一次函数、反比例函数的图象和性质
【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。
一次函数与反比例函数

一次函数与反比例函数第一部分 知识梳理一、一次函数和反比例函数的解析式1.一次函数的定义:函数y= kx+b (k 、b 为常数,k ≠0,自变量x 的次数是1次)叫做一次函数。
2.一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
二、一次函数和反比例函数的图像1.一次函数y=kx+b 的k 、b 的值对一次函数图象的影响。
y① k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限; ② k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③ k ﹤0,b ﹥0, y =kx +b 的 图象在一、二、四象限; ④ k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。
2.反比例函数的性质3.反比例函数中反比例系数的几何意义 ①过双曲线xky =(k ≠0) 上任意一点作x 轴、y 轴的垂线段,所得矩形(如图)面积为k 。
第二部分 例题与解题思路方法归纳类型一 一次函数的图像与性质【例题1】已知一次函数y=(6+3m )x+n ﹣4. (1)当m 、n 为何值时,函数的图象过原点?(2)当m 、n 满足什么条件时,函数的图象经过第一、二、三象限?〖选题意图〗本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.〖解题思路〗(1)将点(0,0)代入一次函数解析式y=(6+3m)x+n﹣4求得n值,利用一次函数的性质知系数6+3m≠0求得m值;(2)根据一次函数的性质知,当该函数的图象经过第一、二、三象限时,6+3m>0,且n ﹣4>0,据此求m、n的值.〖参考答案〗解:(1)∵一次函数y=(6+3m)x+n﹣4的图象过原点,∴6+3m≠0,且n﹣4=0,解得,m≠﹣2,n=4;(2)∵该函数的图象经过第一、二、三象限,∴6+3m>0,且n﹣4>0,解得m>﹣2,n>4.【课堂训练题】1.如图,直线y=﹣x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x 轴交于点C,则△ABC的面积为.〖参考答案〗解:因为直线y=﹣x+4中,b=4,故A点坐标为(0,4);令﹣x+4=0,则x=3,故D点坐标为(3,0).令x+=0,则,x=﹣1,故C点坐标为(﹣1,0),因为B点为直线y=﹣x+4直线y=x+的交点,故可列出方程组﹣,解得,故B点坐标为(,2),故S△ABC=S△ACD﹣S△BCD=CD•AO﹣CD•BE=×4﹣×4×2=4.2.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.〖参考答案〗解:由题意可知当直线y=﹣2x+b经过A(1,1)时b的值最小,即﹣2×1+b=1,b=3;当直线y=﹣2x+b过C(2,2)时,b最大即2=﹣2×2+b,b=6,故能够使黑色区域变白的b 的取值范围为3≤b≤6.3.已知直线l n:y=﹣+(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1,(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=﹣x+与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2;…依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.则s1+s2+s3+s4+s5=;S n=.〖参考答案〗解出l1、l2、l3、l4…l n的解析式为l1:y=﹣2x+1,l2:y=﹣x+,l3:y=﹣x+,l4:y=﹣x+,l5:y=﹣x+…l n:y=﹣+(n是不为零的自然数).于是S1=1××=;S2=××=;S3=××=;S4=××=;S5=××=….S n=××=()s1+s2+s3+s4+s5=++++=.4.(2011•绍兴)在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(l,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上,求a,b 的值.〖参考答案〗(1)解:∵1×2≠2×(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)解:由题意得:当a>0时,(a+3)×2=3a,∴a=6,点P(a,3)在直线y=﹣x+b上,代入得:b=9当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6,点P(a,3)在直线y=﹣x+b上,代入得:b=﹣3,∴a=6,b=9或a=﹣6,b=﹣3.类型二一次函数图像与几何变换【例题2】(2011•咸宁)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任意一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上…由此我们知道,平移n 次后在函数的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.