最新人教版六年级数学_圆柱的体积例6例7
人教版数学六年级下册圆柱体积例7教学设计

《用圆柱的体积解决问题》教学设计学习目标:1、结合具体情境,探索不完整的圆柱体容器的容积的计算方法;2、通过观察思考、分析,结合合情推理能力和初步的演绎推理能力,体验数学思想和数学研究的方法;3、体验数学问题的探究性和挑战性,在探索过程中获得成功的喜悦。
学习重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
学习难点:通过实践操作、合作交流,体会转化的数学思想。
教学准备:多媒体课件每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
教学过程一、复习旧知,做好铺垫1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。
(完整板书:用圆柱的体积解决问题。
)二、探索实践,体验转化过程1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)预设1:瓶子还有多少水?(剩下多少水?)预设2:喝了多少水?(也就是瓶子的空气部分。
)预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)2.你觉得你能轻松解决什么问题?(完成目标1)(1)预设1:瓶子有多少水?(怎么解决?)学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。
请你准备好直尺,或许等会儿有用哦!(2)预设2:喝了多少水?学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?教师相机引导:能否将空气部分变成一个规则的立体图形呢?学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。
六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期圆柱的体积知识概要1、圆柱的体积将圆柱切割拼成一个近似长方体:长方体的长:圆柱底面圆周长的一半πr长方体的宽:圆柱的底面半径r长方体的高:圆柱的高hV=πr·r·h =πr2hV=底面积×高2、体积单位及换算体积单位:立方米、立方分米、立方厘米相邻两个体积单位间的进率是10001立方米=1000立方分米1立方分米=1000立方厘米精讲精练例1、(1)圆柱的半径扩大为原来的3倍,高不变,体积扩大为原来的____倍。
如果高变成2倍,半径不变,体积变为原来的_____倍。
(2)判断:①圆柱的半径扩大为原来的2倍,表面积扩大为原来的4倍。
()②圆柱的半径扩大为原来的2倍,体积扩大为原来的6倍。
()演练1、(1)圆柱的半径缩小为原来的二分之一,高不变,体积缩小为原来的_____。
(2)判断:圆柱的半径扩大为原来的2倍,高不变,体积扩大为原来的4倍。
()例2、(1)已知圆柱体的底面半径3厘米,高10厘米。
那么这个圆柱体的体积是_____立方厘米.(2)如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.问这个物体的体积是多少平方米?(圆周率取3)1110.511.5演练2、(1)一个圆柱底面积是1⒉56平方分米,高是2分米,则圆柱的体积是多少立方分米?(2)一个双层的圆柱形蛋糕,两层都高15厘米,第一层和第二层蛋糕的半径分别为10厘米和5厘米。
求这个蛋糕的体积。
例3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?演练3、有一个圆柱体的零件,高6厘米,底面直径是8厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?例4、(1)圆柱体的侧面展开,放平,是长宽分别为18厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。
人教版六年级数学下册第三单元_第04课时_解决问题-求不规则物体的容积例7(教学设计)

第三单元第4课时求不规则物体的容积例7 教学设计教学流程1.复习提问。
(1)圆柱的体积怎么计算?体积和容积有什么区别?(学生结合给出的条件利用公式法求圆柱的体积)(2)已知圆柱的底面直径和高,如何计算它的体积?如果已知底面周长和高,又如何计算呢?出示几个图形。
导入:这节课我们应用圆柱的体积计算公式解决实际问题。
知识链接—构“联系”提问:还记得我们是怎样测出这个石块的体积的吗?课件展示:利用排水法求不规则物体的体积的方法。
我们用到了转化的方法。
将不规则的石头转化成规则的圆柱来求它的体积。
揭示:这种的转化的思想方法可以帮助我们解决类似的问题。
同学们,我们已经学会了求圆柱体的体积,但生活中不少物体是不规则的,那应该如何来计算它们的体积呢?比如屏幕上的这个瓶子,你会求它的容积吗?说一说。
学习任务一:阅读与理解,分析问题。
