2016广东学导练中考数学模拟卷(三)

合集下载

广东初三初中数学中考模拟带答案解析

广东初三初中数学中考模拟带答案解析

广东初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是()A.B.C.D.2.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2 B.C.D.3.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是()A.3,3,0.4B.2,3,2C.3,2,0.4D.3,3,2二、解答题1.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.2.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.3.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.4.计算:(﹣1)2017+π0﹣+5.如图,已知△ABC,∠BAC=90°,(1)请用尺规作一条直线AD,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)(2)直线AD与BC交于点D,若AB=3,AC=4,求线段AD的长。

2016年广东省中考数学模拟试卷及答案(二)

2016年广东省中考数学模拟试卷及答案(二)

2016年广东省初中毕业生学业考试数学模拟试卷(二) 一、选择题(本大题共10小题,每小题3分,共30分)1.在12,2,4,-2这四个数中,互为相反数的是( )A.12与2 B.2与-2 C.-2与12 D.-2与42.下列四个几何体中,俯视图是圆的几何体共有( )A.1个 B.2个 C.3个 D.4个3.计算(-1)2+20-|-3|的值等于( )A.-1 B.0 C.1 D.54.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2 D.a-m<a-n5.植树造林可以净化空气、美化环境.据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为( )A.196×103 B.19.6×104 C.1.96×105 D.0.196×1066.如图M2­1是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A.22℃ B.22.5℃ C.23℃ D.23.5℃图M2­1图M2­2图M2­37.如图M2­2,a∥b,∠3+∠4=110°,则∠1+∠2的度数为( )A.60° B.70° C.90° D.110°8.如图,下列四个图形中,既是轴对称图形又是中心对称图形的有( )9.不等式组⎩⎨⎧x -1≥1,2x -5<1的解集在数轴上表示为( )A.B.C.D.10.如图M2­3,已知直线AB 与反比例函数y =-2x 和y =4x 交于A ,B 两点,与y 轴交于点C ,若AC =BC ,则S △AOB =( )A .6B .7C .4D .3 二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:a 3-4a 2b +4ab 2=________.12.已知|a -1|+2a +b -5=0,则a b 的值为________.13.一个多边形的每个外角都等于72°,则这个多边形的边数为________.14.如图M2­4,在△ABC 中,D ,E 分别为AB ,AC 的中点,延长DE 到F ,使EF =DE ,若AB =10,BC =8,则四边形BCFD 的周长=________.图M2­4 图M2­5 图M2­6 15.如图M2­5,△ABC 的顶点都在正方形网格的格点上,则cos C =________.16.如图M2­6,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是________(结果保留π). 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17.解方程组⎩⎨⎧x -2y =8, ①2x +y =1. ②18.先化简,再求值:⎝ ⎛⎭⎪⎫2x +1x 2+6x +9-13+x ÷x -2x 2+3x ,其中x =3-3.19.如图,在△ABC 中,AB =AC ,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母. ①作∠CAM 的平分线AN ;②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?21.某市某校在推进体育学科新课改的过程中,开设的选修课有A:篮球;B:排球;C:羽毛球;D:乒乓球.学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出B,D所在扇形的圆心角的度数和;(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?22.如图,已知矩形ABCD,动点E从点B沿线段BC向点C运动,连接AE,DE,以AE为边作矩形AEFG,使边FG过点D.(1 )求证:△ABE∽△AGD;(2)求证:矩形AEFG与矩形ABCD的面积相等;(3)当AB=2 3,BC=6时,①求BE为何值时,△AED为等腰三角形?②直接写出点E从点B运动到点C时,点G所经过的路径长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,二次函数y=12x2+bx+c的图象交x轴于A,D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.已知:AD,BC是⊙O的两条互相垂直的弦,垂足为点E,点H是弦BC的中点,AO是∠DAB的平分线,半径OA交弦CB于点M.(1)如图1,延长OH交AB于点N,求证:∠ONB=2∠AON;(2)如图2,若点M是OA的中点,求证:AD=4OH;(3)如图3,延长HO交⊙O于点F,连接BF,若CO的延长线交BF于点G,CG⊥BF,CH=3,求⊙O的半径长.图1 图2 图325.操作:如图,将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A,P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.2016年广东省初中毕业生学业考试数学模拟试卷(二) 1.B 2.B 3.A 4.D 5.C 6.B 7.B 8.B 9.C 10.D 11.a (a -2b )212.1 13.5 14.26 15.2 55 16.2π17.解:由①+②×2得5x =10,即x =2.把x =2代入①得y =-3.则方程组的解为⎩⎨⎧x =2,y =-3.18.解:原式=⎣⎢⎡⎦⎥⎤2x +1()x +32-1x +3·x ()x +3x -2=2x +1-x -3()x +32·x ()x +3x -2=x -2()x +32·x ()x +3x -2=xx +3. 当x =3-3时,原式=1- 3.19.解:(1)作∠MAC 的角平分线AN ,作AC 的中垂线得到AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD ,如图D169.图D169(2)四边形ABCD 是平行四边形,理由如下:∵AB =AC ,∴∠ACB =∠ABC . ∵AN 平分∠MAC , ∴∠MAN =∠CAN .∵∠MAC =∠ABC +∠ACB ,∴∠ACB =∠CAD . ∴BC ∥AD . ∵AC 的中点是O ,∴AO =CO . 在△BOC 和△DOA 中, ⎩⎨⎧∠OCB =∠OAD ,OC =OA ,∠BOC =∠AOD .∴△BOC ≌△DOA .∴BC =AD ,且BC ∥AD . ∴四边形ABCD 是平形四边形. 20.解:(1)设该品牌电动自行车销售量的月均增长率为x ,根据题意列方程150(1+x )2=216. 解得x 1=-220%(不合题意,舍去),x 2=20%. 答:该品牌电动自行车销售量的月均增长率20%. (2)二月份的销量:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800-2300)×(150+180+216)=500×546=273 000(元). 21.解:(1)如图D170,该班的总人数:12÷24%=50(人).E 科目的人数:50×10%=5(人).A 科目的人数:50-9-16-11-5=9(人). 答:该班学生的总数为50人.图D170(2)B ,D 所在扇形的圆心角的度数和:360°×7+950=115.2°. 答:B ,D 所在扇形的圆心角的度数和为115.2°.(3)选修乒乓球的学生大约有3000×950=540(人).答:该校大约有540人选修乒乓球. 22.(1)证明:∵四边形ABCD 和四边形AEFG 是矩形,∴∠B =∠G =∠BAD =∠EAG =90°. 又∵∠BAE +∠EAD =∠EAD +∠DAG =90°,∴∠BAE =∠DAG .∴△ABE ∽△AGD .(2)证明:∵△ABE ∽△AGD ,∴AB AG =AEAD . ∴AB ·AD =AG ·AE . ∴矩形AEFG 与矩形ABCD 的面积相等.(3)解:①若△AED 是等腰三角形,有以下三种情况.当AE =AD =6时,AB 2+BE 2=AE 2,即(2 3)2+BE 2=62,解得BE =2 6; 当AE =ED 时,BE =12AD =12BC =3;当AD =ED =6时,同第一种情况可得EC =2 6,则BE =6-2 6; 综上所述,当BE =2 6或3或6-2 6时,△AED 是等腰三角形;②点G 经过的路径是以AD 的中点为圆心,半径是3,圆心角是120°的弧,则路径长是120π×3180=2π.23.解:(1)把A (2,0),B (8,6)代入y =12x 2+bx +c ,得⎩⎪⎨⎪⎧12×4+2b +c =0,12×64+8b +c =6.解得⎩⎨⎧b =-4,c =6.∴二次函数的解析式为y =12x 2-4x +6.(2)由y =12x 2-4x +6=12(x -4)2-2,得二次函数图象的顶点坐标为(4,-2). 1(3)二次函数的对称轴上存在一点C ,使得△CBD 的周长最小.连接CA ,如图D171,图D171∵点C 在二次函数的对称轴x =4上,∴x C =4,CA =CD .∴△CBD 的周长=CD +CB +BD =CA +CB +BD ,根据“两点之间,线段最短”,可得当点A ,C ,B 三点共线时,CA +CB 最小,此时,由于BD 是定值,因此△CBD 的周长最小.设直线AB 的解析式为y =mx +n ,把A (2,0),B (8,6)代入y =mx +n ,得⎩⎨⎧ 2m +n =0,8m +n =6.解得⎩⎨⎧ m =1,n =-2.∴直线AB 的解析式为y =x -2. 当x =4时,y =4-2=2, ∴二次函数的对称轴上存在点C 的坐标为(4,2)使△CBD 的周长最小.24.(1)证明:∵点H 是弦BC 的中点,AD ⊥BC . ∴∠DEB =90°.∴∠OHB =∠DEB .∴OH ∥AD . ∴∠DAO =∠AOH . ∵∠DAO =∠OAN ,∴∠OAN =∠NOA . ∴∠ONB =∠NAO +∠NOA =2∠AON . ∴∠ONB =2∠AON .(2)证明:如图D172,过点O 作OP ⊥AD ,可证四边形OHEP 是矩形,则OH =EP ,图D172 图D173∵点M 是OA 的中点,在△OHM 和△AEM 中, ⎩⎨⎧ ∠OMH =∠AME ,OM =AM ,∠OHM =∠AEM ,∴△OHM ≌△AEM .∴OH =AE .∴EP =AE ,即AP =2AE =2OH .∵OP ⊥AD ,∴AD =2AP . ∴AD =2AP =2×2OH =4OH .∴AD =4OH .(3)解:如图D173,延长FN 交⊙O 于点K ,连接BK ,∵FK 是⊙O 的直径,∴∠KBF =90°.∵CG ⊥BF ,∴∠CGF =90°.∴CG ∥BK . ∴∠CON =∠OKB .又∵∠COK =2∠CBK ,∴∠OKB =2∠CBK . 在Rt △HKB 中,∠CBK +∠OKB =90°,∴∠CBK =30°.∴∠COK =2∠CBK =60°.在Rt △OCH 中,OC =CHsin 60°=332=2.∴⊙O 的半径为2.25.(1)证明:过点P 作MN ∥BC ,分别交AB ,CD 于点M ,N ,如图D174,则四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰三角形,∴NP =NC =MB . ∵∠BPQ =90°,∴∠QPN +∠BPM =90°,且∠BPM +∠PBM =90°.∴∠QPN =∠PBM . 在△QNP 和△PMB 中, ⎩⎨⎧ ∠QPN =∠PBM ,NP =MB ,∠QNP =∠PMB ,∴△QNP ≌△PMB (ASA).∴PQ =PB .(2)解:由(1)知△QNP ≌△PMB ,得NQ =MP .设AP =x ,则AM =MP =NQ =DN =22x ,BM =PN =CN =1-22x ,∴CQ =CD -DQ =1-2×22x =1-2x . ∴S △PBC =12BC ·BM =12×1×⎝ ⎛⎭⎪⎫1-22x =12-24x .S △PCQ =12CQ ·PN =12×(1-2x )⎝⎛⎭⎪⎫1-22x =12-3 24x +12x 2. ∴S 四边形PBCQ =S △PBC +S △PCQ =12x 2-2x +1,即y =12x 2-2x +1⎝ ⎛⎭⎪⎫0≤x <22.(3)△PCQ 可能成为等腰三角形.①当点Q 在边DC 上,由PQ 2=CQ 2得⎝ ⎛⎭⎪⎫1-22x 2+⎝ ⎛⎭⎪⎫22x 2=(1-2x )2,解得x 1=0,x 2=2(舍去). ②当点Q 在边DC 的延长线上时,如图D175,由PC =CQ 得2-x=2x -1,解得x =1.图D174 图D175③当点Q 与C 点重合,△PCQ 不存在.综上所述,x =0或1时,△PCQ 为等腰三角形.。

