、练习法等教学方法,通过生动有趣的例题和实际操作,引导学生理解乘方的概念,掌握乘方的运算方法。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数的乘法,引导学生思考:乘法可以表示为几个相同因数的乘积,那么,几个相同因数的乘积可以表示为什么呢?从而引入乘方的概念。
2.呈现(15分钟)PPT呈现乘方的定义和乘方的运算方法,让学生直观地了解乘方的意义。
通过例题解析,让学生学会进行乘方的运算。
例题1:计算2^3。
解析:2^3表示2乘以自己3次,即2×2×2=8。
例题2:计算3^4。
解析:3^4表示3乘以自己4次,即3×3×3×3=81。
3.操练(10分钟)让学生在课堂上进行乘方的运算练习,教师巡回指导,及时纠正学生的错误。
4.巩固(10分钟)让学生完成一些乘方的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:乘方可以表示几个相同因数的乘积,那么,几个相同因数的除法可以表示为什么呢?让学生自己探索并得出答案。
6.小结(5分钟)对本节课的知识进行小结,强调乘方的概念和运算方法。
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计

七年级学生在学习有理数乘方这一章节之前,已经掌握了有理数的加减乘除运算,具备了一定的数学基础。但在乘方概念的理解和运用上,学生可能存在一定的困难。因此,在教学过程中,需要关注以下几点:
1.学生对乘方概念的理解程度,部分学生可能难以从本质上理解乘方的含义,需要通过具体实例和形象比喻来帮、叠加的过程,让学生直观地感受乘方的意义。同时,引导学生思考:“乘方与之前学过的乘法有什么关系?它们之间的区别是什么?”
(二)讲授新知
1.乘方的定义:讲解乘方的定义,即一个数自乘若干次,可以表示为a^n(a为底数,n为指数)。强调乘方的意义,以及正整数、负整数和零的乘方的表示方法。
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的概念,掌握有理数乘方的表示方法和运算规则。
2.能够正确计算正整数、负整数和零的乘方,并熟练运用乘方解决实际问题。
3.学会运用乘方的性质,简化有理数的运算过程,提高运算效率。
4.开放性探究题目:
-布置一道开放性探究题目,如:“探究乘方的分配律和结合律在生活中的应用”,鼓励学生主动探索、发现数学规律。
5.课后小结:
-要求学生撰写课后小结,总结本节课所学乘方知识,以及自己在学习过程中的收获和困惑。
6.阅读拓展:
-推荐阅读与乘方相关的数学故事或数学家传记,激发学生学习数学的兴趣,培养学生的数学素养。
2.学生在乘方运算过程中可能出现的错误,如符号处理不当、计算顺序混乱等,教师需引导学生总结错误原因,提高运算准确性。
3.学生在解决实际问题时,可能不知道如何运用乘方知识,需要教师设计贴近生活的例题,引导学生将乘方知识应用于实际问题中。
1.5.1乘方有理数的混合运算(教案)

五、教学反思
今天在教授“乘方有理数的混合运算”这一章节时,我发现学生们在理解乘方的概念和运算规则方面存在一些困难。尤其是零指数幂和负整数指数幂的部分,学生们觉得比较抽象,难以掌握。在教学中,我尽量通过生动的例子和生活情境来帮助学生理解这些概念。
在讲授新课的过程中,我尝试用简单明了的语言解释乘方的定义,并通过实际案例让学生看到乘方运算在实际问题中的应用。我发现,当学生能够将新知识与现实生活联系起来时,他们对知识的理解和兴趣都会有所提高。
2.提高学生的逻辑推理能力:使学生掌握有理数混合运算的运算法则,并能运用逻辑推理进行正确计算,解决相关问题。
3.增强学生的数学建模能力:培养学生将实际问题转化为数学模型,利用乘方和有理数的混合运算进行求解,从而解决实际问题的能力。
4.发展学生的数学运算能力:通过课堂练习和课后作业,让学生熟练掌握乘方和有理数混合运算的计算方法,提高运算速度和准确性。
2.学会有理数的混合运算,能够熟练运用运算法则进行计算。
-有理数乘方的运算方法。
-乘方与乘除、加减的混合运算。
-混合运算中的运算顺序和运算法则。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数学抽象能力:通过学习乘方运算,使学生能够从具体实例中抽象出数学规律,理解乘方的概念及其运算规则。
(2)有理数的混合运算:熟练掌握有理数乘方与乘除、加减的混合运算,以及运算顺序和运算法则。
人教版七年级数学上册1.5.1乘方(第一课时)教学设计

-应用题:一个正方体的边长为3厘米,求它的表面积和体积。
2.提高题:设计一些需要运用乘方性质和运算法则的题目,提高学生的逻辑思维能力和解题技巧。
-例如:已知a^2=9,求a^4的值。
-已知2^m × 2^n = 2^8,求m+n的值。
3.拓展题:结合实际生活,设计一些综合性的题目,让学生运用乘方知识解决实际问题,提高他们的学以致用能力。
-讨论乘方在实际生活中的应用,举例说明并解释其原理。
作业布置要求:
1.学生在完成作业时,要认真思考,规范书写,确保作业质量。
2.家长要关注学生的学习情况,督促孩子按时完成作业,并及时与教师沟通孩子的学习状况。
3.教师在批改作业时,要关注学生的解题过程,及时发现并纠正错误,给予针对性的指导。
4.鼓励学生在完成作业后进行互评,相互学习,共同提高。
2.学生回答后,教师总结:“这些场景都涉及到相同因数的连乘,也就是今天我们要学习的乘方。”接着,提出问题:“你们知道什么是乘方吗?”
3.学生尝试回答,教师给予肯定和鼓励,进而引出本节课的主题——乘方。
(二)讲授新知
1.首先,教师向学生介绍乘方的概念,即相同因数相乘的简便表示方法,如a×a×a可以写作a^3。
3.教师对本节课的知识点进行梳理,强调重难点,并对学生的表现进行评价。
4.最后,教师布置课后作业,要求学生巩固所学知识,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对乘方知识的掌握,培养他们运用乘方解决实际问题的能力,特布置以下作业:
1.基础题:完成课本1.5.1乘方部分的相关练习题,包括计算题和应用题,旨在巩固乘方的概念和运算方法。