【设计意图:通过回顾求不规则物体的体积的方法,让学生能够在解决例7问题时也想到转化的方法,再通过做题复习求圆柱体积方法及计算公式,为新知学习打基础。
让学生通过小组讨论,明确题意与已知条件,分析出解决问题的关键点以及解决问题的方法。
】新知探究—习“方法”1.阅读与理解。
课件出示例7。
(1)读题,明确题意,获得数学信息。
引导学生思考交流,在解决问题的过程中,你发现了什么问题?(通过观察思考会发现:瓶子不是规则的立体图形,无法直接计算容积)(2)组织学生在小组内讨论,找出解决问题的方法。
学生操作讨论后会发现:无论瓶子是正置还是倒置,水的体积、瓶子的容积都不变,那么无水部分的容积也是不变的。
所以可以把正置放平时水的体积(圆柱)加上倒置放平时无水部分(圆柱)的体积,就是瓶子的容积。
即瓶子的容积可以转化成两个圆柱的体积。
(3)课件演示转化的过程。
学习任务二:用转化的方法求圆柱的容积问题【设计意图:通过“理解——分析——回顾”的教学过程,让学生在探讨、交流中体会把不规则图形转化成规则图形的过程,发展学生的思维,提高学生解决问题的能力,注重容积计算方法的推导过程。
小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。
那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。
小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。
人教版数学六年级下册 3.1.3核心素养 教学设计 《圆柱的体积》

《圆柱的体积》教学模式介绍:核心素养下的培养是需要正确的教学模式作为载体的,对于以往的课堂来说是一种全新的转型。
核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的核心素质,激发和推动学生主体活动、能整合教材中内容并与学生生活实际相关联。
在这个课堂教学活动中,教师要以问题及其解决方式为主线的,整体设计思路是在教师的策划、指导和支持下,学生积极主动地参与问题的发现、提出与解决,在探索问题解决的过程中获得新知,构建新知。
老师作为学习共同体的一员,和学生共同为问题的解决,开展合作学习、共同探究,让学生在学习活动中解决问题、培养核心素养。
核心素养教学设计的课程环节:讲什么——为何讲——怎么讲——讲怎样设计思路说明:本节课是在学生学习了长方体、正方体的体积和圆的面积有关知识的基础上,并且对圆柱有了初步认识的基础上进行教学的。
教学开始,充分应用多媒体课件,以课本主题图引入新课;教学中,通过多处实例,结合学生生活经验,在展示与交流中加深对圆柱体积的认识,能够利用圆柱体积的知识解决简单的实际问题,培养学生灵活利用知识解决问题的能力。
一、讲什么1.教学内容(1)概念原理:圆柱的体积;(2)思想方法:理论联系实际,转化、推理、极限;(3)能力素养:研究问题和解决问题的能力。
2.内容解析:本课是《圆柱与圆锥》这一单元的第三课,在前面的学习中学生已经学过了长方体、正方体的体积和圆的面积有关知识,并且对圆柱有了初步认识。
因此有了一定的基础,这为学习圆柱的体积的内容奠定了良好的基础。
二、为何讲1、教学目标:(1)探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积。
(2)使学生在探索圆柱体积公式的过程中,进一步体会转化的思想方法,培养应用所学知识解决问题的能力,发展初步的推理能力和空间观念。
(3)使学生在参与数学活动的过程中,进一步感受数学知识和方法的学习价值,获得些学习成功的体验,培养对数学学习的兴趣。
2、目标解析:(1)使学生经历观察、操作、猜想、验证、类比和归纳等数学活动的过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并能解决相关的实际问题。
【典型例题系列】人教版六年级数学下册典型例题系列之第三单元圆柱的体积问题基础部分

(2)2009.6吨
【解析】
【分析】(1)求一个圆柱形粮囤的占地面积,即是这个圆柱形粮囤的一个底面积;代入圆的面积公式即可解答;
(2)先根据圆柱的体积公式算出这个粮囤的体积即是装小麦的体积,然后根据乘法的意义算出共重多少吨。
【详解】(1)3.14×(20÷2)2
=3.14×100
【对应练习2】
10.如下图,是一个圆柱展开图(单位:cm),求圆柱的体积。
【答案】84.78立方厘米
【解析】
【分析】根据圆柱的体积V=πr2h,其中r=C÷π÷2,代入数据计算即可。
【详解】18.84÷3.14÷2
=6÷2
=3(cm)
3.14×32×3
=28.26×3
=84.78(立方厘米)
答:圆柱的体积是84.78立方厘米。
(立方分米)
226.08立方分米=226.08升
(千克)
答:这个油桶可以装油 千克。
【点睛】本题考查了圆柱的体积,圆柱的体积等于底面积乘高。
【对应练习3】
20.一个圆柱形粮囤,从里面量,底面直径20米,高是8米。
(1)这个圆柱形粮囤,里面占地面积多少平方米?
(2)如果每立方米的小麦0.8吨,这个圆柱形粮囤能装小麦多少吨?