广东省中考数学模拟试题3

广东省中考数学模拟试题3

题10FEDCBA市城生卫建 创 第5题2016年广东省中考数学模拟试题11一、选择题:( ) 1. (-2)2的算术平方根是A .2B .±2C .-2D .2 ( ) 2. 0.00 00012 5,这个数用科学记数法表示为A. 6-1.2510⨯ B .61.2510-⨯ C .61.2510--⨯ D .-71.2510⨯ ( )3.如图,该图形经过折叠可以围成一个正方体,折好以后与“城”字相对的字是 A .生 B .创 C .城 D .卫 ( )4.已知一个等腰三角形的一边长是3,另一边长为7,则这个等腰三角形的周长为A .13B . 17C . 13或17D . 4( )5. 下列计算,正确的是A .623a a a ÷= B .()32628xx = C .222326a a a ⨯= D .()01a a -⨯=-( )6.将二次函数y =2(x -1)2-3的图像向右平移3个单位,则平移后的二次函数的顶点是A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0) ( )7. 关于反比例函数4y x=的图象,下列说法正确的是 A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称( )8. 如图2,直径为8的⊙A 经过点C (0,4)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC等于A. 15° B .30° C .45° D . 60°( )9. 已知一次函数y =x +b 的图象经过一、二、三象限,则b 的值可以是A.2-B.1-C.0D.2( )10. 如图3,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为 A .3 B .4 C .5 D .6二、填空题:11. 不等式213x -<-的解集是 .12. 如图4,在△ABC 中,AB = 5cm ,AC = 3cm ,BC 的垂直平分线 分别交AB 、BC于点D 、E ,则△ACD 的周长为 题8图4图5 13. 若x ,y 为实数,且011=-++y x ,则2013()xy 的值是 .14.如图5,菱形ABCD 的边长是2㎝,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为 .(结果保留根号).15. 在全民健身环城越野赛中,甲、乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图6所示.有下列说法:起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是16.如图,在平面直角坐标系中,边长为1的正方形11OA B C 的对角线C A 1和1OB 交于点1M ;以11A M 为对角线作第二个正方形212A A B M ,对角线11M A 和22B A 交于点2M ;以12A M 为对角线作第三个正方形2313M B A A ,对角线21M A 和33B A 交于点3M ;……,依次类推,这样作的第6个正方形对角线交点的横坐标为 .三、解答题17. 计算:84sin 454-︒+-+321+ 18. 先化简,再求值:2221x xx x x +⋅-,其中2x =.19.如图8,方格纸中的每个小方格都是边长为1个单位 的正方形,在建立平面直角坐标系后,Rt △ABC 的顶点坐标为点A (-6,1),点B (-3,1),点C (-3,3). (1)将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出图形Rt △A 1B 1C 1 ,并写出点A 1的坐标;(2)将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出图形Rt △A 2B 2C 2.并写出顶点A 从开始到A 2经过的路径长(结果保留π).Axy BC11 -1 O 2乙甲乙甲815105 1.510.5O x /时y/千米图6 2020.如图9,已知AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD ⊥EF 于点D ,∠DAC =∠BAC . (1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠ACD =30°,求图中阴影部分的面积.21. 某镇道路改造工程,由甲、乙两工程队合作20天可完成.已知乙工程队的工作效率是甲工程队的工作效率的两倍. (1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?22. 已知甲、乙两个班级各有50名学生.为了了解甲、乙两个班级学生解答选择题的能力状况,黄老师对某次考试中8道选择题的答题情况进行统计分析,得到统计表如下:0 1 2 3 4 56 7 8 甲班 0 1 1 3 4 11 16 12 2 乙班1251215132请根据以上信息解答下列问题: (1)甲班学生答对的题数的众数是__ _; (2)若答对的题数大于或等于7道的为优秀,则乙班该次考试中选择题答题的 优秀率=__ __(优秀率=班级优秀人数班级总人数×100%).(3)从甲、乙两班答题全对的学生中,随机抽取2人作选择题解题方法交流,用列举法求抽到的2人在同一个班级的概率. 答对的题数(道)人数(人) 班级图923. 已知关于x 的方程(k -1)x 2-2kx +k +2=0有实数根.(1) 求k 的取值范围;(2) 若y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象过点2(1,4)k --且与x 轴有两个不同的交点.求出k 的值,并请结合函数y =(k -1)x 2-2kx +k +2的图象确定当k ≤x ≤k +2时y 的最大值和最小值.24.如图10-1,已知O 为正方形ABCD 的中心,分别延长OA 到点F ,OD 到点E ,使OF =2OA ,OE =2OD ,连结EF ,将△FOE 绕点O 逆时针旋转α角得到△''F OE (如图10-2).连结AE ′ 、BF ′.(1)探究AE ′ 与BF ′ 的数量关系,并给予证明;(2)当α=30°,AB =2时,求:① ∠'AE O 的度数; ② BF ′ 的长度.5. 如图11,已知抛物线y =ax 2+bx +2交x 轴于A (﹣1,0),B (4,0)两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点. (1)求抛物线解析式及点D 的坐标;(2)若点E 在x 轴上,且以A ,E ,D ,P 为顶点的四边形是平行四边形,求点P 的坐标;(3)若点P 在y 轴右侧,过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′.是否存在点P ,使Q ′恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.数学科参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACAACBDBDD二、填空题(本大题共6小题,每小题4分,共24分) 题号 1112 131415 16答案 1x <-81- 23①②④11()4n -三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解:原式=122212+-⨯+ ---------------------------------------4分 =4 ---------------------------------------5分18.解:由30x -< 得 x <3 ---------------------------------------1分 由 2(1)3x x +≥+ 得 1x ≥ ---------------------------------------2分所以原不等式的解集为 13x ≤< ---------------------------------------4分 解集在数轴上表示为:(略) ---------------------------------------5分人数(单位:人) 项目10AB CD20 30 40 50 448 282019.解:(1)如下图所示:(痕迹2分,直线1分) --------------3分(2)由勾股定理,可得AB =5, --------------4分根据面积相等有,AB ⨯CD =AC ⨯BC 所以CD =125--------------5分 四、解答题(二)(本大题3小题,每小题8分,共24分)20. 解:(1)20%, 72° -------------2分 (2)样本数为 44÷44%=100 -------------3分 最喜欢B 项目的人数为 100×20%=20 ----------4分统计图补充如右图所示. -------------6分(3)1200×44% = 528 -------------8分21. 解:如图,作BG ⊥AD 于G ,作EF ⊥AD 于F ,-----1分 ∵Rt △ABG 中,∠BAD =60︒,AB =40,∴ BG =AB ·sin60︒=203,AG = AB ·cos60︒=20 -------------4分同理在Rt △AEF 中,∠EAD =45︒, ∴AF =EF =BG =203, -------------6分 ∴BE =FG =AF -AG =20(13-)米. -------------8分 22. 解:(1)∵B (1,4)在反比例函数y =mx上,∴m =4, -------------1分 又∵A (n ,-2)在反比例函数y =mx的图象上,∴n =-2, -------------2分 又∵A (-2,-2),B (1,4)是一次函数y =kx +b 的上的点,联立方程组解得, k =2,b =2, ∴y =4x,y =2x +2; -------------5分 (2)过点A 作AD ⊥y 轴,交y 轴于D 点,∵一次函数y =2x +2的图象交y 轴于C 点可得,C (0,2), --------6分 ∴AD =2,CO =2, ∴△AOC 的面积为:S =12AD •CO =12×2×2=2; -------------8分 五、解答题(三)(本大题3小题,每小题9分,共27分)23. 解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得:221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. -------------2分解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-. ----------3分(2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). -------------4分若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.