初三数学期末考试试题1
北师大版初中数学九上期末测试1试题试卷含答案

期末测试一、选择题(共10小题).1.(3分)下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.(3分)下列说法中错误的是( ) A .不可能事件发生的概率为0 B .概率很小的事不可能发生 C .必然事件发生的概率是1D .随机事件发生的概率大于0、小于13.(3分)关于x 的一元二次方程220x x k ++=有两个相等的实数根,则k 的取值范围是( ) A .1k =−B .1k −>C .1k =D .1k >4.(3分)Rt ABC △中,°90C ∠=,6AC =,10AB =,若以点C 为圆心r 为半径的圆与AB 所在直线相交,则r 可能为( ) A .3B .4C .4.8D .55.(3分)已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( ) A .220cmB .220cm πC .210cm πD .25cm π6.(3分)将抛物线2y x =−向上平移2个单位,则得到的抛物线表达式为( ) A .()22y x =−+ B .()22y x =−− C .22y x =−−D .22y x =−+7.(3分)若一个正六边形的周长为24,则该正六边形的边心距为( )A .B .4C .D .8.(3分)如图,ABC △中,°80A ∠=,点O 是ABC △的内心,则BOC ∠的度数为( )A .100°B .160°C .80°D .130°9.(3分)如图,在等边ABC △中,D 是边AC 上一点,连接BD ,将BCD △绕点B 逆时针旋转60°,得到BAE △,连接ED ,若10BC =,9BD =9,则ADE △的周长为( )A .19B .20C .27D .3010.(3分)如图,AB 是半圆O 的直径,且4cm AB =,动点P 从点O 出发,沿OA →AB →BO 的路径以每秒1cm 的速度运动一周.设运动时间为t ,2s OP =,则下列图象能大致刻画s 与t 的关系的是( )A .B .C .D .二、填空题(每小题3分,共18分)11.(3分)在平面直角坐标系中,点()34−,关于原点对称的点的坐标是________.12.(3分)为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程为________.13.(3分)如图是二次函数2y ax bx c =++的部分图象,由图象可知方程20ax bx c ++=的解是________,________.14.(3分)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a 个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值约为________.15.(3分)如图,PA 、PB 是O 的切线,A 、B 为切点,点C 、D 在O 上.若°108P ∠=,则B D ∠+∠=________.16.(3分)已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论有________个.三、解答题(共72分) 17.(6分)解方程: (1)()()22212x x −=−;(2)2104x −=.18.(6分)如图,在平面直角坐标系xOy 中,点()33A ,,点()01B −,和点()40C ,.(1)以点B 为中心,把ABC △逆时针旋转90°,画出旋转后的图形A BC ''△; (2)在(1)中的条件下:①直接写出点A 经过的路径AA '的长为________(结果保留π);②直接写出点C'的坐标为________.19.(7分)如图,AB是O的直径,CD是O的弦,且CD AB⊥于点E.(1)求证:ADO C∠=∠;BE=,求CD的长.(2)若O的半径为5,220.(7分)某工厂大门是抛物线形水泥建筑,大门地面宽AB为4m,顶部C距离地面的高度为4.4m,现有一辆货车,其装货宽度为2.4m,高度2.8米,请通过计算说明该货车能否通过此大门?21.(7分)学校有一个面积为182平方米的长方形的活动场地,场地一边靠墙(墙长25米),另三面用长40米的合金栏网围成.请你计算一下活动场地的长和宽.22.(8分)甲、乙两人进行摸牌游戏:现有三张形状大小完全相同的牌,正面分别标有数字2,4,5.将三张牌背面朝上,洗匀后放在桌子上,甲从中随机抽取一张牌,记录数字后放回洗匀,乙再从中随机抽取一张.(1)甲从中随机抽取一张牌,抽取的数字为偶数的概率为________;(2)请用列表法或画树状图的方法,求两人抽取的数字相同的概率.23.(9分)某网商经销一种玩具,每件进价为40元.市场调查反映,每星期的销售量y (件)与销售单价x (元)之间的函数关系如图中线段AB 所示:(1)写出每星期的销售量y (件)与销售单价x (元)之间的函数关系式并写出自变量x 的取值范围;(2)如果该网商每个星期想获得4 000元的利润,请你计算出玩具的销售单价定为多少元?(3)当每件玩具的销售价定为多少元时,该网商每星期经销这种玩具能够获得最大销售利润?最大销售利润是多少?(每件玩具的=−销售利润售价进价)24.(10分)如图,在Rt ABC △中,°90ACB ∠=,点F 在AB 上,以AF 为直径的O 与边BC 相切于点D ,与边AC 相交于点E ,且AE DE =,连接EO 并延长交O 于点G ,连接BG .(1)求证: ①AO AE =.②BG 是O 的切线.(2)若4BF =,求图形中阴影部分的面积.25.(12分)如图,已知抛物线23y ax bx =+−的图象与x 轴交于点()10A ,和()30B ,,与y 轴交于点C .D 是抛物线的顶点,对称轴与x 轴交于E .(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE 上求作一点M ,使AMC △的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P 是x 轴上的动点,过P 点作x 轴的垂线分别交抛物线和直线BC 于F 、G .设点P 的横坐标为m .是否存在点P ,使FCG △是等腰三角形?若存在,直接写出m 的值;若不存在,请说明理由.期末测试答案解析一、 1.【答案】C【解析】A .不是中心对称图形,是轴对称图形,故此选项错误; B .不是中心对称图形,是轴对称图形,故此选项错误; C .是中心对称图形,是轴对称图形,故此选项正确; D .是中心对称图形,不是轴对称图形,故此选项错误. 故选:C. 2.【答案】B【解析】A .不可能事件发生的概率为0,正确,不符合题意; B .概率很小的事也可能发生,故错误,符合题意; C .必然事件发生的概率为1,正确,不符合题意;D .随机事件发生的概率大于0,小于1,正确,不符合题意. 故选:B. 3.【答案】C【解析】由题意0=△,440k −=∴, 1k =∴,故选:C. 4.【答案】D【解析】作CD AB ⊥于D ,在直角三角形ABC 中,根据勾股定理得8BC ==,1122ABC S AC BC AB CD ==△∵, 即6810CD ⨯=,4.8CD =∴;当 4.8r >时,以C 为圆心,r 为半径的圆与AB 相交;5 4.8∵>,5r =∴时,C 与AB 所在直线相交.故选:D.5.【答案】C【解析】2210cm 5ππ=⨯⨯=圆锥的侧面积,故选:C. 6.【答案】D【解析】将抛物线2y x =−向上平移2个单位得到的抛物线是22y x =−+.故选:D. 7.【答案】A【解析】连接OA ,作OM AB ⊥,得到°30AOM ∠=,∵圆内接正六边形ABCDEF 的周长为24, 4AB =∴,则2AM =,因而°cos30OM OA ==正六边形的边心距是. 故选:A.8.【答案】D【解析】°80A ∠=∵,°°180100ABC ACB A ∠+∠=−∠=∴, ∵点O 是ABC △的内心,()°1502OBC OCB ABC ACB ∠+∠=∠+∠=∴, °°°18050130BOC ∠=−=∴.故选:D. 9.【答案】A【解析】∵将BCD △绕点B 逆时针旋转60°,得到BAE △BD BE =∴,CD AE =,°60DBE ∠= BDE ∴△是等边三角形 9DE BD BE ===∴ABC ∵△是等边三角形10BC AC ==∴ADE AE AD DE AD CD DE AC BD =++=++=+∵△的周长 19ADE =∴△的周长故选:A . 10.【答案】C【解析】利用图象可得出:当点P 在半径AO 上运动时,22s OP t ==; 在弧AB 上运动时,24s OP ==; 在OB 上运动时,()2224s OP t π==+−. 故选:C. 二、11.【答案】()34−,【解析】点()34−,关于原点对称的点的坐标是()34−,. 故答案为:()34−,. 12.【答案】()248130x −=【解析】设平均每次降价的百分率为x ,则第一次降价后的价格为()481x ⨯−,第二次降价后的价格为()()4811x x −−,由题意,可列方程为()248130x −=. 故答案为:()248130x −=. 13.【答案】11x =− 25x =【解析】由图象可知对称轴2x =,与x 轴的一个交点横坐标是5,它到直线2x =的距离是3个单位长度,所以另外一个交点横坐标是1−. 