线性光耦原理与电路设计

合集下载

光耦的工作原理

光耦的工作原理

光耦的工作原理耦合器以光为媒介传输电信号。

它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。

目前它已成为种类最多、用途最广的光电器件之一。

光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。

这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。

所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。

在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。

光耦的优点光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。

光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。

在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

光耦的种类光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。

非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。

常用的4N系列光耦属于非线性光耦。

线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。

常用的线性光耦是PC817A—C系列。

开关电源中常用的光耦是线性光耦。

如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。

基于高线性光耦HCNR201的电压电流测量电路设计

基于高线性光耦HCNR201的电压电流测量电路设计

基于高线性光耦HCNR201的电压电流测量电路设计模拟信号量值采集的精确度和稳定度决定了整个项目的运行可靠程度,然而,现场环境恶劣,干扰严重,为了对模拟信号的线性转换而不把现场的各种噪声干扰引入到控制系统,必须将被测模拟信号与控制系统之间进行良好的线性隔离。

一般情况下,直流隔离措施可采用专用隔离运算放大器(ISO124 系列)加配一个高精度隔离直流电源,通过电气耦合的方式来实现被测模拟信号与控制系统的线性隔离,但这种方法成本较高而且温漂较大。

本文采用线性光耦HCNR201 实现了被测模拟信号与控制系统之间的线性隔离。

线性光耦的隔离原理与普通光耦没有太大差别,只是将改变了普通光耦的单发单收模式,增加一个用于反馈的光电二极管并且增大了线性区域。

两个光电二极管都是非线性的,但其非线性特性都是一样的,所以可以通过反馈通路的非线性来抵消直通通路的非线性,从而实现了信号的线性传递。

HCNR201 的工作原理HCNR201 是Avago 公司推出的高线性光耦器件,通过外接不同的分立器件,可以实现交直流电流和电压的光电隔离转换电路,其内部结构如图1 所示。

HCNR201 由高性能的AlGaAs 型发光二极管及两个具有严格比例关系的光电二极管PD1 和PD2 构成。

当发光二极管中流过电流IF 时,其所发出的光会在光电二极管中PD1、PD2 感应出正比于LED 发光强度的光电流IPD1、IPD2,其中IF、IPD1、IPD2 满足以下关系:(1) (2) (3)式中K1、K2 分别为发光二极管PD1、PD2 的电流传输比,其典型值为0.48,范围为0.36~0.72;K3 为该光耦的传输增益,其典型值为1,范围为0.95~1.05。

图1 HCNR201 内部结构图光电二极管PD1 接入输入回路,用于检测和稳定AlGaAs 型发光二极管的发。

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。

光耦电路原理

光耦电路原理

光耦电路原理
光耦电路是一种将输入和输出电路相互隔离的电子设备。

它由一个光敏元件和一个光发射器组成。

光敏元件通常是光敏二极管或光敏晶体管,而光发射器通常是发光二极管或激光二极管。

光耦电路的工作原理是利用光敏元件对光信号的敏感性。

当输入电路中的电压发生变化时,会引起光敏元件中的光敏二极管或光敏晶体管产生相应的光信号。

这个光信号经过光发射器发射出去,然后被输出电路中的光敏元件接收。

输出电路中的光敏元件也可以是光敏二极管或光敏晶体管,其敏感性与输入电路中的光敏元件相似。

当输出电路中的光敏元件接收到光信号后,会产生相应的电流或电压信号。

之所以使用光耦电路,是因为它可以实现输入和输出电路的电气隔离。

这种隔离可以防止输入电路中的干扰信号传递到输出电路中,从而保护输出电路的正常工作。

另外,光耦电路还具有高速传输、抗电磁干扰和宽工作温度范围等优点。

总结起来,光耦电路通过光敏元件和光发射器的配合,实现了输入和输出电路之间的电气隔离。

它可以在许多电子设备中起到信号转换和隔离的作用,保证信号的稳定传输。

线性光耦隔离电路

线性光耦隔离电路

线性光耦隔离电路线性光耦隔离电路的设计所设计的线性光耦隔离电路是由两个光电耦合器、两个偏置输入电路和一个差分放大电路组成,框图如图1所示。

因为光电耦合器有其特有的工作线性区,偏置输入是用来调节光电耦合器(1)的输入电流,使其工作在线性区。

而光电耦合器(2)和偏置输入(2)通过差分放大电路来耦合光电耦合器(1)的漂移和非线性。

差分放大电路还用来得到放大的模拟信号。

光耦隔离放大电路采用TLP521-2光电耦合器、LF356普通一路放大器和LF347普通四路放大器。

TLP521-2光电耦合器是集成了图1中光电耦合器(1)和(2),LF356主要用于信号输入前的信号处理,一方面保证光电耦合器工作在线性区,另一方面,对输入信号作简单的放大。