〖选题意图〗本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.〖解题思路〗(1)根据点的平移特点描出每次平移后P点的位置即可;(2)先根据P点平移一次后的点的坐标求出过此点的函数解析式,再根据函数图象平移的性质解答即可;(3)设点Q 的坐标为(x ,y ),求出Q 点的坐标,得出n 的取值范围,再根据点Q 的坐标为正整数即可进行解答.〖参考答案〗解:(1)如图所示:(2)设过(0,2),(1,0)点的函数解析式为:y=kx+b (k≠0), 则,解得 ﹣ , 故第一次平移后的函数解析式为:y=﹣2x+2; ∴答案依次为:y=﹣2x+2;y=﹣2x+4;y=﹣2x+2n . (3)设点Q 的坐标为(x ,y ),依题意, ﹣.解这个方程组,得到点Q 的坐标为(,).∵平移的路径长为x+y , ∴50≤≤56.∴37.5≤n≤42. ∵点Q 的坐标为正整数,∴点Q 的坐标为(26,26),(28,28). 【课堂训练题】1.(1)点(0,1)向下平移2个单位后的坐标是 ,直线y=2x+1向下平移2个单位后的解析式是 ;(2)直线y=2x+1向右平移2个单位后的解析式是 ;(3)如图,已知点C 为直线y=x 上在第一象限内一点,直线y=2x+1交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC 方向平移 个单位,求平移后的直线的解析式.〖参考答案〗解:(1)(0,﹣1),y=2x+1﹣2=2x﹣1;(2)y=2(x﹣2)+1=2x﹣3;(3)y=2(x﹣3)+1+3,即y=2x﹣2.2.如图,将直线y=2x沿y轴向下平移后,得到的直线与x轴交于点(,),与双曲线在第一象限交于点B,且△OAB的面积.(1)求直线AB的解析式(2)求双曲线的解析式.〖参考答案〗解:(1)直线AB的解析式为y=2x﹣b,把A(,0)代入得,0=2×﹣b,解得b=5,故此直线的解析式为:y=2x﹣5;(2)作BD⊥x轴,∵△OAB的面积,即OA•BD=,∵A(,0),∴BD=3,∵B点在直线y=2x﹣5上,∴3=2x﹣5,解得x=4,∴B (4,3)∵B 点在反比例函数y=上, ∴k=3×4=12,∴此反比例函数的解析式为:y=.3.如图,直线y=x+4与x 轴、y 轴分别交于A 、B 两点,点C 在OB 上,若将△ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是 (0,1.5) .〖参考答案〗解:由题意得:A (﹣3,0),B (0,4); ∴OA=3,OB=4.那么可得AB=5.易得△ABC ≌△ADC ,∴AD=AB=5,∴OD=AD ﹣OA=2.设OC 为x .那么BC=CD=4﹣x .那么x 2+22=(4﹣x )2,解得x=1.5, ∴C (0,1.5).类型三 反比例函数的图像与性质【例题3】(2011•防城港)如图,是反比例函数y=和y=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值是( )A .1B .2C .4D .8〖选题意图〗本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd ﹣ab=4是解此题的关键.〖解题思路〗设A (a ,b ),B (c ,d ),代入双曲线得到k 1=ab ,k 2=cd ,根据三角形的面积公式求出cd ﹣ab=4,即可得出答案.〖参考答案〗解:设A (a ,b ),B (c ,d ),代入得:k 1=ab ,k 2=cd , ∵S △AOB =2,∴cd ﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故选C.【课堂训练题】1.(2011•东营)如图,直线l和双曲线(>)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A、S1<S2<S3B、S1>S2>S3C、S1=S2>S3D、S1=S2<S3〖参考答案〗解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.故选D.2.如图,点A是反比例函数y=的图象上任意一点,延长AO交该图象于点B,AC⊥x 轴,BC⊥y轴,求Rt△ACB的面积.〖参考答案〗解:设点A的坐标为(x,y),则点B坐标为(﹣x,﹣y),所以AC=2y,BC=2x,所以Rt△ACB的面积为AC•BC=×2x•2y=2xy=2|k|=24.类型四反比例函数与一次函数的交点问题【例题4】(2011•雅安)如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(﹣2,3),BC⊥x轴于C,四边形OABC面积为4.(1)求反比例函数和一次函数的解析式;(2)求点D的坐标;(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)〖选题意图〗此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,利用图象判定函数的大小关系是中学的难点同学们应重点掌握.〖解题思路〗(1)先设出反比例函数和一次函数的解析式:y=和y=ax+b,把点B的坐标代入反比例函数的解析式求出k即可;(2)两个解析式联立,求得点D的坐标即可;(3)利用函数图象求出分别得出使一次函数的值大于反比例函数的值的x的取值范围.