所以11x =−,25x =. 故答案是:11x =−,25x =. 14.【答案】12 【解析】由题意可得,3100%20%3a ⨯=+, 解得12a =.经检验:12a =是原分式方程的解, 所以a 的值约为12,故答案为:12. 15.【答案】216° 【解析】连接AB ,PA ∵、PB 是O 的切线,A 、B 为切点,PA PB =∴, PAB PBA ∠=∠∴,°108APB ∠=∵,()°°1180362PBA PAB APB ∠=∠−⨯−∠=∴,A ∵、D 、C 、B 四点共圆,°180D CBA ∠+∠=∴,°°°36180216PBC D PBA CBA D ∠+∠=∠+∠+∠=+=∴,故答案为:216°.16【答案】5【解析】抛物线开口向下,因此0a <,对称轴为10x =>,因此a 、b 异号,所以0b >,抛物线与y 轴交点在正半轴,因此0c >,所以0abc <,于是①正确;抛物线的对称轴为直线12bx a=−=,因此有20a b +=,故④正确; 当1x =−时,0y a b c =−+<,所以30a c +<,故②正确;抛物线与x 轴有两个不同交点,因此240b ac ->,即24b ac >,故⑤正确;抛物线的对称轴为1x =,与x 轴的一个交点在1−与0之间,因此另一个交点在2与3之间,于是当2x =时,420y a b c =++>,因此③正确; 综上所述,正确的结论有:①②③④⑤, 故答案为:5. 三、17.【答案】(1)()()22212x x −=−∵,212x x −=−∴或212x x −=−,解得11x =,21x =−;(2)1a =∵,b =14c =−,1241304⎛⎫=−⨯⨯−= ⎪⎝⎭∴△>,则2x =,即1x =2x =. 18.【答案】(1)(2)①52π②()13−, 【解析】(1)如图,三角形A BC ''△即为所求图形;(2)①点A 经过的路径的长为90551802ππ⨯⨯=; ②点C '的坐标为()13−,. 故答案为:①52π;②()13−,.19.【答案】(1)证明:OA OD =∵, A ODA ∠=∠∴,A C ∠=∠∵,ODA C ∠=∠∴.(2)解:BA ∵是直径,AB CD ⊥CE ED =∴,5OB OD ==∵,2BE =,3OE =∴,°90DEO ∠=∵,4DE =∴,28CD DE ==∴.20.【答案】解:以C 为坐标原点,抛物线的对称轴为y 轴,建立如下图所示的平面直角坐标系,根据题意知,()2 4.4A −−,,()2 4.4B −,), 设这个函数解析式为2y kx =.将A 的坐标代入,得21.1y x =−,∵货车装货的宽度为2.4m ,E ∴、F 两点的横坐标就应该是 1.2−和1.2,∴当 1.2x =时, 1.584y =−,()4.4 1.584 2.816m GH CH CG =−=−=∴,因此这辆汽车装货后的最大高度为2.816m ,2.8 2.816∵<,所以该货车能够通过此大门.21.【答案】解:设活动场地垂直于墙的边长为x 米,则另一边长为()402x −米, 依题意,得:()402182x x −=,整理,得:220910x x −+=,解得:17x =,213x =.当7x =时,4022625x −=>,不合题意,舍去;当13x =,4021425x −=<,符合题意.答:活动场地的长为14米,宽为13米.22.【答案】(1)23(2)根据题意列表如下:由表知,共有9种等可能结果,其中两人抽取的数字相同的有3种结果, 所以两人抽取的数字相同的概率3193==.【解析】(1)∵共有3张纸牌,其中数字是偶数的有2张,∴甲从中随机抽取一张牌,抽取的数字为偶数的概率为23; 故答案为:23; 23.【答案】(1)解:设1y 与x 之间的函数关系式为y kx b =+,将()40500A ,,()900B ,代入上式,得40500900k b k b +=⎧⎨+=⎩, 解得:10900k b =−⎧⎨=⎩, y ∴与x 之间的函数关系式为:10900y x =−+,自变量的取值范围是4090x ≤≤;(2)解:由题意得()()10900404000x x −+−=,解得80x =或50x =,又4090x ∵≤≤,∴如果每星期的利润是4 000元,销售单价应为50元或80元;(3)解:设经销这种玩具能够获得的销售利润为w 元,由题意得,()()()2109004010656250w x x x =−+−=−−+, 100−∵<,w ∴有最大值,4090x ∵≤≤,∴当65x =(元)时,6250w =最大(元).∴当销售单价为65元时,每星期的利润最大,最大销售利润为6 250元.24.【答案】(1)①证明:连接OD , O ∵与BC 相切于点D ,°90ODB ∠=∴,°90ACB ∠=∵,ACB ODB ∠=∠∴,AC OD ∴∥,EOD AEO ∠=∠∴,AE DE =∵,EOD AOE ∠=∠∴,AOE AEO ∠=∠∴,AO AE =∴;②证明:由①知,AO AE OE ==,AOE ∴△是等边三角形,°60AEO AOE A ∠=∠=∠=∴,°60BOG AOE ∠=∠=∴,°°18060DOB DOE AOE ∠=−∠−∠=∴,DOB GOB ∠=∠∴,OD OG =∵,OB OB =,()ODB OGB SAS ∴△≌△,°90OGB ODB ∠=∠=∴,OG BG ⊥∴,OG ∵是O 的半径,GB ∴是O 的切线;(2)解:连接DE ,°60A ∠=∵,°°9030ABC A ∠=−∠=∴,2OB OD =∴,设O 的半径为r ,OB OF FB =+∵,即42r r +=,解得,4r =,4AE OA ==∴,212AB r BF =+=,162AC AB ==∴, 2CE AC AE =−=∴,由(1)知,°60DOB ∠=,OD OE =∵,ODE ∴△是等边三角形,4DE OE ==∴,根据勾股定理得,CD ==,()2160482423603CEOD ODE S S S ππ⨯=−=⨯+⨯=梯形阴扇影形∴.25.【答案】解:(1)将点A 、B 的坐标代入抛物线表达式得:030933a b a b =+−⎧⎨=+−⎩, 解得14a b =−⎧⎨=⎩, ∴抛物线的解析式为:243y x x =−+−;(2)解:如下图,连接BC 交DE 于点M ,此时MA MC +最小,又因为AC 是定值,所以此时AMC △的周长最小.由题意可知3OB OC ==,1OA =,BC ==∴AC =∴此时AMC AC AM MC AC BC =++=+=△的周长DE ∵是抛物线的对称轴,与x 轴交点()10A ,和()30B ,, 1AE BE ==∴,对称轴为2x =,由OB OC =,°90BOC ∠=得°45OBC ∠=,1EB EM ==∴,又∵点M 在第四象限,在抛物线的对称轴上,()21M −∴,;(3)解:存在这样的点P ,使FCG △是等腰三角形.∵点P 的横坐标为m ,故点()243F m m m −+−,,点()3G m m −,, 则()22243FG m m =−+−,()2223CF m m =−,222GC m =,当FG FC =时,则()()2222433m m m m −+−=−,解得0m =(舍去)或4;当GF GC =时,同理可得0m =(舍去)或3;当FC GC =时,同理可得0m =(舍去)或5,综上,5m =或4m =或3m =+或3.。
2021-2022学年广东省广州市黄埔区初三数学第一学期期末试卷及解析

2021-2022学年广东省广州市黄埔区初三数学第一学期期末试卷一、选择题(本大题共10小题,每小题3分,满分30分。
)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)函数y=x2+x﹣2的图象与y轴的交点坐标是()A.(﹣2,0)B.(1,0)C.(0,﹣2)D.(0,2)3.(3分)平面内有两点P,O,⊙O的半径为5,若PO=4()A.圆内B.圆上C.圆外D.圆上或圆外4.(3分)下列函数中,y是关于x的反比例函数的是()A.y=﹣3x+6 B.y=x2C.y=D.y=5.(3分)下列式子为一元二次方程的是()A.5x2﹣1 B.4a2=81C.4x(+2)=25 D.(3x﹣2)(x+1)=8y﹣36.(3分)下列事件是必然事件的为()A.购买一张体育彩票,中奖B.经过有交通信号灯的路口,遇到红灯C.2022年元旦是晴天D.在地面上向空中抛掷一石块,石块终将落下7.(3分)下列各点中,关于原点对称的两个点是()A.(﹣5,0)与(0,5)B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1)D.(2,﹣1)与(﹣2,1)8.(3分)下列是对方程2x2﹣2x+1=0实根情况的判断,正确的是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根9.(3分)⊙O是四边形ABCD的外接圆,AC平分∠BAD,则正确结论是()A.AB=AD B.BC=CD C.=D.∠BCA=∠DCA10.(3分)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥x轴于D (如图)()A.1 B.C.2 D.二、填空题(本大题共6小题,每小题3分,满分18分。