LF347则组成差分放大电路。

所以光耦隔离放大电路的结构图如图2所示。

线性光耦隔离电路的接线原理如图3所示。

图中,LF356为放大器(1),中间两个光电耦合器由TLP521-2构成,后面四个放大器由LF347构成。

线性光耦隔离电路的工作原理光电耦合器的工作特性TLP521-2光电耦合器是由两个单独的光电耦合器组成。

一般来讲,光电耦合器由一个发光二极管和一个光敏器件构成。

发光二极管的发光亮度L与电流成正比,当电流增大到引起结温升高时,发光二极管呈饱和状态,不再在线性工作区。

光电二极管的光电流与光照度的关系可用IL∝Eu表述。

其中,E为光照度,u=1±0.05,因此,光电流基本上随照度而线性增大。

但一般硅光电二极管的光电流是几十微安,对于光敏三极管,由于其放大系数与集电极电流大小有关,小电流时,放大系数小,所以光敏三极管在低照度时灵敏度低,而在照度高时,光电流又呈饱和趋势。

达不到线性效果。

因为不同的光电耦合器有不同的工作线性区,所以,在试验过程中,应该首先找到光电耦合器的线性区。

光电耦合器TLP521-2的电流线性区大约为1~10mA。

光电耦合器的偏置输入电路可以决定输入它的电流的范围,偏置电路设计的好,可以使得输入电流在很大范围内变化时,光电耦合器依然工作在线性区。

使用线性光耦HCNR200制作交流电压测量模块

使用线性光耦HCNR200制作交流电压测量模块

使用线性光耦HCNR200制作交流电压测量模块测量范围:幅值30V测量精度:0.5%误差电路自行设计,要求写好设计报告,制作出实物模块。

参考原理见/hiwxzh/blog/item/e145eff1965a43bba40f52a7.html1. 线性光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI 子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。

光耦电路工作原理

光耦电路工作原理

光耦电路工作原理光耦电路是一种利用光信号进行传输和控制的电路,主要由光发射器、光接收器和光电检测器组成。

其工作原理主要基于光电转换、信号传输、隔离作用、电压放大、线性输出、高速响应和可靠性高等特点。

一、光电转换光耦电路中的光发射器通常采用发光二极管(LED)或激光二极管等光源,当电流通过这些光源时,它们会发出光线。

当光线照射到光电检测器上时,会产生光电流,即实现了光电转换。

这个过程是将电信号转换为光信号,为光信号的传输做准备。

二、信号传输在光耦电路中,由于光具有优秀的传输特性,可以在较长距离上传输而不损失信号质量。

通过将电信号转换为光信号,实现了电信号的长距离传输,从而可以将电路中的各个部分连接起来,实现电路的集成化设计。

三、隔离作用光耦电路中的光电检测器将接收到的光信号转换为电信号,但这个电信号与输入的电信号之间是相互隔离的。

这种隔离作用可以有效地避免电路中的相互干扰和噪声,提高电路的稳定性和可靠性。

四、电压放大光耦电路中的光电检测器通常具有电压放大功能,可以将接收到的微弱光信号转换为较强的电信号。

这种电压放大功能可以增强电路的输出能力,使得电路更加适合于实际应用。

五、线性输出光耦电路中的光电检测器通常具有线性输出特性,即输出的电信号与输入的光信号之间呈线性关系。

这种线性输出特性使得光耦电路在模拟信号传输和控制方面具有广泛的应用。

六、高速响应由于光速非常快,因此光耦电路中的光电转换和信号传输速度非常快,可以实现高速响应。

这种高速响应特性使得光耦电路在数字信号传输和控制系统等方面具有广泛的应用。

七、可靠性高光耦电路中的光源和光电检测器通常采用半导体材料制作,具有较长的使用寿命和较高的稳定性。

此外,由于光耦电路中不存在机械接触部分,因此具有较高的可靠性,适用于各种恶劣环境和工业应用场景。

IL300线性光耦隔离原理

IL300线性光耦隔离原理

1IL300-F-X009线性光耦隔离原理线性光耦IL300-F-X009内部结构原理如图1所示。

IL300-F-X009由一个高性能发光二极管LED和两个相邻匹配的光敏二极管PD1和PD2组成,这两个光敏二极管有完全相同的性能参数。

LED是隔离信号的输入端,当有电流流过时就会发光,两个光敏二极管在有光照射时就会产生光电流,IL300-F-X009的内部封装结构使得PD1和PD2都能从LED得到近似光照,且感应出正比于LED发光强度的光电流。

光敏二极管PD1起负反馈作用,用于消除LED 的非线性和偏差特性带来的误差,改善输入与输出电路间的线性和温度特性,稳定电路性能。

光敏二极管PD2是线性光耦的输出端,接收由LED发出的光线而产生与光强成正比的输出电流,达到输入及输出电路间电流隔离的作用。

正是IL300-F-X009内部的封装结构、PD1与PD2的严格比例关系及PD1负反馈的作用保证了线性光耦的高稳定性和高线性度。

当IL300-F-X009内部的LED中流过电流IF时,其所发出的光会在PD1和PD2中感应出正比于LED发光强度的光电流Ip1和Ip2,其中IF、Ip1、Ip2满足以下关系式:式(1)中K1、K2分别为输入、输出光电二极管的电流传输比,其典型值均为0.7%左右。