-------------5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, -------------6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a -- -------------7分=()21222a -++ -------------8分即当2a =-时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3)-------------9分24.(1)证明:∵∠AEF =90o ,∴∠FEC +∠AEB =90o . ---------------------------------------1分 在Rt △ABE 中,∠AEB +∠BAE =90o ,∴∠BAE =∠FEC ; ---------------------------------------3分 (2)证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180o -45o =135o . 又∵CF 是∠DCH 的平分线,∠ECF =90o +45o =135o . ---------------------------------------4分在△AGE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠=FEC GAE ECF AGE EC AG o,135, ∴△AGE ≌△ECF ; ---------------------------------------6分 (3)解:由△AGE ≌△ECF ,得AE=EF .o∴△AEF 是等腰直角三角形. ---------------------------------------7分 由AB=a ,BE =21a ,知AE =25a , ∴S △AEF =85a 2. ---------------------------------------9分25. 解:(1)∵ 四边形EFPQ 是矩形,∴ EF ∥QP .∴△AEH ∽△ABD ,△AEF ∽△ABC , ---------------------------------------1分∴ AH AD =AE AB =EFBC---------------------------------------2分(2)由(1)得AH 8=x 10. AH =45x .∴ EQ =HD =AD -AH =8-45x , --------------------------------------3分∴ S 矩形EFPQ =EF ·EQ =x (8-45x ) =-45x 2+8 x =-45(x -5)2+20. -----------4分∵ -45<0, ∴ 当x =5时,S 矩形EFPQ 有最大值,最大值为20. -----------5分(3)如图1,由(2)得EF =5,EQ =4.∴ ∠C =45°, ∴ △FPC 是等腰直角三角形.∴ PC =FP =EQ =4,QC =QP +PC =9. -----------6分分三种情况讨论:① 如图2.当0≤t <4时,设EF 、PF 分别交AC 于点M 、N ,则△MFN 是等腰直角三角形.∴ FN =MF =t .∴S =S 矩形EFPQ -S Rt △MF N =20-12t 2=-12t 2+20; -----------7分②如图3,当4≤t <5时,则ME =5-t ,QC =9-t .∴ S =S 梯形EMCQ =12[(5-t )+(9-t )]×4=-4t +28; -----------8分③如图4,当5≤t ≤9时,设EQ 交AC 于点K ,则KQ =QC =9-t .∴ S =S △K QC =12 (9-t )2=12( t -9)2.第25题图2 第25题图3 第25题图4 综上所述:S 与t 的函数关系式为:S =221204)24285)1(9)9)2t t t t t t ⎧-+<⎪⎪--<⎨⎪⎪-<⎩ (0, (4, (5.≤≤≤ -----------9分注:如果有不同解法请参照给分.。

2016年广东省初中毕业生学业考试数学模拟试卷(一)试题、答题卡、参考答案及解析

2016年广东省初中毕业生学业考试数学模拟试卷(一)试题、答题卡、参考答案及解析

机密★启用前2016年广东省初中毕业生学业考试模拟考试(一)数 学 试 卷说明:1.全卷共6页,满分为100分,考试用时为120分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑. 1.下面有理数中,最大的数是 A.21B.0C.-1D.-32.﹣的倒数的相反数等于A .﹣2B .C .﹣D .23.2015年春节“黄金周”某市接待游客总数为833100人次,833100用科学记数法表示为A .0.833×106B .83.31×105C .8.331×105D .8.331×1044. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这五个数据的众数和中位数分别是A .9,8B .9,7C .8,9D .9,9 5.(﹣2x 2)3的结果是A .﹣2x 5B .﹣8x 6C .﹣2x 6D .﹣8x 56.若关于y 的一元二次方程ky 2﹣7y ﹣7=0有实根,则k 的取值范围是A .k >﹣B .k≥﹣且k ≠0C .k≤﹣D .k >﹣且k≠07.三角形两边的长分别是4和10,则此三角形第三边的长可能是 A.5 B.6 C.11 D.168.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5. 从中随机摸出一个小球,其标号大于2的概率为 A. 15B. 25C. 35D. 459.如右下图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,若y 关于x 的图象如图所示,则ABC ∆的面积是 A.10 B.16 C.18 D.2010.如题10图,、是⊙O的两条互相垂直的直径,点从点O出发,沿的路线匀速运动,设(单位:度),那么与点运动的时间(单位:秒)的关系图是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 12.不等式组的解集是 .故答案为:﹣1<x≤2.13.如右图,正方形ABCD 中,M ,N 分别为BC ,CD 的中点,连接AM ,AC 交BN 与点E ,F ,则EF : FN 的值是__________.14.点A (﹣2,3)关于x 轴的对称点A ′的坐标为 . 15.如图,半圆的直径10=AB ,P 为AB 上一点,点C ,D 为半圆的三等分点,则图中阴影部分的面积等于 .图1图216.如果记y==f (x ),并且f (1)表示当x=1时y 的值,即f (1)==;f ()表示当x=时y 的值,即f ()==,那么f (1)+f (2)+f ()+f (3)+f()+…+f(n )+f ()= .(结果用含n 的代数式表示,n 为正整数). 三、解答题(一)(本大题共3小题,每小题6分,共18分)170114cos30(21)()2-+-.18、先化简,再求值:1)111(2-÷-+a aa ,其中.3-=a19.从△ABC(CB <CA )中裁出一个以AB 为底边的等腰△ABD,并使得△ABD 的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明) (2)若AB=2,∠CAB=30°,求裁出的△ABD 的面积.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴某市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(2)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.21.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D 是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.24. AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.25.如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD 于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?2016年广东省初中毕业生学业考试模拟考试(一)数学试卷参考答案及评分说明一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本大题6小题,每小题4分,共24分)11.11 . 12.﹣1<x≤213.答案:试题分析:设EF=x,FN=y,正方形ABCD的边长为a,根据正方形的性质、M、N分别为BC、CD的中点及勾股定理即可得到关于x、y、a的方程组,从而求得结果.设EF=x,FN=y,正方形ABCD的边长为a,由题意得,解得则EF:FN的值是.点评:正方形的性质的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.1415.答案:16.答案:三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解:原式=1231-=-……………4分3323121-+-=-……………6分18.解:原式 =aa a a a a 1)1)(1(1)1)(1(-⋅-++-+……………3分=aa a a a 1)1)(1(2-⋅-+……………4分 =1+a a…………………………5分 把3-=a 代入上式,得23133=+--……………6分19.【考点】作图—复杂作图.【分析】(1)直接利用线段垂直平分线的性质作出AB 的垂直平分线,交AC 于点D ,进而得出△ABD ;(2)利用锐角三角形关系得出DE 的长,进而利用三角形面积求法得出答案. 【解答】解:(1)如图所示,△ABD 即为所求............................2分(2)∵MN 垂直平分AB ,AB=2m ,∠CAB=30°,∴AE=1m ,……………3分则tan30°==,……………4分 解得:DE=.……………5分故裁出的△ABD 的面积为:×2×=(m 2).……………6分【点评】此题主要考查了复杂作图以及线段垂直平分线的性质与作法、三角形面积求法、锐角三角函数关系等知识,熟练应用线段垂直平分线的性质是解题关键四、解答题(二)(本大题共3小题,每小题7分,共21分) 20. 解:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);……1分 则第五组人数为:50﹣4﹣8﹣20﹣14=4(名); 根据题意得:考试成绩评为“B ”的学生大约有:×1500=420(名); ……………3分如图:……………4分(2)画树状图得:……………7分点评: 此题考查了树状图法与列表法求概率的知识以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)证明:∵ 四边形ABCD 是矩形∴ CD AB =, ︒=∠=∠90C A ............................1分 由折叠可得 CD ED =, ︒=∠=∠90C E∴ ED AB =, ︒=∠=∠90E A ............................2分 又∵ EFD AFB ∠=∠∴ ABF ∆≌EDF ∆............................3分(2)解: 四边形BMDF 是菱形。