【答案】88.17千克
【解析】
【分析】根据“ ”求出圆柱形钢坯的体积,再乘每立方分米钢材的重量即可。
【详解】1米=10分米;
3.14×(1.2÷2)²×10×7.8
=11.304×7.87千克。
【点睛】熟记圆柱的体积计算公式是解答本题的关键,本题要注意单位。
【方法点拨】
圆柱体积的意义和计算公式
(1)意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。
人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

第三单元第3课时圆柱的体积(1)教学设计情境导入—引“探究”教师谈话导入:什么是物体的体积?你会计算哪些物体的体积?长方体和正方体的体积计算公式?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?V长=长×宽×高V正=棱长×棱长×棱长V=底面积×高字母表示:V=Sh思考:圆柱的体积怎样计算呢?前面的学习中我们遇到过这样的问题吗?知识链接—构“联系”回忆一下圆面积的计算公式是如何推导出来的?(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的长方形。
长方形的长相当于圆周长的一半,长方形的宽就当于圆的半径,用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式。
圆柱的体积该怎么计算呢?今天我们就一起来研究这个问题。
(板书课题:圆柱的体积)学习任务一:圆柱体积公式的推导【设计意图:由复习圆面积公式的推导过程入手,实现知识的迁移,从而调动学生学习的积极性,激发学生探求新知的欲望,在教学中充分运用课件中的动画直观演示的同时,广泛让学生动手、动脑、动口,在操作中感知,在猜想中验证,在观察中理解,在比较中归纳。
让学生在自主探究、合作交流中发现和解决问题,培养学生乐学、积极探究的学习态度,获得成功的体验。
这样进行教学,不仅有利于学生理解公式的推导过程,而且在公式的推导过程中,充分让学生感受和体验“转化”这一解决数学问题重要的思想方法。
】新知探究—习“方法”结合教材的内容,探究圆柱体积公式的推导。
1.提问:什么是圆柱的体积?圆柱的体积怎么求?(说一说、想一想、猜一猜)让学生自由发言。
(1)学生猜想可以把圆柱转化成什么图形?(借助于圆面积公式的推导进行知识迁移学习)出示推导示意图,建立直观,巩固旧知(2)阅读教材内容,利用手中的学具进行探索,小组交流。
2.圆柱体积公式的推导(1)多媒体课件演示圆柱体等分转化为长方体。
(让学生观察)通过课件的演示、观察、思考:(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?(4) 你认为圆柱的体积可以怎样计算?3.交流展示,小组讨论,交流汇报。
人教版六年级数学下册《圆柱的体积》课件

(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3 半径:9÷3÷2=1.5(dm) 图4 半径:6÷3÷2=1(dm)
体积:3×1.5² ×4=27(dm³ ) 体积:3×1² ×6=18(dm³ )
答:图4圆柱的体积最小,图1圆柱的体积最大。
五、知识应用
5. 下面4个图形的面积都是36dm2(图中单位:dm)。 用这些图形分别卷成圆柱,哪个圆柱的体积最小? 哪个圆柱的体积最大?你有什么发现?
圆柱与圆锥
问题解决(例6例7)
一、前置性学习
长方体的体积= 底面积 × 高 圆柱的体积= 底面积 × 高 V S h
圆柱体积计算公式是: h V = πr² 或V=π(d÷2)² h
二、探究新知
下图的杯子能不能装下这袋牛奶?(数据是从杯子里面测量得到的。)
8cm 10cm
2 杯子的容积。 杯子的底面积:3.14×(8÷2) =3.14×4² =3.14×16 =50.24 (cm2 )
2
四、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm, 把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是 18cm。这个瓶子的容积是多少? 请你认真阅读,理解一下这道 题说的是什么意思? 请你仔细想一想,怎么能 , 能不能转化成圆柱呢? 无法直接计算容积。
答:现在用了34.215立方米的土石。
2
五、知识应用
2. 两个底面积相等的圆柱,一个高为4.5dm,体积 是81dm。另一个高为3dm,它的体积是多少? 通过知道圆柱的高和体积可 以求出什么?
81 ÷4.5 ×3 =18 ×3 =54(dm³) 答:它的体积是54dm³ 。
五、知识应用
3. 一个圆柱形玻璃容器的底面直径是10cm,把一块完 全浸泡在这个容器的水中的铁块取出后,水面下降 2cm。这块铁块的体积是多少?