)11.(3分)方程x2﹣3x+2=0两个根的和为,积为.12.(3分)在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是.13.(3分)直线y=x+2关于原点中心对称的直线的方程为.14.(3分)把一副普通扑克牌中的13张黑桃牌洗匀后正面向下放在桌子上,从中任意抽取一张,抽出的牌点数小于5的概率是.15.(3分)在⊙O中,圆心角∠AOC=120°,则⊙O内接四边形ABCD的内角∠ABC=.16.(3分)如图,在Rt△ABC中,∠C=90°,BC=2,⊙C的半径为1,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为.三、解答题(本大题共9小题,满分72分。
九年级期末试卷数学(附答案)

九年级期末试卷数学(附答案)九年级期末试卷数学(附答案)一、选择题(共40分)1. 已知正数 a, b 满足 a + b = 6,ab = 8,求 a² + b²的值。
答案:a² + b² = (a + b)² - 2ab = 6² - 2 × 8 = 202. 若一条线段上的两个等分点的坐标分别为 (3, 5) 和 (-1, 1),则该线段的中点坐标为:答案:线段的中点坐标为 [(3 + (-1))/2, (5 + 1)/2] = (1, 3)3. 在三角形 ABC 中,∠C = 90°,CM 是 BC 的中线,CN ⊥ AM 于N。
若 AM = 6 cm,求 MN 的长度。
答案:由 AM = 6 cm 和 CN ⊥ AM,可以推算得到 AN = 3 cm。
由于 CM 是 BC 的中线,可得 BM = MC = 3 cm。
再由勾股定理可以计算出 MN 的长度为 2 cm。
4. 若 2x - 3 = 5,求不等式3x + 7 ≥ 4x + 2 的解集。
答案:将 2x - 3 = 5 移项得到 2x = 8,解得 x = 4。
将 x = 4 代入不等式3x + 7 ≥ 4x + 2,可得到19 ≥ 18,因此解集为x ≥ 4。
5. 若点 P 在圆 O 的某条弦上,且 OP 的长度为2√3 cm,弦长为 4 cm,则圆的半径长为:答案:根据圆的性质,弦经过圆心则为直径。
圆心到弦的距离垂直于弦,可以构成直角三角形。
根据勾股定理可得圆的半径长为√(OP² - 弦长²/4) = √(12 - 4) = √8 cm。
二、填空题(共20分)1. 解方程 2x + 5 = 3x - 1,得到 x = _______。
答案:从方程两边同减去 2x,得到 5 = x - 1,再将 x - 1 的两边加上1 得到 x = 6。
【压轴卷】九年级数学下期末试题(含答案)(1)

【压轴卷】九年级数学下期末试题(含答案)(1)一、选择题1.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmmC.林茂从体育场出发到文具店的平均速度是50minmD.林茂从文具店回家的平均速度是60min3.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个4.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=05.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解6.估6的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 7.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .118.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5 9.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2) 10.下列计算错误的是( ) A .a 2÷a 0•a 2=a 4 B .a 2÷(a 0•a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5D .﹣1.58÷(﹣1.5)7=﹣1.5 11.an30°的值为( )A .B .C .D .12.cos45°的值等于( )A 2B .1C 3D 2 二、填空题13.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.14.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.15.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.16.计算:2cos45°﹣(π+1)0+111()42-+=______. 17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______. 20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且3D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积; (3)若43AB AC =,DF+BF=8,如图2,求BF 的长.22.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值. 23.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.24.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 25.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.26.问题:探究函数y=x+的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:____;(2)如表是y与x的几组对应值,请将表格补充完整:x…﹣3﹣2﹣﹣1123…y…﹣3﹣3﹣3﹣443…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】作线段BC 的垂直平分线可得线段BC 的中点.【详解】作线段BC 的垂直平分线可得线段BC 的中点.由此可知:选项A 符合条件,故选A .【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键. 3.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴△ABE 是等腰直角三角形,∴AB ,∵AB ,∴AE=AD ,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质4.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.5.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.6.C解析:C【解析】【分析】先化简后利用的范围进行估计解答即可.【详解】=6-3=3,∵1.7<<2,∴5<3<6,即5<<6,故选C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.8.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.9.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.10.D解析:D【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选D.点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.11.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°=2.故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.15.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.【解析】解:原式==故答案为:32.【解析】解:原式=12122-++3232.17.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.18.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x =4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66 【解析】 【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数. 【详解】解:∵五边形ABCDE 为正五边形, ∴108EAB ∠=度,∵AP 是EAB ∠的角平分线, ∴54PAB ∠=度, ∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒. 