年广东省中考数学模拟试卷及答案

年广东省中考数学模拟试卷及答案

2016年广东省初中毕业生学业考试数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是( )A .|-2|=2B .|+2|=|-2|C .-|+2|=±|-2|D .-|-3|=+(-3) 2.下列各实数中,最小的是( )A .-πB .(-1)0 C.3-1 D .|-2| 3.如图M1-1,AB ∥CD ,∠C =32°,∠E =48°,则∠B 的度数为( )A .120°B .128°C .110°D .100°图M1-1 图M1-24.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 5.下列计算正确的是( )A .2a +3b =5abB .(a 2)4=a 8C .a 3·a 2=a 6D .(a -b )2=a 2-b 26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( )A .73×102B .7.3×103C .0.73×104D .7.3×102 7.如图M1-2是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为( )A .9,8B .8,9C .8,8.5D .19,178.已知关于x 的一元二次方程mx 2+2x -1=0有两个不相等的实数根,则m 的取值范围是( ) A .m <-1 B .m >1C .m <1,且m ≠0D .m >-1,且m ≠0 9.如图M1-3,在矩形ABCD 中,AB =1,AD =2,将AD 边绕点A 顺时针旋转,使点D 恰好落在BC 边上的点D ′处,则阴影部分的扇形面积为( )A .π B.π2 C.π3 D.π4图M1-3 图M1-410.如图M1-4,已知在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是边AC 上一动点,过点E 作EF ∥BC ,交AB 边于点F ,点D 为BC 上任一点,连接DE ,DF .设EC 的长为x ,则△DEF 的面积y 关于x 的函数关系大致为( )A. B. C. D. 二、填空题(本大题共6小题,每小题4分,共24分)11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.12.分式方程1x =32x +3的解为________.13.如图M1-5,自行车的链条每节长为2.5 cm ,每两节链条相连接部分重叠的圆的直径为0.8 cm ,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为________cm.图M1-514.如图M1-6,菱形ABCD 的边长为15,sin ∠BAC =35,则对角线AC 的长为________.图M1-6 图M1-7 图M1-815.如图M1-7,△ABC 与△DEF 是位似图形,位似比为2∶3,若AB =6,那么DE =________.16.如图M1-8,已知S △ABC =8 m 2,AD 平分∠BAC ,且AD ⊥BD 于点D ,则S △ADC =________ m 2.三、解答题(一)(本大题共3小题,每小题6分,共18分) 17.解方程:x 2-2x -4=0.18.先化简,再求值:2xx +1-2x +6x 2-1÷x +3x 2-2x +1.其中x = 3.19.如图M1-9,BD 是矩形ABCD 的一条对角线.(1)作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,垂足为点O ;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE 和DF ,求证:四边形DEBF 是菱形.图M1-9四、解答题(二)(本大题共3小题,每小题7分,共21分)20.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上. (1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?21.如图M1-10,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .(1)求证:①△ABG ≌△AFG; ②BG =GC ; (2)求△FGC 的面积.图M1-1022.“关注校车,关爱儿童”成为今年全社会热议的焦点话题之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M1-11,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象交于P (n,2),与x 轴交于A (-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,且AC =BC .(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D ,使得以B ,C ,P ,D 为顶点的四边形是菱形,求出点D 的坐标.图M1-1124.⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.(1)如图M1-12(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;(2)如图M1-12(2),CD与⊙O交于另一点E.BD∶DE∶EC=2∶3∶5,求圆心O到直线CD的距离;(3)若图M1-12(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的情况出现几次?(1)(2)图M1-1225.如图M1-13(1),矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图M1-13(2),若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M,N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.(1)(2)图M1-132016年广东省初中毕业生学业考试数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.在12,2,4,-2这四个数中,互为相反数的是( )A.12与2 B .2与-2 C .-2与12D .-2与4 2.下列四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个 3.计算(-1)2+20-|-3|的值等于( ) A .-1 B .0 C .1 D .54.若m >n ,则下列不等式中成立的是( )A .m +a <n +bB .ma <nbC .ma 2>na 2D .a -m <a -n5.植树造林可以净化空气、美化环境.据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为( )A .196×103B .19.6×104C .1.96×105D .0.196×106 6.如图M2-1是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A .22℃B .22.5℃C .23℃D .23.5℃图M2-1 图M2-27.如图M2-2,a ∥b ,∠3+∠4=110°,则∠1+∠2的度数为( )A .60°B .70°C .90°D .110° 8.如图M2-3,下列四个图形中,既是轴对称图形又是中心对称图形的有( )图M2-3A .1个B .2个C .3个D .4个9.不等式组⎩⎪⎨⎪⎧x -1≥1,2x -5<1的解集在数轴上表示为( )A. B. C. D.10.如图M2-4,已知直线AB 与反比例函数y =-2x 和y =4x交于A ,B 两点,与y 轴交于点C ,若AC =BC ,则S △AOB =( )图M2-4A .6B .7C .4D .3二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:a 3-4a 2b +4ab 2=________.12.已知|a -1|+2a +b -5=0,则a b 的值为________. 13.一个多边形的每个外角都等于72°,则这个多边形的边数为________. 14.如图M2-5,在△ABC 中,D ,E 分别为AB ,AC 的中点,延长DE 到F ,使EF =DE ,若AB =10,BC =8,则四边形BCFD 的周长=________.图M2-5 图M2-6 图M2-715.如图M2-6,△ABC 的顶点都在正方形网格的格点上,则cos C =________.16.如图M2-7,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是________(结果保留π).三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程组⎩⎪⎨⎪⎧x -2y =8, ①2x +y =1. ②18.先化简,再求值:⎝ ⎛⎭⎪⎫2x +1x 2+6x +9-13+x ÷x -2x 2+3x,其中x =3-3.19.如图M2-8,在△ABC 中,AB =AC ,点M 在BA 的延长线上.(1)按下列要求作图,并在图中标明相应的字母. ①作∠CAM 的平分线AN ;②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.图M2-8四、解答题(二)(本大题共3小题,每小题7分,共21分)20.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?21.某市某校在推进体育学科新课改的过程中,开设的选修课有A :篮球;B :排球;C :羽毛球;D :乒乓球.学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图M2-9).(1)求出该班的总人数,并补全频数分布直方图; (2)求出B ,D 所在扇形的圆心角的度数和;(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?图M2-922.如图M2-10,已知矩形ABCD ,动点E 从点B 沿线段BC 向点C 运动,连接AE ,DE ,以AE 为边作矩形AEFG ,使边FG 过点D .(1 )求证:△ABE ∽△AGD ;(2)求证:矩形AEFG 与矩形ABCD 的面积相等; (3)当AB =2 3,BC =6时,①求BE 为何值时,△AED 为等腰三角形?②直接写出点E 从点B 运动到点C 时,点G 所经过的路径长.图M2-10五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M2-11,二次函数y =12x 2+bx +c 的图象交x 轴于A ,D 两点,并经过B 点,已知A 点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.图M2-1124.已知:AD,BC是⊙O的两条互相垂直的弦,垂足为点E,点H是弦BC的中点,AO是∠DAB的平分线,半径OA交弦CB于点M.图M2-12图M2-13图M2-14(1)如图M2-12,延长OH交AB于点N,求证:∠ONB=2∠AON;(2)如图M2-13,若点M是OA的中点,求证:AD=4OH;(3)如图M2-14,延长HO交⊙O于点F,连接BF,若CO的延长线交BF于点G,CG⊥BF,CH=3,求⊙O 的半径长.25.操作:如图M2-15,将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A,P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.图M2-152016年广东省初中毕业生学业考试数学模拟试卷(一) 1.C 2.A 3.D 4.C 5.B 6.B 7.B 8.D 9.C 10.D 11.8 12.x =3 13.102.8 14.24 15.9 16.4 17.解:由原方程移项,得x 2-2x =4.等式两边同时加上一次项系数一半的平方,得 x 2-2x +1=5.配方,得(x -1)2=5.∴x =1±5.∴x 1=1+5,x 2=1- 5.18.解:原式=2x x +1-2()x +3()x +1()x -1·()x -12x +3=2x x +1-2()x -1x +1=2x +1.当x =3时,原式=23+1=3-1.19.(1)解:如图D160,EF 即为所求.图D160(2)证明:如图,∵四边形ABCD 为矩形, ∴AD ∥BC .∴∠ADB =∠CBD .∵EF 垂直平分线段BD ,∴BO =DO . 在△DEO 和△BFO 中, ∵⎩⎪⎨⎪⎧∠ADB =∠CBD ,BO =DO ,∠DOE =∠BOF , ∴△DEO ≌△BFO (ASA).