作业:第29页练习五,第8题、
第11题、第13题。
18 2 12 3 9 4 6 6
图1
图2
图3
图4
我发现,上面 4个图形。当以宽作为圆柱底面周长时,长方形 请你想一想,上面 4个图形当以宽为圆柱底面周长时, 的长和宽的长度越接近,所卷成的圆柱的体积越大。 会卷成什么样的圆柱?请你动手试一试。 设π=3 图1 半径:2÷3÷2≈0.3(dm) 体积:3×0.3² ×18=4.86(dm³ )
图2 半径:3÷3÷2=0.5(dm)
体积:3×0.5² ×12=9(dm³ )
×9=13.23(dm³ ) 图3 半径:4÷3÷2≈0.7(dm) 体积:3×0.7² 图4 半径:6÷3÷2=1(dm) 体积:3×1² ×6=18(dm³ ) 答:图1圆柱的体积最小,图4圆柱的体积最大。
三、布置作业
10cm
(一)做一做
五、知识应用
(二)解决问题
1. 学校要在教学区和操场之间修一道围墙,原计划用土石35m³。 后来多开了一个厚度为25cm的月亮门,减少了土石的用量。现 在用了多少立方米的土石? 请你仔细想一想,要想知道 现在用多少立方米的土石? 就要先求什么?
35-3.14×(2÷2)×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³ )
四、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm, 把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是 18cm。这个瓶子的容积是多少?
7cm 18cm
2 2 瓶子的容积:=3.14×(8÷2) ×7+3.14×(8÷2) ×18 =3.14×16×(7+18) =3.14×16×25 =1256 (cm³) =1256(mL)
50.24×10 =502.4 (cm3 ) =502.4 (mL) 请你想一想,要回答这个问 答:因为502.4大于498,所以杯子能装下这袋牛奶。 题,先要计算出什么?
杯子的容积:
三、知识应用
(一)做一做
2. 小明和妈妈出去游玩,带了一个圆柱形保温杯, 从里面量底面直径是8cm,高是15cm。如果两人游玩期 间要喝1L水,带这杯水够喝吗? 保温杯的底面积:3.14×(8÷2) 2 = 3.14×4 = 3.14×16 = 50.24 (cm2) 保温杯的容积:50.24×15 =753.6 (cm³ ) =0.7536(L) 答:因为0.7536小于1,所以带这杯水不够喝。
请你想一想,如何求这块铁 块的体积?
2 3.14×(10÷2) ×2 =3.14×5² ×2 =3.14×25×2 =78.5×2 =157(cm³ )
答:这块铁皮的体积是157cm³ 。
五、知识应用
4. 右面这个长方形的长是20cm,宽是10cm。 分别以长和宽为轴旋转一周,得到两个圆柱体。 它们的体积各是多少? 请你想一想,以长为轴旋转,得 请你想一想,以宽为轴旋转,得 到的圆柱是什么样子? 到的圆柱又是什么样子? 3.14×20² 10² ×10 20 =3.14×400 100×10 20 =1256 314× 20 × 10 =12560 6280(( cm ³ ) cm ³ ) 答:以宽为轴旋转一周,得到的圆柱的 答:以长为轴旋转一周,得到的圆柱的 12560 cm ³。 体积是6280 cm ³。
四、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm, 把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是 18cm。这个瓶子的容积是多少? 让我们一起来分析解 答这道题吧。
7cm 18cm
瓶子里水的体积倒置后,体积没变。
水的体积加上18cm高圆柱的 体积就是瓶子的容积。 也就是把瓶子的容积转化成两 个圆柱的体积。
答:这个瓶子的容积是1256mL。
四、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm, 把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是 18cm。这个瓶子的容积是多少? 让我们回顾反思一下吧!
7cm 18cm
我们利用了体积不变的特性, 把不规则图形转化成规则图 形来计算。 在五年级计算梨 的体积也是用了 转化的方法。
10cm 20cm
五、知识应用
5. 下面4个图形的面积都是36dm2(图中单位:dm)。 用这些图形分别卷成圆柱,哪个圆柱的体积最小? 哪个圆柱的体积最大?你有什么发现?
18 2 12 9 6 4 6
图1
3
图2
图3
图4
我发现,上面 4个图形。当以长作为圆柱底面周长时,长方形 请你想一想,上面 4个图形当以长为圆柱底面周长时, 的长和宽的长度越接近,所卷成的圆柱的体积越小。 会卷成什么样的圆柱?请你动手试一试。 设π=3 图1 半径:18÷3÷2=3(dm) 体积:3×3² ×2=54(dm³ ) ×3=36(dm³ ) 图2 半径:12÷3÷2=2(dm) 体积:3×2²
五、知识应用
一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧 后倒置放平,无水部分高10cm,内径是6cm。小明喝 了多少水? 2 3.14×(6÷2)×10 =3.14请你仔细想一想,小明 ×9×10 喝了的水的体积该怎么 =28.26 ×10 =282.6 (cm³ ) 计算呢? =282.6(mL) 无水部分高为10cm圆柱的体积 答:小明喝了282.6mL的水。 就是小明喝了的水的体积。