〖参考答案〗解:(1)设反比例函数的解析式y=和一次函数的解析式y=ax+b,图象经过点B,∴k=﹣6,∴反比例函数解析式为y=﹣,又四边形OABC面积为4.∴(OA+BC)OC=8,∵BC=3,OC=2,∴OA=1,∴A(0,1)将A、B两点代入y=ax+b有﹣,解得﹣∴一次函数的解析式为y=﹣x+1,(2)联立组成方程组得﹣﹣,解得x=﹣2或3,∴点D(3,﹣2)(3)x<﹣2或0<x<3.【课堂训练题】1.(2011•潼南县)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.〖参考答案〗解:(1)由图象可知:点A的坐标为(2,)点B的坐标为(﹣1,﹣1)∵反比例函数(m≠0)的图象经过点(2,),∴m=1∴反比例函数的解析式为:∵一次函数y=kx+b(k≠0)的图象经过点(2,)点B(﹣1,﹣1)∴﹣﹣解得:k=b=﹣∴一次函数的解析式为﹣(2)由图象可知:当x>2或﹣1<x<0时一次函数值大于反比例函数值2.如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交点A(1,3).(1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.〖参考答案〗解:(1)由题意,得3=1+m,解得:m=2.所以一次函数的解析式为y1=x+2.由题意,得3=,解得:k=3.所以反比例函数的解析式为y2=.由题意,得x+2=,解得x1=1,x2=﹣3.当x2=﹣3时,y1=y2=﹣1,所以交点B(﹣3,﹣1).(2)由图象可知,当﹣3≤x<0或x≥1时,函数值y1≥y2.类型五函数的应用【例题5】(2011•岳阳)某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:(1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求y与x之间的函数关系式.(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.〖选题意图〗此题主要考查了一次函数的应用,一次函数的应用是中考中的重点题型,利用图表得出正确的信息是解决问题的关键.〖解题思路〗(1)根据图表得出16x+12y+10(20﹣x﹣y)=240,从而求出y与x的关系式即可;(2)利用(1)中关系式即可得出方案;(3)分别求出(2)中方案的利润即可.〖参考答案〗解:(1)∵厂方计划由20个工人一天内加工完成,设加工甲种配件的人数为x,加工乙种配件的人数为y,∴加工丙种配件的人数为(20﹣x﹣y)人,∴16x+12y+10(20﹣x﹣y)=240,∴y=﹣3x+20;(2)设加工丙种配件的人数为z=(20﹣x﹣y)人,当x=3时,y=11,z=6,当x=4时,y=8,z=8,当x=5时,y=5,z=10,其他都不符合题意,∴加工配件的人数安排方案有三种;(3)由图表得:方案一利润为:3×16×6+11×12×8+10×6×5=1644元,方案二利润为:4×16×6+8×12×8+10×8×5=1552元,方案三利润为:5×16×6+5×12×8+10×10×5=1460元,∴应采用(2)中方案一,最大利润为1644元.【课堂训练题】1.(2011•孝感)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?〖参考答案〗解:(1)设该公司组装A型器材x套,则组装B型器材(40﹣x)套,依据题意得(﹣),(﹣)解得22≤x≤30,由于x 为整数,所以x取22,23,24,25,26,27,28,29,30.故组装A、B两种型号的健身器材共有9套组装方案;(2)总的组装费用y=20x+18(40﹣x)=2x+720,∵k=2>0,∴y随x的增大而增大,∴当x=22时,总的组装费用最少,最少组装费用是2×22+720=764元,总的组装费用最少的组装方案为:组装A型器材22套,组装B型器材18套.2.为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?〖参考答案〗解:(1)门票定价为50元/人,那么10人应花费500元,而从图可知实际只花费300元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费400元,而原价是500元,可以知道是打8折得到的价格,所以b=8,看图可知m=10;(2)设y1=kx,当x=10时,y1=300,代入其中得,k=30y1的函数关系式为:y1=30x同理可得,y2=50x(0≤x≤10),当x>10时,设其解析式为:y2=(x﹣10)×50×0.8+500,化简得:y2=40x+100;(3)设A团有n人,则B团有(50﹣n)人,当0≤n≤10时,50n+30(50﹣n)=1900解得,n=20这与n≤10矛盾,当n>10时,40n+100+30(50﹣n)=1900,解得,n=30,50﹣30=20.答:A团有30人,B团有20人.【例题6】用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?〖选题意图〗现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.〖解题思路〗(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,后根据题意代入求出k1和k2即可;(2)当y=0.5时,求出此时小红和小敏所用的水量,后进行比较即可.