三、教学重难点和教学设想
人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。
教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。
本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。
但乘方作为一个新的概念,需要学生从新的角度去理解。
学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。
三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.乘方的意义和运算规则。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.实例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。
2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。
例如,2的3次方表示2乘以自己3次,即2×2×2=8。
3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。
可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。
4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。
例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。
人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。
教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。
二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。
但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。
三. 教学目标1.了解乘方的概念,理解乘方的意义。
2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.乘方的概念。
2.有理数的乘方规则。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.小组合作学习的小组划分和任务分配。
七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。
2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。
3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。
教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。
4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。
5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。
教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。
6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。
人教版数学七年级上册第1章有理数1.5.1有理数的乘方(教案)

2.教学难点
(1)零指数幂的理解:理解零指数幂的意义,掌握a^0 = 1(a ≠ 0)的规律。
难点解析:学生可能会对零指数幂的意义产生疑问,需要通过实例和图示等方法解释零指数幂的含义。
(2)负整数指数幂的计算:掌握负整数指数幂的计算方法,理解其与正整数指数幂的关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、运算法则及其在实际中的应用。通过实践活动和小组讨论,我们加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我深刻体会到有理数乘方这一知识点的教学既要注重概念的理解,又要关注运算技能的培养。以下是我对这次教学的几点反思:
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题,如计算不同形状的体积和面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算来演示有理数乘方的实际应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
1.关于概念教学:在讲解有理数乘方的概念时,我尽量使用简洁明了的语言,并通过生活实例帮助学生理解。从学生的反馈来看,大部分同学能够较好地掌握乘方的定义,但仍有部分同学对零指数幂和负整数指数幂的概念理解不够透彻。在今后的教学中,我需要更加关注这部分学生的理解情况,通过设计更具针对性的问题,引导他们深入思考。
4.提高学生方法,提高运算速度和准确性,培养良好的数学运算习惯。
5.培养学生的数学应用意识:通过实例分析,使学生认识到数学知识在生活中的广泛应用,激发他们学习数学的兴趣,增强数学应用意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.1 乘方(一)
[教学目标]
1.有理数乘方的相关概念;
2.乘方的意义
3.乘方的有关运算
4.乘方的有关性质;
[教学重点与难点]
1.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算;2.教学难点:准确建立底数、指数和幂三个概念,并能求幂的运算;
3.学生的疑点:乘方和幂的区别以及(-a)n与-a n的区别.