∴EO =FO . ∴四边形DEBF 是平行四边形.又∵EF ⊥BD ,∴四边形DEBF 是菱形.20.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴P (抽到奇数)=23.(2)画树状图(如图D161)得图D161∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13.21.(1)证明:①在正方形ABCD 中,AD =AB ,∠D =∠B =∠DCB =90°,又∵△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,∴∠AFG =∠AFE =∠D =90°,AF =AD . 即有∠B =∠AFG =90°,AB =AF ,AG =AG . 在Rt △ABG 和Rt △AFG 中, ⎩⎪⎨⎪⎧AB =AF ,AG =AG , ∴△ABG ≌△AFG .②∵AB =6,点E 在边CD 上,且CD =3DE , ∴DE =FE =2,CE =4.不妨设BG =FG =x ,(x >0),则CG =6-x ,EG =2+x , 在Rt △CEG 中,(2+x )2=42+(6-x )2 , 解得x =3,于是BG =GC =3.(2)解:∵GF FE =32,∴GF GE =35.∴S △FGC =35S △EGC =35×12×4×3=185.22.解:(1)设单独租用35座客车需x 辆. 由题意,得35x =55(x -1)-45. 解得x =5.∴35x =35×5=175.答:该幼儿园现有的需接送儿童人数为175人. (2)设租35座客车y 辆,则租55座客车(4-y )辆.由题意,得⎩⎨⎧35y +55()4-y ≥175,32y +40()4-y ≤150.解这个不等式组,得114≤y ≤214.∵y 取正整数,∴y =2.∴4-y =4-2=2.∴购进小车的费用为32×2+40×2=144(万元). 答:本次购进小车的费用是144万元.23.解:(1)∵AC =BC ,CO ⊥AB ,A (-4,0),∴O 为AB 的中点,即OA =OB =4.∴P (4,2),B (4,0). 将A (-4,0)与P (4,2)代入y =kx +b ,得⎩⎪⎨⎪⎧-4k +b =0,4k +b =2.解得⎩⎪⎨⎪⎧k =14,b =1.∴一次函数解析式为y =14x +1.将P (4,2)代入反比例函数解析式得m =8,即反比例函数解析式为y =8x.(2)如图D162,图D162当PB 为菱形的对角线时, ∵四边形BCPD 为菱形, ∴PB 垂直且平分CD .∵PB ⊥x 轴,P (4,2),∴点D (8,1). 当PC 为菱形的对角线时,PB ∥CD ,此时点D 在y 轴上,不可能在反比例函数的图象上,故此种情形不存在. 综上所述,点D (8,1).24.(1)证明:如图D163,连接OC .∵OA =OC , ∴∠OAC =∠OCA .又∵AB 是⊙O 的直径,∴∠ACB =90°. 又∵∠BCD =∠BAC =∠OCA , ∴∠BCD +∠OCB =90°,即OC ⊥CD . ∴CD 是⊙O 的切线.图D163 图D164(2)解:∵∠ADE =∠CDB ,∠BCD =∠EAD , ∴△BCD ∽△EAD .∴CD AD =BD ED .∴CE +ED AB +BD =BD ED.又∵BD ∶DE ∶EC =2∶3∶5,⊙O 的半径为5, ∴BD =2,DE =3,EC =5.如图D164,连接OC ,OE ,则△OEC 是等边三角形,作OF ⊥CE 于F ,则EF =12CE =52,∴OF =5 32.∴圆心O 到直线CD 的距离是5 32.(3)解:这样的情形共有出现三次,当点D 在⊙O 外时,点E 是CD 中点,有以下两种情形,如图D165、图D166; 当点D 在⊙O 内时,点D 是CE 中点,有以下一种情形,如图D167.图D165 图D166 图D167 25.(1)证明:由矩形和翻折的性质可知AD =CE ,DC =EA . 在△ADE 与△CED 中, ⎩⎪⎨⎪⎧AD =CE ,DE =ED ,DC =EA ,∴△DEC ≌△EDA (SSS).(2)解:∵∠ACD =∠BAC ,∠BAC =∠CAE , ∴∠ACD =∠CAE .∴AF =CF . 设DF =x ,则AF =CF =4-x .在Rt △ADF 中,AD 2+DF 2=AF 2,即32+x 2=(4-x )2.解得x =78,即DF =78.(3)解:如图D168,由矩形PQMN 的性质得PQ ∥CA ,图D168∴PE CE =PQ CA. 又∵CE =3,AC =AB 2+BC 2=5.设PE =x (0<x <3),则x 3=PQ 5,即PQ =53x .过点E 作EG ⊥AC 于G ,则PN ∥EG , ∴CP CE =PN EG . 又∵在Rt △AEC 中,EG ·AC =AE ·CE ,解得EG =125,∴3-x 3=PN 125,即PN =45(3-x ).设矩形PQMN 的面积为S ,则S =PQ ·PN =-43x 2+4x =-43⎝⎛⎭⎫x -322+3(0<x <3). 所以当x =32,即PE =32时,矩形PQMN 的面积最大,最大面积为3.2016年广东省初中毕业生学业考试数学模拟试卷(二) 1.B 2.B 3.A 4.D 5.C 6.B 7.B 8.B 9.C 10.D11.a (a -2b )2 12.1 13.5 14.26 15.2 5516.2π17.解:由①+②×2得5x =10,即x =2. 把x =2代入①得y =-3.则方程组的解为⎩⎪⎨⎪⎧x =2,y =-3.18.解:原式=⎣⎢⎡⎦⎥⎤2x +1()x +32-1x +3·x ()x +3x -2=2x +1-x -3()x +32·x ()x +3x -2=x -2()x +32·x ()x +3x -2 =x x +3. 当x =3-3时,原式=1- 3.19.解:(1)作∠MAC 的角平分线AN ,作AC 的中垂线得到AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD ,如图D169.图D169(2)四边形ABCD 是平行四边形,理由如下: ∵AB =AC ,∴∠ACB =∠ABC .∵AN 平分∠MAC ,∴∠MAN =∠CAN .∵∠MAC =∠ABC +∠ACB ,∴∠ACB =∠CAD . ∴BC ∥AD .∵AC 的中点是O ,∴AO =CO . 在△BOC 和△DOA 中, ⎩⎪⎨⎪⎧∠OCB =∠OAD ,OC =OA ,∠BOC =∠AOD .∴△BOC ≌△DOA .∴BC =AD ,且BC ∥AD .∴四边形ABCD 是平形四边形.20.解:(1)设该品牌电动自行车销售量的月均增长率为x , 根据题意列方程150(1+x )2=216.解得x 1=-220%(不合题意,舍去),x 2=20%. 答:该品牌电动自行车销售量的月均增长率20%. (2)二月份的销量:150×(1+20%)=180(辆). 所以该经销商1至3月共盈利:(2800-2300)×(150+180+216)=500×546=273 000(元). 21.解:(1)如图D170,该班的总人数:12÷24%=50(人). E 科目的人数:50×10%=5(人).A 科目的人数:50-9-16-11-5=9(人).图D170答:该班学生的总数为50人.(2)B ,D 所在扇形的圆心角的度数和:360°×7+950=115.2°.答:B ,D 所在扇形的圆心角的度数和为115.2°.(3)选修乒乓球的学生大约有3000×950=540(人).答:该校大约有540人选修乒乓球.22.(1)证明:∵四边形ABCD 和四边形AEFG 是矩形, ∴∠B =∠G =∠BAD =∠EAG =90°.又∵∠BAE +∠EAD =∠EAD +∠DAG =90°, ∴∠BAE =∠DAG .∴△ABE ∽△AGD . (2)证明:∵△ABE ∽△AGD , ∴AB AG =AE AD . ∴AB ·AD =AG ·AE .∴矩形AEFG 与矩形ABCD 的面积相等.(3)解:①若△AED 是等腰三角形,有以下三种情况.当AE =AD =6时,AB 2+BE 2=AE 2,即(2 3)2+BE 2=62,解得BE =2 6;当AE =ED 时,BE =12AD =12BC =3;当AD =ED =6时,同第一种情况可得EC =2 6,则BE =6-2 6; 综上所述,当BE =2 6或3或6-2 6时,△AED 是等腰三角形;②点G 经过的路径是以AD 的中点为圆心,半径是3,圆心角是120°的弧,则路径长是120π×3180=2π.23.解:(1)把A (2,0),B (8,6)代入y =12x 2+bx +c ,得⎩⎨⎧12×4+2b +c =0,12×64+8b +c =6.解得⎩⎪⎨⎪⎧b =-4,c =6.∴二次函数的解析式为y =12x 2-4x +6.(2)由y =12x 2-4x +6=12(x -4)2-2,得二次函数图象的顶点坐标为(4,-2).令y =0,得12x 2-4x +6=0,解得x 1=2,x 2=6. ∴D 点的坐标为(6,0).(3)二次函数的对称轴上存在一点C ,使得△CBD 的周长最小. 连接CA ,如图D171,图D171∵点C 在二次函数的对称轴x =4上, ∴x C =4,CA =CD .∴△CBD 的周长=CD +CB +BD =CA +CB +BD ,根据“两点之间,线段最短”,可得当点A ,C ,B 三点共线时,CA +CB 最小,此时,由于BD 是定值,因此△CBD 的周长最小.设直线AB 的解析式为y =mx +n , 把A (2,0),B (8,6)代入y =mx +n ,得⎩⎪⎨⎪⎧ 2m +n =0,8m +n =6.解得⎩⎪⎨⎪⎧m =1,n =-2.∴直线AB 的解析式为y =x -2. 当x =4时,y =4-2=2,∴二次函数的对称轴上存在点C 的坐标为(4,2)使△CBD 的周长最小. 24.(1)证明:∵点H 是弦BC 的中点,AD ⊥BC . ∴∠DEB =90°.∴∠OHB =∠DEB .∴OH ∥AD . ∴∠DAO =∠AOH .∵∠DAO =∠OAN ,∴∠OAN =∠NOA . ∴∠ONB =∠NAO +∠NOA =2∠AON . ∴∠ONB =2∠AON .(2)证明:如图D172,过点O 作OP ⊥AD ,可证四边形OHEP 是矩形,则OH =EP ,图D172∵点M 是OA 的中点, 在△OHM 和△AEM 中, ⎩⎪⎨⎪⎧∠OMH =∠AME ,OM =AM ,∠OHM =∠AEM ,∴△OHM ≌△AEM .∴OH =AE . ∴EP =AE ,即AP =2AE =2OH . ∵OP ⊥AD ,∴AD =2AP . ∴AD =2AP =2×2OH =4OH . ∴AD =4OH .(3)解:如图D173,延长FN 交⊙O 于点K ,连接BK ,图D173∵FK 是⊙O 的直径, ∴∠KBF =90°.∵CG ⊥BF ,∴∠CGF =90°. ∴CG ∥BK .∴∠CON =∠OKB .又∵∠COK =2∠CBK , ∴∠OKB =2∠CBK .在Rt △HKB 中,∠CBK +∠OKB =90°,∴∠CBK =30°. ∴∠COK =2∠CBK =60°.在Rt △OCH 中,OC =CH sin 60°=332=2.∴⊙O 的半径为2.25.(1)证明:过点P 作MN ∥BC ,分别交AB ,CD 于点M ,N ,如图D174, 则四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰三角形, ∴NP =NC =MB . ∵∠BPQ =90°,∴∠QPN +∠BPM =90°,且∠BPM +∠PBM =90°.图D174∴∠QPN =∠PBM .在△QNP 和△PMB 中, ⎩⎪⎨⎪⎧∠QPN =∠PBM ,NP =MB ,∠QNP =∠PMB ,∴△QNP ≌△PMB (ASA).∴PQ =PB .(2)解:由(1)知△QNP ≌△PMB ,得NQ =MP .设AP =x ,则AM =MP =NQ =DN =22x ,BM =PN =CN =1-22x ,∴CQ =CD -DQ =1-2×22x =1-2x .∴S △PBC =12BC ·BM =12×1×⎝⎛⎭⎫1-22x =12-24x .S △PCQ =12CQ ·PN =12×(1-2x )⎝⎛⎭⎫1-22x =12-3 24x +12x 2.∴S 四边形PBCQ =S △PBC +S △PCQ =12x 2-2x +1,即y =12x 2-2x +1⎝⎛⎭⎫0≤x <22.(3)△PCQ 可能成为等腰三角形. ①当点Q 在边DC 上,由PQ 2=CQ 2得⎝⎛⎭⎫1-22x 2+⎝⎛⎭⎫22x 2=(1-2x )2,解得x 1=0,x 2=2(舍去).②当点Q 在边DC 的延长线上时,如图D175,图D175由PC =CQ 得2-x =2x -1,解得x =1. ③当点Q 与C 点重合,△PCQ 不存在.综上所述,x =0或1时,△PCQ 为等腰三角形.。