故答案为:66. 【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.(1)证明见解析(2)﹣2π;(3)3 【解析】 【分析】(1)连结OD ,如图1,由已知得到∠BAD=∠CAD ,得到»»BDCD =,再由垂径定理得OD ⊥BC ,由于BC ∥EF ,则OD ⊥DF ,于是可得结论;(2)连结OB ,OD 交BC 于P ,作BH ⊥DF 于H ,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt △DBP 中得到,PB=3,在Rt △DEP 中利用勾股定理可算出PE=2,由于OP ⊥BC ,则BP=CP=3,得到CE=1,由△BDE ∽△ACE ,得到AE 的长,再证明△ABE ∽△AFD ,可得DF=12,最后利用S 阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算; (3)连结CD ,如图2,由43AB AC =可设AB=4x ,AC=3x ,设BF=y ,由»»BDCD =得到CD=BD=△BFD ∽△CDA ,得到xy=4,再由△FDB ∽△FAD ,得到16﹣4y=xy ,则16﹣4y=4,然后解方程即可得到BF=3. 【详解】(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴»»BDCD =,∴OD ⊥BC , ∵BC ∥EF ,∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=23,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12BD=3,PB=3PD=3,在Rt△DEP中,∵PD=3,DE=7,∴PE=22(7)(3)-=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:7,∴AE=57,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)2π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即23323x=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.22.(1)11x -;(2)1 【解析】 【分析】(1)根据分式四则混合运算的运算法则,把A 式进行化简即可.(2)首先求出不等式组的解集,然后根据x 为整数求出x 的值,再把求出的x 的值代入化简后的A 式进行计算即可. 【详解】(1)原式=2(1)(1)(1)1x x x x x +-+--=111x x x x +---=11x xx +--=11x -(2)不等式组的解集为1≤x <3 ∵x 为整数, ∴x =1或x =2, ①当x =1时, ∵x ﹣1≠0, ∴A =11x -中x ≠1, ∴当x =1时,A =11x -无意义. ②当x =2时, A =11x -=1=12-1考点:分式的化简求值、一元一次不等式组.23.(1)213y x x 222=--;(2)D 的坐标为122⎛- ⎝⎭,122⎛⎫+ ⎪ ⎪⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12x 2﹣32x ﹣2.(2)当x =0时,y =12x 2﹣32x ﹣2=﹣2,∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5. ∵AC 2+BC 2=25=AB 2, ∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC, ∴△AD 1M 1∽△ACB. ∵S △DBC =35S ABC ∆,∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0), ∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0), 将B (4,0),C (0,﹣2)代入y =kx+c ,得: 402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ ,∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72.联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2).(3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC, 设直线AC 的解析设为y =mx+n (m≠0), 将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2. ∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y xy x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点F 1的坐标为(45,﹣85 );②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E . ∵EC=EB ,EF 2⊥BC 于点F 2, ∴点F 2为线段BC 的中点, ∴点F 2的坐标为(2,﹣1); ∵BC=,∴CF2=12BC=5,EF2=12CF2=52,F2F3=12EF2=5,∴CF3=55.设点F3的坐标为(x,12x﹣2),∵CF3=55,点C的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣8 5),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F 的坐标.24.11;12x -- 【解析】 【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可. 【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x=-, 当x=3时,原式=113-=12- 【点睛】本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键. 25.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN 面积最大时,N 点坐标为(3,0). 【解析】 【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB 2+AC 2=BC 2即可得出△ABC 为直角三角形;(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S △AMN 关于n 的二次函数关系式,根据二次函数的性质即可解决最值问题. 【详解】(1)∵二次函数y=ax 2+x+c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 26.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.。
【易错题】初三数学下期末试题含答案(1)

【易错题】初三数学下期末试题含答案(1)一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 2.下列计算正确的是( )A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯ 4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108° B .90° C .72° D .60°6.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .123D .1637.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°8.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数A .61B .72C .73D .869.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .10.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.511.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( )A .110oB .115oC .125oD .130o 12.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)15.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.16.分解因式:2x 3﹣6x 2+4x =__________.17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.