〖参考答案〗解:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,将和分别代入两个关系式得:1.5=,2=,解得:k1=1.5,k2=2.∴小红的函数关系式是=,小敏的函数关系式是.(2)把y=0.5分别代入两个函数得:=0.5,=0.5,解得:x1=3,x2=4,10×3=30(升),5×4=20(升).答:小红共用30升水,小敏共用20升水,小敏的方法更值得提倡.【课堂训练题】1.一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.〖参考答案〗解:(1)设ρ=,当V=10m3时,ρ=1.43kg/m3,所以1.43=,即k=14.3,所以ρ与V的函数关系式是ρ=;(2)当V=2m3时,把V=2代入得:ρ=7.15(kg/m3),所以当V=2m3时,氧气的密度为7.15(kg/m3).类型六一次函数与反比例函数的综合题【例题7】(2011•宜宾)如图,一次函数的图象与反比例函数﹣(<)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(>)的图象与﹣(<)的图象关于y轴对称,在y2=(>)的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.〖选题意图〗此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.〖解题思路〗(1)根据x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值得到点A的坐标,利用待定系数法求函数的解析式即可;(2)求得B点的坐标后设出P点的坐标,利用告诉的四边形的面积得到函数关系式求得点P的坐标即可.〖参考答案〗解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则﹣,解之得﹣,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与﹣(<)的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设p(n,)n>2,S四边形BCQP=S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).【课堂训练题】1.(2011•成都)如图,已知反比例函数()的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.〖参考答案〗解:(1)把点(,8)代入反比例函数(),得k=•8=4,∴反比例函数的解析式为y=;又∵点Q(4,m)在该反比例函数图象上,∴4•m=4,解得m=1,即Q点的坐标为(4,1),而直线y=﹣x+b经过点Q(4,1),∴1=﹣4+b,解得b=5,∴直线的函数表达式为y=﹣x+5;(2)联立﹣,解得或,∴P点坐标为(1,4),对于y=﹣x+5,令y=0,得x=5,∴A点坐标为(0,5),∴S△OPQ=S△AOB﹣S△OBP﹣S△OAQ=•5•5﹣•5•1﹣•5•1=.2.(2010•苏州)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B、(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.〖参考答案〗解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,∴点B坐标为(2,2),∴k=xy=2×2=4.(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,∴ON=OM=2OA=4,∴点E横坐标为4,点F纵坐标为4.∵点E、F在函数y=的图象上,∴当x=4时,y=1,即E(4,1),当y=4时,x=1,即F(1,4).设直线EF解析式为y=mx+n,将E、F两点坐标代入,得,∴m=﹣1,n=5.∴直线EF的解析式为y=﹣x+5.第三部分课后自我检测试卷A类试题:1.(2011•阜新)反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2 C.3 D.12.如图,直线y=x+2交x轴于A,交y轴于B(1)直线AB关于y轴对称的直线解析式为;(2)直线AB绕原点旋转180度后的直线解析式为;(3)将直线AB绕点P(﹣1,0)顺时针方向旋转90度,求旋转后的直线解析式.3.将一次函数y=kx﹣1的图象向上平移k个单位后恰好经过点A(3,2+k).(1)求k的值;(2)若一条直线与函数y=kx﹣1的图象平行,且与两个坐标轴所围成的三角形的面积为,求该直线的函数关系式.4.(2011•肇庆)如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.5.如图所示,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A (4,m).(1)求m的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B、C,求线段BC的长.B类试题:6.已知直线x﹣2y=﹣k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k的取值范围;(2)若k为非整数,点A的坐标(2,0),点P在直线x﹣2y=﹣k+6上,求使△PAO为等腰三角形的点的坐标.7.