2016年广东省初中毕业学业考试数学模拟试卷1及答案

2016年广东省初中毕业学业考试数学模拟试卷1及答案

2013年初中毕业生学业考试模拟试题数学说明:1.全卷共 4 页,满分120 分,考试时间 100分钟; 2. 答案务必填写在答卷相应位置上,否则无效。

一、选择题(每小题3分,共30分)1. -31的倒数是( )A -3B 3C -31D 312. 下列运算中,正确的是( )A x 3-x 2=xB (x -y) 2=x 2-y 2C x 2·x 3=x 6D (x 3)2=x 63. 用配方法解方程时,方程x 2-2x -3=0变形正确的是( )A (x -1)2=2B (x -1)2=4C (x -1)2=1D (x -1)2=74. 函数y=21x 中,自变量x 的取值范围是:( )A x > 2B x <2C x ≠ 2D x ≠ -2 5. 不等式2-3x ≥2x -8的非负整数解有:( )A 1 个B 2个C 3个D 4个6. 在围棋盒中有4颗黑色棋子和a 颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是53,则a =( )A 6B 4C 3D 2 7. 如图,已知A B ∥CD,BE 平分∠ABC ,∠CDE =1500,则∠C 的度数是:( ) A 1000 B 1100 C 1200 D 1500 8. 如图,在△ABC 中,∠C =900,AD 是BC 边上的中线,BD =4,AD =25则tan ∠CAD 的值是( ) A 2 B 3 C 5 D 29. 如图,AB 是⊙O 的直径,弦C D ⊥AB ,垂足为E ,如果AB =10,CD =8,那么,sin ∠OCE=( ),A 34B 53C 54D 4310. 如图,两块相同的直角三角形完全重合在一起,∠A =300,AC =10,把上面一块绕直角顶点B 逆时针旋转到△A ′B ′C ′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D =( ) A 2.5 B 2 C 32 D235二、填空题(每小题4分,共24分) 11.分解因式:2x 2-8=12.化简:x 1-11-x =13.若关于x 的方程ax 2+2 (a+2)x+a=0有实数解,那么实数a 的取值范围是 . 14.不等式组⎩⎨⎧+≤〉-53412x x xx 的解集是 .15.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D 的大小是 .16如图,在矩形ABCD 中,AB =3,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 .三.解答题(一)(每小题5分,共15分)17.计算:12-(-2013)0+(21)-1 +31- 18.已知一次函数y=2x+1的图象分别与坐标轴相交于A 、B 两点(如图所示)与反比例函数的图象相交于C 点,(1)写出A 、B 两点的坐标; (2)作CD ⊥x 轴,垂足为D ,如果OB 是△ACD是中位线,求反比例函数y=xk(k >0)的关系式.19.尺规作图:已知△ABC ,请用直尺和圆规作出△ABC 的外接圆O.(要求保留作图痕迹,不写作法.)三、解答题(二)(每小题8分,共24分)20.已知甲同学手中藏有三张分别标有数字21、41、1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b, (1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则,若所选出的a 、b 能使得方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜,请问这样的游戏规则公平吗?请你用概率知识解释。