若a ,b 互为相反数,则22a b ab +=________.19.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83AC 的长.22.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)23.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 26.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.D解析:D【解析】分析:A .原式不能合并,错误;B .原式利用完全平方公式展开得到结果,即可做出判断;C .原式利用积的乘方运算法则计算得到结果,即可做出判断;D .原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A .不是同类项,不能合并,故A 错误;B .(a ﹣b )2=a 2﹣2ab +b 2,故B 错误;C .( 2x 2 )3=8x 6,故C 错误;D .x 8÷x 3=x 5,故D 正确.故选D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】460 000 000=4.6×108.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 5.C解析:C【解析】【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n 边形,根据题意得:180(n-2)=540,解得:n=5, ∴这个正多边形的每一个外角等于:3605︒=72°. 故选C .【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°. 6.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=23.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积=AB•AD=23×8=163.故选D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.7.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.8.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.9.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC 与△CBD 的面积.10.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC ,不是最简二次根式;D 故选:A .【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. 11.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=o ,即可得到BAF 40∠=o ,BAE 140∠=o ,再根据AG 平分BAF ∠,可得BAG 70∠=o ,进而得出GAF 7040110∠=+=o o o .【详解】解:AB//CD Q ,EFC 40∠=o ,BAF 40∠∴=o ,BAE 140∠∴=o ,又AG Q 平分BAF ∠,BAG 70∠∴=o ,GAF 7040110∠∴=+=o o o ,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.12.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题13.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC ⊥BDAO=C O=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.17.2【解析】【分析】设这个圆锥的底面圆的半径为R 根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R 由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R ,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R ,由题意: 2πR=1804180π⨯, 解得R=2.故答案为2. 18.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab += ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.19.【解析】试题分析:要求PE+PC 的最小值PEPC 不能直接求可考虑通过作辅助线转化PEPC 的值从而找出其最小值求解试题解析:如图连接AE∵点C 关于BD 的对称点为点A∴PE+PC=PE+AP 根据两点之间【解析】试题分析:要求PE+PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE ,∵点C 关于BD 的对称点为点A ,∴PE+PC=PE+AP ,根据两点之间线段最短可得AE 就是AP+PE 的最小值,∵正方形ABCD 的边长为2,E 是BC 边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.(1)证明见解析;(2)6πcm2.【解析】【分析】连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(2)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.【详解】如图,连接BC,OD,OC,设OC与BD交于点M.(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.23.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DF A =∠F AB .在Rt △BCF 中,由勾股定理,得BC =,∴AD =BC =DF =5,∴∠DAF =∠DF A ,∴∠DAF =∠F AB ,即AF 平分∠DAB .【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF =∠DF A 是解题关键.24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.25.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.26.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.。
苏科版2020-2021学年九年级上册数学期末复习试题1(有答案)

苏科新版2020-2021学年九年级上册数学期末复习试题1 一.填空题(共12小题,满分24分,每小题2分)1.将方程2x(x﹣1)=1+2x化为一般形式是.2.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是.3.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水4.如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为°.5.已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于.6.已知圆的半径为10cm,90°的圆心角所对的弧长为cm.7.已知y=﹣x(x+3﹣a)是关于x的二次函数,当x的取值范围在1≤x≤5时,若y在x =1时取得最大值,则实数a的取值范围是.8.点P1(﹣1,y1),P2(2,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.9.如图,AB是⊙O的直径,点D、C在⊙O上,∠DOC=90°,AD=2,BC=,则⊙O 的半径长为.10.已知二次函数f(x)=x2+bx+c图象的对称轴为直线x=4,则f(1)f(3).(填“>”或“<”)11.已知:圆内接正方形ABCD,∠DAC的平分线交圆于E,交CD于P,若EP=1,AP =3,则圆的半径r=.12.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.二.选择题(共6小题,满分18分,每小题3分)13.一个样本有40个数据,把它分成A,B,C,D,4个小组,每一组有10个数据,任选一个数据,则该数据落入D小组的概率是()A.0.05B.0.25C.0.5D.0.614.在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差15.二次函数y=﹣x2+2x+4,当﹣1≤x≤2时,则()A.1≤y≤4B.y≤5C.4≤y≤5D.1≤y≤516.