IF的范围在5mA~20mA之间,能够获得最好的线性关系。

此时Ip1和Ip2的电流一般在200μA以下。

K3被定义为传输增益,其输出侧光电流(Ip2)和输入侧光电流(Ip1)之比是一个恒定值,IL300-F-X009的传输增益K3的范围在0.945~1.061倍之间。

PD1接入到输入电路,用来检测和稳定发光二极管发光的强度,PD2作为输出电路的一部分与测量电路实现了电气隔离。

PD1和PD2安装位置的精确性以及元件先进的封装设计保证了该元件的高线性性和增益的稳定性。

IL300-F-X009的最大非线性有±0.5%,最大输入电流250mA,是模拟信号隔离的极佳解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[电路技术] 排版要求:图片要重新制作。

线性光耦原理与电路设计
1. 线形光耦介绍
光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍
2. 芯片介绍与原理说明
HCNR200/201的内部框图如下所示
其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即
K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。

在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。

HCNR200和HCNR201的内部结构完全相同,差别在于一些指标上。

相对于HCNR200,HCNR201提供更高的线性度。

采用HCNR200/201进行隔离的一些指标如下所示:
* 线性度:HCNR200:0.25%,HCNR201:0.05%;
* 线性系数K3:HCNR200:15%,HCNR201:5%;
* 温度系数: -65ppm/oC;
* 隔离电压:1414V;
* 信号带宽:直流到大于1MHz。

从上面可以看出,和普通光耦一样,线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。

下面对HCNR200/201的典型电路进行分析,对电路中如何实现反馈以及电流-电压、电压-电流转换进行推导与说明。

3. 典型电路分析
Agilent公司的HCNR200/201的手册上给出了多种实用电路,其中较为典型的一种如下图所示:
图2
设输入端电压为Vin,输出端电压为Vout,光耦保证的两个电流传递系数分别为K1、K2,显然,,和之间的关系取决于和之间的关系。

将前级运放的电路提出来看,如下图所示:
设运放负端的电压为,运放输出端的电压为,在运放不饱和的情况下二者满足下面的关系:Vo=Voo-GVi (1)
其中是在运放输入差模为0时的输出电压,G为运放的增益,一般比较大。

忽略运放负端的输入电流,可以认为通过R1的电流为IP1,根据R1的欧姆定律得:
通过R3两端的电流为IF,根据欧姆定律得:
其中,为光耦2脚的电压,考虑到LED导通时的电压()基本不变,这里的作为常数对待。

根据光耦的特性,即
K1=IP1/IF (4)
将和的表达式代入上式,可得:
上式经变形可得到:
将的表达式代入(3)式可得:
考虑到G特别大,则可以做以下近似:
这样,输出与输入电压的关系如下:
可见,在上述电路中,输出和输入成正比,并且比例系数只由K3和R1、R2确定。

一般选R1=R2,达到只隔离不放大的目的。

4. 辅助电路与参数确定
上面的推导都是假定所有电路都是工作在线性范围内的,要想做到这一点需要对运放进行合理选型,并且确定电阻的阻值。

4.1 运放选型
运放可以是单电源供电或正负电源供电,上面给出的是单电源供电的例子。

为了能使输入范围能够从0到VCC,需要运放能够满摆幅工作,另外,运放的工作速度、压摆率不会影响整个电路的性能。

TI公司的LMV321单运放电路能够满足以上要求,可以作为HCNR200/201的外围电路。

4.2 阻值确定
电阻的选型需要考虑运放的线性范围和线性光耦的最大工作电流IFmax。

K1已知的情况下,IFmax又确定了IPD1的最大值IPD1max,这样,由于Vo的范围最小可以为0,这样,由于考虑到IFmax大有利于能量的传输,这样,一般取
另外,由于工作在深度负反馈状态的运放满足虚短特性,因此,考虑IPD1的限制,
这样,
R2的确定可以根据所需要的放大倍数确定,例如如果不需要方法,只需将R2=R1即可。

另外由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤波器,具体电容的值由输入频率以及噪声频率确定。

4.3 参数确定实例
假设确定Vcc=5V,输入在0-4V之间,输出等于输入,采用LMV321运放芯片以及上面电路,下面给出参数确定的过程。

* 确定IFmax:HCNR200/201的手册上推荐器件工作的25mA左右;
* 确定R3:R3=5V/25mA=200;
* 确定R1:;
* 确定R2:R2=R1=32K。

5. 总结
本文给出了线性光耦的简单介绍以及电路设计、参数选择等使用中的注意事项与参考设计,并对电路的设计方法给出相应的推导与解释,供广大电子工程师参考。

相关文档
最新文档