广东省中考数学模拟测试卷(三)附答案

广东省中考数学模拟测试卷(三)附答案

A. 3.5X 10B. 35X 10C3.如图所示的几何体的左视图是()Z ZA .——BC. ——D4. 一组数据3、- 2、0、1、4的中位数是(A. 0B. 1C5.下列图形既是轴对称图形,又是中心对称图形的是;.3.5X10 D. 0.35X 10 .,出);.-2 D. 4( )©1 O广东省中考模拟测试题数学、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.在0.3, -3, 0,-点这四个数中,最大的是()A. 0.3B. - 3C. 0D. V32.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()4 3 35 6.用不等式表示图中的解集,其中正确的是(-1-----⑦---- 1 ---- 1----- 1--- ►-3 -2 -1 0 1A. x>- 2B.xw- 2C. xv-2D. x>-27.如图,在^ABC中,D、E分别是AB、AC的中点,若△ ADE的面积是a,则四边形BDEC的面积是()8.已知如图DC// EG, /C = 40° , / A=70° ,则/ AFE 的度数为(A . 140°B, 110°C, 90°D, 30°9.如果关于x的一元二次方程x2-x+}m-1=0有实数根,那么m的取值范围是()A . m>2 B. m>3 C. mv 5 D. m< 510.如图,等边△ ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB-BC向点C运动,到达点C停止,设^ APQ 的面积为y (cm2),运动时间为x (s),则下列最能反映y与x 之间函数关系的图象是()O\ 1 2x(^) o] I^不回B.11 .如图。