如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB的面积最小时,△AOB的内切圆的半径是()A.2B.3.5C.D.417.已知y关于x的函数表达式是y=ax2﹣4x﹣a,下列结论不正确的是()A.若a=﹣1,函数的最大值是5B.若a=1,当x≥2时,y随x的增大而增大C.无论a为何值时,函数图象一定经过点(1,﹣4)D.无论a为何值时,函数图象与x轴都有两个交点18.已知点A(x1,y1)和B(x2,y2)均在二次函数y=ax2﹣6ax+9a﹣4的图象上,且|x1﹣3|<|x2﹣3|,则下列说法错误的是()A.直线x=3是该二次函数图象的对称轴B.当a<0时,该二次函数有最大值﹣4C.该二次函数图象与坐标轴一定有一个或三个交点D.当a>0时,y1<y2三.解答题(共8小题,满分78分)19.解方程:(1)x2﹣x﹣1=0(公式法);(2)2x2+2x﹣1=0(配方法).20.某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.21.已知:关于x的一元二次方程x2﹣(2m+1)x+m2+m﹣2=0.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足,求m的值.22.据第四次全国经济普査的数据表明,中国经济已经开始由高速度增长转向高质量发展,供给侧结构性改革初见成效.各地产品质量监管部门也严抓质量,整顿生产,促进经济更好发展.某质量监管部门对甲、乙两家工厂生产的同种产品进行检测,分别随机抽取50件产品,并对产品的某项关键质量指标做检测,获得质量指标检测值t,对数据整理分析的部分信息如下:【1】甲、乙两工厂的样本数据频数分布表如下:工厂类别75≤t<8585≤t<9595≤t<105105≤t<115115≤t<125合计甲工厂频数0a10350频率0.000.24b0.06 1.00乙工厂频数3151318150频率0.060.300.260.360.02 1.00其中,乙工厂样品质量指标检测值在95≤t<105范围内的数据分别是:100,98.98,99,102,97,95,101,98,100,98,102,104.【2】两工厂样本数据的部分统计数据如下:平均数中位数众数方差甲工厂97.399.59678.3乙工厂97.3c107135.4根据以上信息,回答下列问题:(1)表格中,a=,b=,c=;(2)已知质量指标检测值在85≤t<115内,属于合格产品.若乙工厂某批产品共1万件,估计该批产品中不合格的有多少件?(3)若质量指标检测值为100时为优秀,偏离100越小,产品质量越高.现有一家公司需大量采购该种产品,根据题目给定的数据,你认为选择哪家工厂的产品更好?并请说明理由.23.已知二次函数y=x2+bx+c的图象经过点A(0,3),B(﹣1,0).(1)求该二次函数的解析式;(2)在图中画出该函数的图象.24.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?25.在图1至图3中,⊙O的直径BC=30,AC切⊙O于点C,AC=40,连接AB交⊙O 于点D,连接CD,P是线段CD上一点,连接PB.(1)如图1,当点P,O的距离最小时,求PD的长;(2)如图2,若射线AP过圆心O,交⊙O于点E,F,求tanF的值;(3)如图3,作DH⊥PB于点H,连接CH,直接写出CH的最小值.26.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;=3,请求出点P的坐标.(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.参考答案与试题解析一.填空题(共12小题,满分24分,每小题2分)1.解:2x(x﹣1)=1+2x,2x2﹣2x﹣2x﹣1=0,2x2﹣4x﹣1=0,即方程2x(x﹣1)=1+2x化为一般形式是2x2﹣4x﹣1=0,故答案为:2x2﹣4x﹣1=0.2.解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.3.解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.4.解:由圆周角定理得,∠AOC=2∠D,∵∠AOC=∠B,∴∠B=2∠D,∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∴∠D+2∠D=180°,解得,∠D=60°,故答案为:60.5.解:由题意可知:a2﹣2a=2020,由根与系数的关系可知:a+b=2,∴原式=a2﹣2a+2a+2b﹣3,=2020+2(a+b)﹣3=2020+2×2﹣3=2021,故答案为:2021.6.解:根据弧长公式=5π(cm)故答案为5π.7.解:第一种情况:当二次函数的对称轴不在1≤x≤5内时,此时,对称轴一定在1≤x≤5的左边,函数方能在这个区域取得最大值,x=<1,即a<5,第二种情况:当对称轴在1≤x≤5内时,对称轴一定是在顶点处取得最大值,即对称轴为x=1,∴=1,即a=5综合上所述a≤5.故答案为a≤5.8.解:二次函数y=﹣x2+2x+c的对称轴为:x=﹣=1,由对称性得,P1(﹣1,y1)关于对称轴对称的点Q的坐标为(3,y1),∵a=﹣1<0,∴在对称轴的右侧,即x>1时,y随x的增大而减小,∵P2(2,y2),P3(5,y3),Q(3,y1),∴y2>y1>y3,故答案为:y2>y1>y3.9.解:延长CO交⊙O于R,连AR,DR,过D作DM⊥AR于M,∵∠DOC=90°,∴∠DOR=90°,∴∠DAR=180°﹣×90°=135°,∴∠DAM=45°,∵DM⊥AM,DA=2,∴DM=AM=,∴MR=2,DR=,∵2OD2=DR2,∴OD=故答案为10.解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴在对称轴的左侧y随x的增大而减小,∵1<3<4,∴f(1)>f(3),故答案为:>.11.解:∵∠DAC的平分线交圆于E,∴∠DAE=∠CAE,∵∠CDE=∠CAE,∴∠DAE=∠CDE,∵∠AED=∠DEP,∴△ADE∽△DPE,∴=,∴DE2=AE•EP;∵EP=1,AP=3,∴AE=4,∴DE2=AE•EP=4,∴DE=2∵∠DAE=∠CAE,∴弧DE=弧CE,∴CE=DE=2,∵圆内接正方形ABCD,∴∠ADC=90,∴AC是直径,∴∠AEC=90,∴AC==2,∴r=,故答案为:.12.解:分三种情况:当﹣a<﹣1,即a>1时,二次函数y=x2+2ax+a在﹣1≤x≤2上为增函数,所以当x=﹣1时,y有最小值为﹣4,把(﹣1,﹣4)代入y=x2+2ax+a中解得:a=5;当﹣a>2,即a<﹣2时,二次函数y=x2+2ax+a在﹣1≤x≤2上为减函数,所以当x=2时,y有最小值为﹣4,把(2,﹣4)代入y=x2+2ax+a中解得:a=﹣>﹣2,舍去;当﹣1≤﹣a≤2,即﹣2≤a≤1时,此时抛物线的顶点为最低点,所以顶点的纵坐标为=﹣4,解得:a=或a=>1,舍去.综上,a的值为5或.故答案为:5或二.选择题(共6小题,满分18分,每小题3分)13.解:由题意可得,任选一个数据,则该数据落入D小组的概率是=0.25,故选:B.14.解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.15.解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该抛物线的对称轴为x=1,且a=﹣1<0,∴当x=1时,二次函数有最大值为5,∴当x=﹣1时,二次函数有最小值为:﹣(﹣1﹣1)2+5=1,综上所述,二次函数y=﹣x2+2x+4,求当﹣1≤x≤2时,1≤y≤5,故选:D.16.解:设直线AB的解析式是y=kx+b,把P(3,4)代入得:4=3k+b,b=4﹣3k,即直线AB的解析式是y=kx+4﹣3k,当x=0时,y=4﹣3k,当y=0时,x=,即A(0,4﹣3k),B(,0),△AOB的面积是•OB•OA=••(4﹣3k)=12﹣=12﹣(k+),∵要使△AOB的面积最小,∴必须最大,∵k<0,∴﹣k>0,∵(a﹣b)2≥0,∴a2+b2≥2ab,∴﹣k﹣≥2=12,当且仅当﹣k=﹣时,取等号,解得:k=±,∵k<0,∴k=﹣,即OA=4﹣3k=8,OB==6,根据勾股定理得:AB==210,设三角形AOB的内切圆的半径是R,由三角形面积公式得:×6×8=×6R+×8R+×10R,R=2,故选:A.17.解:∵y=ax2﹣4x﹣a,∴当a=﹣1时,y=﹣x2﹣4x+1=﹣(x+2)2+5,则当x=﹣2时,函数取得最大值,此时y=5,故选项A不符合题意;当a=﹣1时,该函数图象开口向下,对称轴是直线x=﹣=﹣2,则当x≥﹣2时,y 随x的增大而增大,故选项B不符合题意;由y=ax2﹣4x﹣a=a(x2﹣1)﹣4x知,x2﹣1=0时,x=±1,则y=±4,即无论a为何值时,函数图象一定经过点(1,±4),故选项C不符合题意;当a=0,函数为y=﹣4x,图象与x轴都只有1个交点,故选项D符合题意;故选:D.18.