[教学过程设计]
一、知识测评
1、(-2)×(-2)×(-2)= ;
2、(-1)×(-2)×(-3)×(-4)×5= ;
3、(-1)×(-1)×(-1)×(-1)×(-1)= 。
二、新课
(一)新课导入
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)4个a相乘呢?5个a相乘呢?100个a相乘呢?为了书写简便,引进了乘方
(二)乘方的意义
一般地,n个相同的因数a相乘,即a·a·…·a,记作a n,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94说明概念及读法;
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;
(3)因为a n 就是n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;
(4)乘方是一种运算,幂是乘方运算的结果.
对应练习
一、把下列乘法式子写成乘方的形式:
1、1×1×1×1×1×1×1= ;
2、3×3×3×3×3= ;
3、(-3)×(-3)×(-3)×(-3)= ;
4、 = ;
二、把下列乘方写成乘法的形式:
1、 = ;
2、 = ;
3、 = (三).乘方的有关运算
例题讲解
例1 (1)(-4)3; (2)(-2)4; (3)-24.
强调:(1)计算时仍然是要先确定符号,再确定绝对值;
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
乘方的有关性质
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何次幂都是0.
例2 计算:
(1)(32)3; (2)(-32)3; (3)(-3
2)4; (4)-3
24
; (5)-22×(-3)2; (6)-22+(-3)2. 例3 教材P50例2.
(四)课堂练习
1.教材P51练习1,2;
65656565⨯⨯⨯()3
9.0-479⎪⎭⎫ ⎝⎛()2b a -
2.补充练习
(1)在(-2)6中,指数为 ,底数为 .
(2)在-26中,指数为 ,底数为 .
(3)若a 2=16,则a= .
(4)平方等于本身的数为 ,立方等于本身的数为 .
(5)计算(-151)×46
1= . (6)在(-2)5,(-3)5,(-21)5,(-3
1)5中,最大的数是 . (7)下列说法正确的是( )
A .平方得9的数是3
B .平方得-9的数是-3
C .一个数的平方只能是正数
D .一个数的平方不能是负数
(8)下列运算正确的是( )
A .-24=16
B .-(-2)2=-4
C .(-31)2=-91
D .(-21)2=-4
1 (9)下列各组数中,不相等的是( )
A .(-3)2与-32
B .(-3)2与32
C .(-2)3与-23
D .33
22--与
(10)下列各式计算不正确的是( )
A .(-1)2003=-1
B .-12002=1
C .(-1)2n =1(n 为正整数)
D .(-1)2n+1=-1(n 为正整数)
(11)计算(-2)2002+(-2)2003所得的结果为( )
A .-2
B .-22002
C .22002
D .-22003
(12)下列各数表示正数的是( )
A .1+a
B .(a -1)2
C .-(-a )
D .
a 1 (五)小结
(1)引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数、和幂三个基本概念.
(2)教师扩展:首先,有理数的乘方就是几个相同因数积的运算,可以运用有
理数乘方法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n
与-a n 及(a b )n 与a b n
的区别和联系. (六)课后作业
1.教材P56中1,2.
2.补充
(1)试一试从1开始你能迅速连续说出多少正整数的平方?
(2)计算: ①(25)×(-25)×(-25)2,-(-2
5)2,-252; ②(-1)2003,3×22,-42×(-4)2,-23÷(-2)3;
③(-1)n -1; ④31×24,423
1)( ; ⑤(-103)÷25,(-10÷25)3;
⑥(-12÷4)2,(-12)÷42;
⑦-32×(-31)2,[-3×(-3
1)2] . (3)填空:
①如果a <0,那么a 7 0;②如果a 5>0,那么a 0;
③如果a <0,那么a 6 0;④如果a 4>0,且-a >0,那么a 5 0. (。