2016年广东省中考数学模拟试题及参考答案四套汇总

2016年广东省中考数学模拟试题及参考答案四套汇总

2016年广东省汕头市金平区中考模拟考试题数学试卷一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1. 在﹣1,0,2,3四个数中,最大的数是(▲)A .﹣1 B .0 C .2 D .3 2. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为(▲) A .0.51×109B .5.1×109C .5.1×108D .0.51×1073.下列图案中既是中心对称图形,又是轴对称图形的是(▲)A .B .C .D .4.下列运算中,结果是a 6的式子是(▲)A .(a 3)3 B .a 12﹣a 6 C .a 2•a 3 D .(﹣a )65.一个多边形的每个内角均为120°,则这个多边形是(▲) A .七边形 B .六边形 C .五边形 D .四边形6.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是51,则n 的值为(▲)A .10 B .8 C .5 D .37.若△ABC 与△DEF 相似,相似比为2:3,则这两个三角形的面积比为(▲) A .2:3 B .3:2 C .4:9D .9:48.如图,平行四边形ABCD 的周长为20,AE 平分∠BAD,若CE=2, 则AB 的长度是(▲)A .10 B .8C .6D .49.若一元二次方程x 2+2x+m=0的有实数解,则a 的取值范围是(▲) 第8题图 A .m ≤1 B .m ≤4 C .m <1 D .m ≥110.如图,直线y=﹣x+2与y 轴交于点A ,与反比例函数y=xk(k≠0)的图象交于点C , 过点C 作CB⊥x 轴于点B ,AO=2BO ,则反比例函数的解析式为(▲) A .y=x 3 B .y=﹣x 3 C .y=x23 D .y=﹣x23二.填空题(本大题6小题,每小题4分,共24分) 11.在函数y=12 x 中,自变量x 的取值范围是▲. 12.如图,自行车的三角形支架,这是利用三角形具有▲性. 13.因式分解:x 3﹣xy 2=▲.14.如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF , 则∠EBF 的大小为▲. 15.有一列具有规律的数字:21,61,121,201,…则这列数字第10个数为▲. 16.如图,腰长为3的等腰直角三角形ABC 绕点A 逆时针旋转15°, 则图中阴影部分的面积为▲.318172)﹣2﹣|﹣1|﹣(3)0+2cos60°.18.(本题满分6分)先化简,再求值:(x+1)2+x (x ﹣2),其中19.(本题满分6分)已知:在△ABC 中,AB=AC .(1)尺规作图:作△ABC 的角平分线AD ,延长AD 至E 点,使得DE=AD ; (不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BE ,CE ,求证:四边形ABEC 是菱形.四.解答题(二)(本大题3小题,每小题7分,共21分)20.(本题满分7分)如图,一条光纤线路从A 地到B 地需要经过C 地,图中AC=40千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A 地到B 地之间铺设一条笔直的光纤线路. (1)求新铺设的光纤线路AB 的长度;(结果保留根号) (2)问整改后从A 地到B 地的光纤线路比原来缩短了多少千米?(结果保留根号) 21.(本题满分7分)农贸超市用5 000元购进一批新品种的凤梨进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种凤梨,但这次的进货价比试销时每千克多了0.5元,购进凤梨数量是试销时的2倍.(1)试销时该品种凤梨的进货价是每千克多少元?(2)如果超市将该品种凤梨按每千克7元的定价出售,当大部分凤梨售出后,余下的凤梨定价为4元,超市在这两次凤梨销售中的盈利不低于4 100元,那么余下的凤梨最多多少千克? 22.(本题满分7分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A .篮球B .乒乓球C .羽毛球D .足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人; (2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).五.解答题(三)(本大题3小题,每小题9分,共27分)23.(本题满分9分)如图,抛物线y=﹣x 2+3x+4交x 轴于A 、B 两点(点A 在B 左边),交y 轴于点C . (1)求A 、B 两点的坐标; (2)求直线BC 的函数关系式;(3)点P 在抛物线的对称轴上,连接PB ,PC ,若△PBC 的面积为4, 求点P 的坐标.24.(本题满分9分)如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 和点D ,点E 为 DC的中点,连接OE 交CD 于点F ,连接BE 交CD 于点G . (1)求证:AB=AG ;(2)若DG=DE ,求证:GA GC GB ∙=2;(3)在(2)的条件下,若tanD=43,EG=10,求⊙O 的半径.25.(本题满分9分)有一副直角三角板,在三角板ABC 中,∠BAC=90DEF 中,∠FDE=90°,∠E=45°,EF=6.将这副直角三角板按如图1所示位置摆放,点A 与点F 重合,点E 、F 、A 、C 在同一条直线上.现固定三角板ABC ,将三角板DEF 以每秒1个单位的速度沿边AC 匀速运动,DF 与AB 相交于点M .(1)如图2,连接ME ,若∠EMA=67.5°,求证:△DEM ≌△AEM ;(2)如图3,在三角板DEF 移动的同时,点N 从点C 出发,以每秒2个单位长度的速度沿CB 向点B 匀速移动,当三角板DEF 的顶点D 移动到AB 边上时,三角板DEF 停止移动,点N 也随之停止移动.如图3,连接FN ,设四边形AFNB 的面积为y ,在三角板DEF 运动过程中,y 存在最小值,请求出y 的最小值; (3)在(2)的条件下,在三角板DEF 运动过程中,是否存在某时刻,使E 、M 、N 三点共线,若存在,请直接写出此时AF 的长;若不存在,请直接回答.第25题图1 第25题图2 第25题图32016年广东省汕头市金平区中考模拟考试题数学试卷参考答案一.选择题(本大题10小题,每题3分,共30分)1.C 2.C 3.A 4.D 5.B 6.B 7.C 8.D 9.A 10.B 二.填空题(本大题6小题,每小题4分,共24分) 11.21-≥x 12.稳定 13.x (x ﹣y )(x+y ) 14.45° 15.1101 16.323-29 三.解答题(一)(本大题3小题,每题6分,共18分) 17.解:原式=4﹣1﹣1+1 4分=3. 6分18.解:原式=x 2+2x+1+x 2﹣2x 2分 (公式1分,乘法1分)=2x 2+1,3分 当2=4分原式=2(22+16分19.解:(1)如图所示:AD ,DE 为所求; 3分(角平分线AD 得2分,线段DE 得1分)(2)证明:∵AB=AC ,AD 平分∠CAB ,∴CD=BD ,AD ⊥BC , 4分 ∵AD=DE ,∴四边形ABEC 是菱形. 6分四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)过C 作CD ⊥AB ,交AB 于点D ,在Rt △ACD 中,CD=AC •sin ∠CAD=40×=20(千米), 1分 AD=AC •cos ∠CAD=40×=20(千米), 2分在Rt △BCD 中,BD==201=20(千米), 3分 ∴AB=AD+DB=20+20=20(+1)(千米),则新铺设的光纤线路AB 的长度20(+1)(千米); 4分(2)在Rt △BCD 中,根据勾股定理得:BC==20(千米), 5分∴AC+CB ﹣AB=40+20﹣(20+20)=20(1+﹣)(千米),则整改后从A地到B地的光纤线路比原来缩短了20(1+﹣)千米.7分21.解:(1)设试销时该品种凤梨的进货价是每千克x元,1分由题意得,50001100020.5x x⨯=+,3分解得:x=5,经检验,x=5是原分式方程的解,且符合题意,答:试销时该品种凤梨的进货价是每千克5元; 4分(2)由(1)得,总共购进凤梨:5000÷5×3=3000(kg),5分设余下的凤梨为y千克,由题意得,7(3000-y)+4y-5000-11000≥4100,6分解得:y≤300.答:余下的凤梨最多为300千克.7分22.解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;2分(2)补全图形,如图所示:3分(3)列表如下:5分所有等可能的结果为12种,其中符合要求的只有2种,6分则P==.7分五.解答题(三)(本大题3小题,每小题9分,共27分) 23.解:(1)由﹣x 2+3x+4=0解得x=﹣1或x=4,所以A 、B 两点坐标为(﹣1,0)和(4,0); 2分(2)抛物线y=﹣x 2+3x+4与y 轴交点C 坐标为(0,4),由(1)得,B (4,0), 3分设直线BC 的函数关系式y kx b =+,∴404k b b +=⎧⎨=⎩, 4分解得14k b =-⎧⎨=⎩,∴直线BC 的函数关系式为y=﹣x+4; 5分 (3)抛物线y=﹣x 2+3x+4的对称轴为x=23, 6分 对称轴与直线BC 的交点记为D ,则D 点坐标为(23,25). ∵点P 在抛物线的对称轴上,∴设点P 的坐标为(23,m ), ∴PD=25m -, 7分 ∴S △PBC =PD OB ⋅21=4. ∴425421=-⨯⨯m . 8分 ∴m=29或m=21.∴点P 的坐标为(23,29)或(23,21), 9分 24.(1)证明:如图,连接OB .∵AB 为⊙O 切线,∴OB ⊥AB .∴∠ABG +∠O BG=90°.∵点E 为 DC的中点,∴OE ⊥CD.∴∠OEG +∠FGE =90°. 1分 又∵O B=OE ,∴∠O B G=∠O EG ,∴∠ABG =∠FGE. 2分 ∵∠BGA =∠FGE , ∴∠ABG =∠BGA.∴AB=AG ; 3分 (2)证明:连接BC ,∵DG=DE ,∴∠DGE =∠DEG. 由(1)得∠ABG =∠BGA ,又∵∠BGA =∠DGE ,∴∠A=∠D. ∵∠GBC =∠D ,∴∠GBC =∠A. 4分 ∵∠BGC =∠AGB ,∴△G BC ∽△GAB. 5分∴GBGCAB GB =. ∴GA GC GB ∙=2; 6分 (3)连接OD ,在Rt △DEF 中,tanD=DF EF =43, ∴设EF=3x ,则DF=4x ,由勾股定理得DE=5x. 7分 ∵DG=DE ,∴DG=5x.∴GF=DG ﹣DF=x .在Rt△EFG 中,由勾股定理得GF 2+EF 2=EG 2,即(3x )2+x 2=(10)2,解得x=1. 8分设⊙O 半径为r ,在Rt△O DF 中,OD=r ,OF=r ﹣3x=r ﹣3,DF=4x=4,由勾股定理得:OF 2+FD 2=OD 2,即(r ﹣3)2+(4)2=r 2, 解得r=.∴⊙O 的半径为. 9分∴y 6分 (3)不存在. 9分2016年广东省汕头市龙湖区中考模拟考试题数 学请将答案写在答题卷相应的位置上说明:1.全卷共4页,满分120分,考试时间为100分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016广东中考模拟卷
数学试卷(三)
(时间:100分钟 满分120分)
一、选择题(本大题10小题,每小题3分,共30分) 1. 在下列实数中,无理数是( )
2.下列图案中,不是中心对称图形的是( )
A .
B .
C .
D .
答案C
3. 9的算术平方根是( ) A .3
B .-3
C .81
D .-81
答案 A
4. 已知一个多边形的内角和是1080°,这个多边形的边数是( ) A .7
B .8
C .9
D .10
答案 B
5. 计算:32
2a a
等于( ). A . 2 B . 5a C . 52a D . 62a
答案 C
6. 某班在体育上测试了7位女生1分钟仰卧起坐的个数分别为28,38,38,35,35,38,48,这组数据的众数是( )
7. 关于x 的一元二次方程2
220x bx --=的根的情况是( ) A.有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D . 无法确定
答案 A
8. x 的取值范围是( ) A .0x ≥ B .2x ≠ C .0x > D . 02x x ≥≠且
答案 D
9. 如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则sin EDB ∠的值是( )
A .
12 B .2 C .5
D . 15 答案 B
10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,分析下列四个结论: ①a>0; ②b<0; ③c>0; ④b 2﹣4ac >0;⑤2a-b>0; ⑥a+b+c<0; 其中正确的结论有( )
二、填空题(本大题6小题,每小题4分,共24分) 11. 分解因式:2a 2﹣8= . 答案 2282(2)(2)
a a a -=-+ 12.太阳的半径约为696 000千米,用科学记数法表示数696 000为 .
答案 5
9.9610⨯
13. 如图,平行四边形ABCD 的对角线交于点O ,且AB =6,△OCD 的周长为27,则平行四边形ABCD 的两条对角线的和是 。

答案 42
14.222(2)30,a b a b -++=-=若则
答案 5- 15. 化简:
11_________.(1)
a a a +=- 答案
11a -
16. 7.(2014•北京,第8题4分)已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是(





三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 计算:.
()
1
12+20163π-⎛⎫---- ⎪⎝⎭
解:
32+13
1
=--=-原式
18.先化简,再求值:1111a a a a ⎛⎫⎛⎫
+÷- ⎪ ⎪--⎝
⎭⎝⎭,其中2a =。

答案 解:
2
11(1)
1111
2
11
1
1(2)
1
2
1
2
2
a a a a
a a a a
a a a
a a
a a
a a a
a
a
a
--
⎛⎫⎛⎫
+÷-
⎪ ⎪
----
⎝⎭⎝⎭
-

--
-
=⨯
--
=
-
====
-
原式=
当时,原式
19.如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);
(2)连接BD,求证:BD平分∠CBA.
答案
四、解答题(二)(本大题3小题,每小题7分,共21分)
20. 某中学组织各年级参加秋游活动,七、八年级学生分别去东莞的长隆、深圳的世界之窗,已知这两个年级共有2350人,七年级的人数的2倍比八年级的人数的3倍少550人,七、八年级学生分别有多少人? 答案
解:设七、八年级学生分别有x 人、y 人,由题意得:
23502355013001050
x y x y x y +=⎧⎨
=-⎩=⎧⎨
=⎩解得:
答:七、八年级人数分别为1300人和1050人。

21. 如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB =10,AC =4,延长CF 交AB 于点G 。

(1)求证:△AFG ≌△AFC (2)则DF 的长
答案

=BG=(=(
22. 某校九年级学生在一节体育课中,选一组学生进行投篮比赛,每人投10次,汇总投进球数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).
(1)表中a=;
(2)请将条形统计图补充完整;
(3)从小组成员中选一名学生参加校运会投篮比赛,投进10球的成员被选中的概率有多少?
答案


五、解答题(三)(本大题3小题,每小题9分,共27分)
23.
答案
24.
答案25. 答案。

相关文档
最新文档