解:∵二次函数y=ax2﹣6ax+9a﹣4=a(x﹣3)2﹣4,∴直线x=3是该二次两数图象的对称轴,当a<0时,该二次函数有最大值﹣4,故选项A、B正确;∵|x1﹣3|<|x2﹣3|,点A(x1,y1)和B(x2,y2)均在二次函数y=ax2﹣6ax+9a﹣4的图象上,∴当a>0时,y1<y2,故选项D正确;当x=0,y=0时,得a=,即a=时,该函数图象与坐标轴有两个交点,故选项C 错误;故选:C.三.解答题(共8小题,满分78分)19.解:(1)∵x2﹣x﹣1=0,∴a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴x==,∴x1=,x2=;(2)∵2x2+2x﹣1=0,∴x2+x﹣=0,∴x2+x+=+,∴=,∴x+=±,∴x1=,x2=.20.解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.21.(1)证明:∵△=[﹣(2m+1)]2﹣4(m2+m﹣2)=4m2+4m+1﹣4m2﹣4m+8=9>0∴不论m取何值,方程总有两个不相等实数根;解:(2)由原方程可得x=∴x1=m+2.x2=m﹣1,∴|x1﹣x2|=3,又∵,∴,∴m=4经检验:m=4符合题意.∴m的值为4.22.解:(1)∵甲工厂85≤t<95的频数50×0.24=12,∴甲工厂95≤t<105的频数为a=50﹣12﹣10﹣3=25,甲工厂105≤t<115的频率b==0.20,甲工厂在95≤t<105范围内的数据从小大大排列95,97,98,98,98.98,99,100,100,101,102,102,104.中位数c==99.5.故答案为25,0.20,99.5;(2)由题,乙工厂产品抽查中,样品中不合格的占,10000×=800(件),答:大约有800件不合格.(3)选择甲工厂的产品.因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的.说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.23.解:(1)∵二次函数y=x2+bx+c的图象经过点A(0,3),B(﹣1,0).∴,解得:,∴二次函数的解析式为y=x2+4x+3.(2)由y=x2+4x+3=(x+2)2﹣1,列表得:x﹣4﹣3﹣2﹣10y30﹣103如图即为该函数的图象:24.解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,=800.∴当x=70时,w最大值答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.25.解:(1)如图1,连接OP,∵AC切⊙O于点C,∴AC⊥BC.∵BC=30,AC=40,∴AB=50.由S=AB•CD=AC•BC,△ABC即,解得CD=24,当OP⊥CD时,点P,O的距离最小,此时.(2)如图2,连接CE,∵EF为⊙O的直径,∴∠ECF=90°.由(1)知,∠ACB=90°,由AO2=AC2+OC2,得(AE+15)2=402+152,解得.∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF=∠AFC.又∠CAE=∠FAC,∴△ACE∽△AFC,∴.∴.(3)CH的最小值为.解:如图3,以BD为直径作⊙G,则G为BD的中点,DG=9,∵DH⊥PB,∴点H总在⊙G上,GH=9,∴当点C,H,G在一条直线上时,CH最小,此时,,,即CH的最小值为.26.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y =﹣x 2+2x +3∴D (0,3).设直线BD 的解析式为y =kx +n ,∴, 解得:,∴直线BD 的解析式为y =﹣x +3.设P (m ,﹣m 2+2m +3),则Q (m ,﹣m +3),∴PQ =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m .∵S △PBD =S △PQD +S △PQB ,∴S △PBD =×PQ ×(3﹣m )=PQ =﹣m ,∵S △PBD =3,∴﹣m =3. 解得:m 1=1,m 2=2.∴点P 的坐标为(1,4)或(2,3).(3)∵B (3,0),D (0,3),∴BD ==3,设M (a ,0),∵MN ∥BD ,∴△AMN ∽△ABD ,数学∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).。
2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。
人教版九年级数学第一学期期末质量检测试题含答案

人教版九年级数学第一学期期末质量检测试题第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.反比例函数y=−3在平面直角坐标系中的图象可能是( )xA. B.C. D.2.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( )A. 9:4B. 3:2C. 2:3D. 81:163.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分( )A. 等于91分B. 大于91分C. 小于91分D. 约为91分4.用配方法解方程x2−2x−3=0时,可变形为( )A. (x−1)2=2B. (x−1)2=4C. (x−2)2=2D. (x−2)2=45.某商品经过两次连续降价,每件售价由原来的60元降到了48.6元,设平均每次降价的百分率为x,则下列方程正确的是( )A. 60(1+x)2=48.6B. 48.6(1+x)2=60C. 60(1−x)2=48.6D. 48.6(1−x)2=606.若关于x的一元二次方程kx2−2x−1=0有两个实数根,则k的取值范围是( )A. k≠0B. k≥−1C. k≥−1且k≠0D. k>−1且k≠07.已知点A(m,1)和B(n,3)在反比例函数y=k(k>0)的图象上,则( )xA. m<nB. m>nC. m=nD. m与n大小关系无法确8.在△ABC中,若|tanA−1|+(2cosB−√2)2=0,则△ABC是( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 一般锐角三角形9.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与如图的三角形相似的是( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.10. 如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x的图象交于A(−1,2)、B(1,−2)两点,若y 1<y 2,则x 的取值范围是( )A. x <−1或x >1B. x <−1或0<x <1C. −1<x <0或0<x <1D. −1<x <0或x >111. 如图,在矩形ABCD 中,AB =2,AD =3,点E 是CD 的中点,点F 在BC 上,且FC =2BF ,连接AE ,EF ,则cos ∠AEF 的值是( )A. 12B. 1C. √22D. √3212. 如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交CD 于点E 、F ,连接AC 、CP ,AC 与BF 相交于点H.有下列结论: ①AE =2DE ; ②tan∠CPE =1; ③△CFP ∽△APH ; ④CP 2=PH ⋅PB . 其中正确的有( )A. ①②③B. ①②④C. ①③④D. ①②③④第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 某人沿着坡度i =1:√3的山坡走了50米,则他离地面的高度上升了______米.14. 甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽测100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但S 甲2=0.288,S 乙2=0.024,则______机床生产这种滚珠的质量更稳定.15. 如图,在△ABC 中点D 、E 分别在边AB 、AC 上,请添加一个条件:______ ,使△ABC∽△AED .16. 若m ,n 是一元二次方程x 2−4x −7=0的两个实数根,则1m +1n =______.17. 如图,在△ABC 中,sinB =13,tanC =√22,AB =3,则AC 的长为______.18. 如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =______.三、解答题(本大题共8小题,共66.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011——2012学年度第一学期终结性检测试卷
九年级数学
一、(本题共32分,每小题4分)选择题(以下各题都给出了代号分别为A 、B 、C 、D 的四个备选答案,其中有且只有一个是正确的,请你把正确答案的代号填入相应的表格中): 题号 1 2 3 4 5 6 7 8 答案 1.若3:4:=b a ,则下列各式中正确的式子是( ).