在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求证:△AEC≌△DFB.C 类试题:9.如图,双曲线y= (k >0,x >0)的图象上有两点P 1(x 1,y 1)和P 2(x 2,y 2),且x 1<x 2,分别过P 1和P 2向x 轴作垂线,垂足为B 、D .过P 1和P 2向y 轴作垂线,垂足为A 、C .(1)若记四边形AP 1BO 和四边形CP 2DO 的面积分别为S 1和S 2,周长为C 1和C 2,试比较S 1和S 2,C 1和C 2的大小;(2)若P 是双曲线y=(k >0,x >0)的图象上一点,分别过P 向x 轴、y 轴垂线,垂足为M 、N .试问当P 点落在何处时,四边形PMON 的周长最小?10.(2011•曲靖)如图:直线y=kx+3与x 轴、y 轴分别交于A 、B 两点,OA OB =,点C (x ,y )是直线y=kx+3上与A 、B 不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.课后自我检测试卷参考答案A类试题:1.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选A.2.解:由题意得:A(﹣4,0),B(0,2),(1)∵关于y轴对称则:此直线过点(0,2)和(4,0),∴可得函数解析式为i:y=﹣x+2(2)∵关于原点对称的两点的横坐标纵坐标都互为相反数,∴可得函数解析式过点(0,﹣2)和(﹣4,0),∴函数解析式为:y=﹣x﹣2(3)设函数解析式为y=2x+b,又∵过点(﹣1,0),∴函数解析式为:y=2x+2.3.解:(1)根据平移规律可知,平移后解析式为y=kx﹣1+k,将点A(3,2+k)代入,得3k﹣1+k=2+k,解得k=1;(2)设所求直线解析式为y=x+b,则图象与坐标轴两交点坐标为(﹣b,0),(0,b),由三角形面积公式得×|b|×|﹣b|=,解得b=±1,∴y=x+1或y=x﹣1(不合题意,舍去),故所求直线的函数关系式为y=x+1.4.解:(1)把点B(﹣1,0)代入一次函数y=x+b得:0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=,;(2)反比例函数y=,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y=,∴当1≤x≤6时,反比例函数y的值:≤y≤2.5.解:(1)∵点A (4,m)在反比例函数y=的图象上,∴m==1,∴A (4,1),把A (4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3,(2)∵直线x=2与反比例和一次函数的图象分别交于点B、C,∴当x=2时,y B==2,y C=2﹣3=﹣1,∴线段BC的长为|y B﹣y C|=2﹣(﹣1)=3.B类试题:6.解:(1)由题可得:﹣﹣,解得:﹣,∴两直线的交点坐标为(k+4,k﹣1),又∵交点在第四象限,∴>﹣<,解得:﹣4<k<1;(2)由于k为非负整数且﹣4<k<1,∴k=0,此函数的解析式为:x﹣2y=6.直线x﹣2y=6与y轴的交点坐标为:(0,﹣3),与x轴交点坐标为(6,0),∵2<3,∴等腰三角形△PAO只有以OA为底边,∴可得P点坐标为(1,﹣).7.解:(1)当P把△ABC分成如图(一)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AB上,设P运动了t秒,则BP=t,AP=12﹣t,由题意得:BP+BD=(AP+AC+CD),即t+3=(12﹣t+12+3),解得t=7秒;(2)当DP把△ABC分成如图(二)两部分时,因为AB=AC=12cm,BD=CD=BC=×6=3cm,所以P在AC上,设P运动了t秒,则AB+AP=t,PC=AB+AC﹣t,由题意得:BD+t=2(PC+CD),即3+t=2(12+12﹣t+3),即3t=51,t=17秒.∴当t=7或17秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍.8.解:(1)由题意得1=,∴m=6,∴n=,∴n=2;(2)设直线AB的函数解析式为y=kx+b﹣由题意得,解得∴直线AB的函数解析式为y=﹣2x+8;(3)∵y=﹣2x+8,∴A(0,8),B (4,0)∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB∵AE=DF=2,CE=BF=1∴△AEC≌△DFB.C类试题:9.解:(1)根据反比例函数系数k的几何意义可知S1=S2=k;当y1﹣y2=x2﹣x1即AC=BD时C1=C2;当y1﹣y2<x2﹣x1即AC<BD时C1<C2;当y1﹣y2>x2﹣x1即AC>BD时C1>C2.(2)设P(x,y),即(x,),四边形PMON的周长=2(x+y)=2(x+),因为面积相等的四边形中正方形的周长最小,所以x=,解得x=,故四边形PMON的周长最小=2(x+y)=4.10.解:(1)∵直线y=kx+3与y轴分别交于B点,∴B(0,3),∵OA OB= ,∴OA=4,∴A (4,0),∵直线y=kx+3过A (4,0),∴4k+3=0,∴k=﹣ ,∴直线的解析式为:y=﹣ x+3;(2)∵A (4,0),∴AO=4,∵△AOC 的面积是6,∴△AOC 的高为:3,∴C 点的纵坐标为3,∵直线的解析式为:y=﹣ x+3,∴3=﹣ x+3,x=0,∴点C 运动到B 点时,△AOC 的面积是6;(3)当过点C 的另一直线CD 与y 轴相交于D 点,且CD ⊥y 轴于点D 时,BD=BO=3,△BCD 与△AOB 全等, ∴C 点纵坐标为6,∴6=﹣ x+3,解得:x=﹣4,∴C 点坐标为:(﹣4,6).。
函数及其图象反比例函数反比例函数的图象和性质

2023函数及其图象反比例函数反比例函数的图象和性质•反比例函数概述•反比例函数的图象特征•反比例函数的性质•反比例函数的应用目•反比例函数与其他数学内容的联系•研究反比例函数的实验与数值模拟录01反比例函数概述形如$y = \frac{k}{x}$($k$为常数,$k \neq 0$)的函数称为反比例函数。
定义当$k > 0$时,图象分布在第一、三象限,且在每个象限内$y$随$x$的增大而减小;当$k < 0$时,图象分布在第二、四象限,且在每个象限内$y$随$x$的增大而增大。
性质定义与性质描述生活中常见的数量关系例如,当两个变量成反比例关系时,可以用反比例函数来描述它们之间的关系。
例如,路程一定时,速度与时间成反比;物体重量一定时,浮力与排开液体的体积成反比等。
数学中基本概念之间的联系反比例函数与正比例函数、一次函数、二次函数等有密切的联系,研究反比例函数有助于理解这些基本概念之间的联系与区别。
反比例函数的重要性描述自然现象和社会现象许多自然现象和社会现象中都存在反比例关系,例如物理学中的万有引力定律、电学中的欧姆定律等。
研究反比例函数可以描述这些现象,并帮助人们更好地理解它们。
数学应用在数学中,反比例函数与其他函数、方程、不等式等都有密切的联系。
研究反比例函数可以帮助人们更好地理解这些概念,并为解决实际问题提供更好的数学工具。
研究反比例函数的意义与发展02反比例函数的图象特征中心对称反比例函数图象以原点为中心对称。
双曲线反比例函数图象表现为双曲线,两支曲线永远不会相交。
形状特征水平位置当反比例函数解析式中的常数为正数时,图象在第一、三象限;当常数为负数时,图象在第二、四象限。
垂直位置由于反比例函数的图象关于原点对称,因此当常数为正数时,图象向右上方倾斜;当常数为负数时,图象向右下方倾斜。
位置特征当自变量x增大时,函数值y会减小;当自变量x减小时,函数值y会增大。
当|x|增大时,|y|会减小;当|x|减小时,|y|会增大。
一次函数,二次函数,反比例函数性质总结

一次函数、二次函数、反比例函数性质总结1.一次函数一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。
(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。
且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。
② k (≠a )+∞(1)当0,0==c b 时,函数的解析式变为)0(2≠=a ax y ,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴与开口方向②0,0,0=<>c b a 时③ 0,0,0=><c b a 时 ④ 0,0,0=<<c b a 时(3)c a ,决定开口方向与与y 轴的截距①0,0,0=>>b c a 时 ②a③0,0,0=>b c a 时 ④0,0,0=<<b c a 时y yOxx yOOyyOxxxxy y OOx xOOy(3)对于一般的二次函数,c b a ,,共同来决定其函数图像与性质,故通常采用配方的方法 )0(2≠++=a c bx ax y c aba b x a b x a c x a b x a +-++=++=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(22 =ab ac a b x a 44)2(22-++ 我们称abx 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2≠+-=a k h x a y 。
若知道二次函数与x 轴的两个交点坐标,可设其解析式为)0)()((21≠--=a x x x x a y 。
考点05 反比例函数的图像和性质(解析版)

考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。
一次函数和反比例函数知识点总结

一次函数知识点总结:函数性质:1. y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0)当x增加m,k(x+m)+b=y+km, km/m=k。
2. 当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3. 当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4. 一次函数的图像:直线5. 在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。
若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
反比例函数的图像和性质ppt课件

7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B
)