A .b a 34=
B .31-=-b b a
C .34
=a b D .b a 43=
2、两个圆的半径分别是2cm 和7cm ,圆心距是8cm ,则这两个圆的位置关系是
A .外离
B .外切
C .相交
D .内切
3、已知圆锥的母线长和底面圆的直径均是10㎝,则这个圆锥的侧面积是( ). A.50π㎝2 B. 50π㎝2 C. 50π㎝2 D. 50π㎝2.
4、如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,
若AD=4,BD=2,则BC
DE
的值是( )
A.32
B.21
C.43
D.53
5.在△ABC 中,∠C =90°,sin A=5
3
,那么tan A 的值等于( ).
A .35
B . 45
C . 34
D . 43
6.将抛物线2
2y x =向下平移1个单位,得到的抛物线解析式为( ).
A .2
2(1)y x =+ B .2
2(1)y x =- C .2
21y x =+
D .2
21y x =-
7. 如图,从圆O 外一点P 引圆O 的两条切线
P A P B ,,切点分别为A B ,.如果60APB ∠= , 8P A =,那么弦A B 的长是( )
A .4
B .8
C .43
D .83
8、根据图1所示的程序,得到了y 与x 的函数图象,如图2.若点M 是y 轴正半轴上任意
一点,过点M 作PQ∥x 轴交图象于点P ,Q ,连接OP ,OQ .则以下结论:
P
B
A
O E D C
B
A
1110987
6
5
4321①x<0 时,错误!未找到引用源。
②△OPQ 的面积为定值. ③x>0时,y 随
x 的增大而增大.MQ=2PM .
⑤∠POQ 可以等于90°.其中正确结论是( )
A 、①②④
B 、②④⑤
C 、③④⑤
D 、②③⑤
二、(本大题共16分,每小题4分)填空题: 9.在△ABC 中,∠C=90° ,1cos 2
B =,则B ∠= .
10. 已知反比例函数2k y x
-=
,其图象在第二、四象限内,则k 的取值范围是 .
11、 把抛物线=y 223x x --化为=y ()2
x m k -+的形式,其中,m k 为常数,
则m-k = .
12. 如图,圆圈内分别标有0,1,2,3,…,11这12个数字,电子跳骚每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳骚从标有数字“0”的圆圈开始,按逆时针方向跳了2010次后,落在一个圆圈中,该圆圈所标的数字是
三、(本大题共30分,每小题5分)解答题: 13. 计算:2sin30°+4cos30°·tan60°-cos 2
45° 解:
14. 已知抛物线c bx x y ++=2
经过点(1,-4)和(-1,2). 求抛物线解析式. 解:
1
O
E
D
C
B
A
F
E
C
D B
A
15. 如图:AC ⌒ =CB ⌒
,D E ,分别是半径O A 和O B 的中点 求证:CD=CE.
证明:
16. 已知:如图,四边形ABCD 是平行四边形,F 是AB 上一点,连接DF 并延长交CB 的延长线于E.
求证:AD :AF =CE :AB 证明:
17. 如图,△ABC 内接于⊙O ,点E 是⊙O 外一点,EO ⊥BC 于点D. 求证:∠1=∠E. 证明:
C
B
O
E
D
A
18. 如图,在R t O A B △中,90OAB ∠= ,且点B 的坐标为(4,2). (1)画出O A B △绕点O 逆时针旋转90 后的11O A B △; (2)求点A 旋转到点1A 所经过的路线长.
解:(1) (2)
四、(本大题共20分,每小题5分)解答题:
19、今年“五一”假期.某数学活动小组组织一次登山活动。
他们从山脚下A 点出发沿斜坡AB 到达B 点.再从B 点沿斜坡BC 到达山巅C 点,路线如图所示.斜坡AB 的长为1040米,斜坡BC 的长为400米,在C 点测得B 点的俯角为30°,点C 到水平线AM 的距离为600米. (1)求B 点到水平线AM 的距离. (2)求斜坡AB 的坡度. 解:(1)
(2)
20 、如图,在平面直角坐标系xOy 中,一次函数)0(≠+=k b kx y 的图象与反比例函数
()0m y m x
=
≠的图象交于二、四象限内的A 、B 两点,点B 的坐标为(n ,6).线段5=OA ,
E 为x 轴负半轴上一点,且sin ∠AOE=45
,求该反比例函数和一次函数的解析式.
解:
21、如图,在△ABC 中,∠A=90°,O 是BC 边上一点,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,连接OD .已知BD=2,AD=3. 求:(1)tanC ; (2)图中两部分阴影面积的和.
解:(1)
(2)
y=x
y
x
P
O
B
A
O
F
E D
C
B
A
AB
22. 如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB=AD=AO.(1)求证:BD 是⊙O 的切线. (2)若点E 是劣弧上一点,AE 与BC 相交于点F ,且∠
ABE=105°,
五、(本大题共22分,其中23、24题各7分,25题8分)解答题: 23.如图,在平面直角坐标系中,⊙P 的圆心是
(
)
a ,2(a >0)
,半径为2,函数x y =的图象被⊙P 截得的弦AB 的长为2.
(1)试判断y 轴与圆的位置关系,并说明理由. (2)求a 的值.
24.探究 : (1) 在图1中,已知点E ,F 分别为线段AB ,CD 的中点. ①若A (-1,0), B (3,0),则E 点坐标为__________; ②若C (-2,2), D (-2,-1),则F 点坐标为__________; (2)若已知线段AB 的端点坐标为A (1,3), B (5,1) 则线段AB 的中点D 的坐标为 ;
(3)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ),
则线段AB 的中点D 的坐标为 .(用含a ,b ,c ,d 的 代数式表示). 归纳 : 无论线段AB 处于直角坐标系中的哪个位置, 当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时,
x =_________,y =___________.(不必证明)
●运用 : 在图2中,一次函数2-=x y 与反比例函数 x
y 3=
的图象交点为A ,B .
O
x
y
D
B
第24题图2
A
第24题图1 O
x
y
D
B A C
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,
请利用上面的结论求出顶点P的坐标.
解:①
第24题图3
②
25. 已知抛物线y=﹣错误!未找到引用源。
x2+bx+c的对称轴为直线x=1,最小值为3,此抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.
(1)求抛物线的解析式.
(2)如图1.求点A的坐标及线段OC的长;
(3)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上.求直线BQ的函数解析式;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E
在PQ上,求点P的坐标.
(2)
(3)
①
②。