A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎
正比例函数、一次函数、反比例函数的性质及图象

正比例函数、一次函数、反比例函数的性质及图象、一次函数的性质和图象:概念:一般地,形如y=kx+b(k , b是常数,且k z0 的函数,叫做一次函数。
图像和性质:①k>0,b>0,则图象过___________________________ 象限②k>0,b<0,则图象过___________________________ 象限当k>0时,y随x的增大而____________________________③k<0,b>0,则图象过________________________ 象限④k<0,b<0,则图象过________________________ 象限当k v 0时,y 随x的增大而 ______________________________________三、反比例函数性质和图象:1. ______________________ 定义:形如 (k为常数,k z0的函数称为反比例函数。
其他形式________________________________________________________2. 图像:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
,在每个象限内y,在每个象限内y一、正比例函数性质和图象:概念:一般地,形如______________ (k是常数,且k z0的函数,叫做正比例函数。
当k>0时,图象过 __________________ 象限;y随x的增大而__________________________________ 。
3. _________________________________________________ 性质:当k >0时双曲线的两支分别位于_______________________________________值随x值的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点5 一次函数、反比例函数的图象和性质
(时间:100分钟分数:100分)
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求的)
1.在反比例函数y=2
x
的图象上的一个点的坐标是()
A.(2,1) B.(-2,1) C.(2,1
2
) D.(
1
2
,2)
2.函数y=(a-1)x a是反比例函数,则此函数图象位于()
A.第一、三象限; B.第二、四象限; C.第一、四象限; D.第二、三象限
3.已知正比例函数y=(3k-1)x,y随着x的增大而增大,则k的取值范围是()
A.k<0 B.k>0 C.k<1
3
D.k>
1
3
4.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰
三角形,则满足条件的点C最多有()个 A.4 B.5 C.7 D.8
5.在函数y=k
x
(k>0)的图象上有三点A1(x1,y1),A2(x2,y2),A3
(x3,y3),已知x1<x2<0<x3,则下列各式中,正确的是()
A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2 6.下列说法不正确的是()
A.一次函数不一定是正比例函数 B.不是一次函数就一定不是正比例函数
C.正比例函数是特殊的一次函数 D.不是正比例函数就一定不是一次函数
7.在同一平面直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是()
A.通过点(-1,0)的是①③ B.交点在y轴上的是②④
C.相互平行的是①③ D.关于x轴对称的是②④
8.在直线y=1
2
x+
1
2
上,到x轴或y轴的距离为1的点有()个
A.1 B.2 C.3 D.4
9.无论m、n为何实数,直线y=-3x+1与y=mx+n的交点不可能在() A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.一次函数y=kx+(k-3)的函数图象不可能是()
二、填空题(本大题共8小题,每小题3分,共24分)
11.一次函数y=kx+b中,y随x的增大而减小,且kb>0,则这个函数的图象一定不经过第______象限.
12.如图6-2,点A在反比例函数y=k
x
的图象上,AB垂直于x轴,若S△AOB=4,
•那么这个反比例函数的解析式为________.
13.如图6-3,弹簧总长y(cm)与所挂质量x(kg)之间是一次函数关系,则该弹簧不挂物体时的长度为________.
14.已知函数y=(k+1)x+k2-1,当k_______时,它是一次函数;当k______时,它是正比例函数.
15.一次函数图象与y=6-x交于点A(5,k),且与直线y=2x-3无交点,则这个一次函数的解析式为y=________.
16.已知函数y=3x+m与函数y=-3x+n交于点(a,16),则m+n=________.17.已知直线L:y=-3x+2,现有命题:①点P(-1,1)在直线L上;②
若直线L与x轴、• y轴分别交于A、B两点,则AB=2
10
3
;③若点M
(1
3
,1),N(a,b)都在直线L上,且a>
1
3
,则b>1;•④若点Q
到两坐标轴的距离相等,且Q在L上,则点Q在第一或第四象限.•其中正确的命题是_________.
18.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质.甲:函数的图象经过了第一象限;乙:函数的图象也经过了第三象限;
丙:在每个象限内,y随x的增大而减小。
请你写出一个满足这三个条件的函数: ____.
三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)
19.已知一次函数y=x+m与反比例函数y=
1
m
x
的图象在第一象限内的交
点为P(x0,3).
(1)求x0的值;(2)求一次函数和反比例函数的解析式.
20.如图,一次函数y=kx+b的图象与反比例函数y=m
x
的图象交于A(-2,
1),B(•1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
21.已知y+a与x+b成正比例,且当x=1,-2时,y的值分别为7,4.求y与x的函数关系式.
22.图中的直线的交点可看作是方程组的解,•请用你所学的知识求出这个方程组.
23.如图,一次函数y=-
3
3
x+1的图象与x轴、y轴分别交于点A、B,以
线段AB•为边在第一象限内作等边△ABC.(1)求△ABC的面积.
(2)如果在第二象限内有一点P(a,1
2
),请用含a的式子表示四
边形ABPO的面积,•并求出当△ABP的面积与△ABC的面积相等时a的值.
24.某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品
的日销售量y(件)之间的关系如下表:
x(元)15 20 30 …
y(件)25 20 10 …
若日销售量y是销售价x的一次函数.
(1)求出日销售量y(件)与销售价x(元)的函数关系式.
(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?
25.已知:如图,函数y=-x+2的图象与x轴、y轴分别交于点A、B,一直线L经过点C(1,0)将△AOB的面积分成相等的两部分.(1)求直线L的函数解析式;
(2)若直线L将△AOB的面积分成1:3两部分,求直线L的函数解析式.
答案: 一、填空题
1.A 2.B 3.D 4.C 5.C 6.D 7.C 8.D 9.C 10.A 二、填空题
11.一 12.y=-8
x
13.12cm 14.≠-1 =1 15.2x-9 16.32 17.②④ 18.y=1
x
(•答案不唯一)
三、解答题
19.解:(1)x 0=1,(2)y=x+2,y=
3x . 20.解:(1)把A (-2,1)代入y=m
x
,得m=-2,
即反比例函数为y=-2x ,则n=2
1
-⇒n=-2.
即B (1,-2),把A (-2,1),B (1,-2)代入y=kx+b ,
求得k=-1,b=-1,所以y=-x-1. (2)x<-2或0<x<1.
21.解:设y+a=k (x+b ),x=1时,y=7时,7+a=k (1+b ). x=-2,y=4时,得4+a=k (-2+b ),联立得1,
6.
k b a =⎧⎨
-=⎩故y=x+6.
22.解:L 1与L 2交点坐标为(2,3),L 1与y 轴交点为(0,
3
2
), 3
,2
3342
y x y x ⎧=⎪⎪⎨
⎪=+⎪⎩即为所求方程组.
23.解:(1)y=-
3
3
x+1与x 轴、y 轴交于A 、B 两点, ∵A (3,0),B (0,1).∵△AOB 为直角三角形,∴AB=2.
∴S△ABC=1
2
×2×sin60°=3.
(2)
S ABPO=S△ABO+S△BOP=1
2
×OA×OB+
1
2
×OB×h=
1
2
×3×1+
1
2
×1×│a│.
∵P在第二象限,∴S ABPO=
3
2
-
2
a
,
S△ABP=S ABPO-S△AOP=(
3
2
-
2
a
)-
1
2
×OA×
1
2
.
∴S△ABP=
3
2
-
2
a
-
3
4
=
3
4
-
2
a
=S△ABC=3.
∴a=-33
2
.
24.解:(1)y=-x+40.
(2)设日销售利润为S元,则S=y(x-10),
把y=-x+40代入得S=(-x+40)(x-10)=-•x2+50x-400=-(x2-50x+400). S=-(x-25)2+225.
所以当每件产品销售价为25元时,日销售利润最大,为225元.25.解:(1)设L为y=kx+b,由题意得y=2x+2.
(2)y=-x+1或x=1.。