“希望杯”五年级数学竞赛培训教程全册
希望杯小学五年级数学竞赛《平面图形的计算》专题辅导培训资料导学讲义

平面图形的计算(一)在这两讲,我们主要讨论这样的问题:根据已知平面图形的特点以及图中各部分之间的关系,应用公式或其他数量关系,计算出该图形(或其中某个部分)的面积或图形中有关线段的长度。
到目前为止,我们已经学过了长方形、正方形、三角形、平行四边形、梯形这五咱简单图形,它们的概念、性质(特征)与它们的周长、面积的意义的计算公式,课本上都作了介绍。
这些都是我们解答“图形计算”问题所必需的基础知识。
例题与方法例1.图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)例2.计算右图的面积。
(单位:厘米)例3.如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。
求四边形ABCD的面积。
例4.右图是两面三刀个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:分米)例5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?(单位:米)练习与思考1.求图中阴影部分的面积。
2.求图中阴影部分的面积。
3.下左图的长方形中,三角形ADE与四边形DEBF和三角形CDF的面积分别相等,求三角形DEF的面积。
4.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?6.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。
7.如图,BC长为5,求画斜线的两个三角形的面积之和。
8.上右图是两个一样的直角三角形重叠在一起,按照图上标出的数,计算阴影部分的面积。
9.右图是一块长方形草地,长方形长为16,宽为12,中间有一条宽为2的道路,求草地(阴影部分)的面积。
平面图形的计算(二)例1.一个正方形,如果它的边长增加5厘米,那么,所成的正方形比原来正方形的面积多95平方厘米。
2013年第十一届希望杯五年级赛前培训4

2013年第十一届“希望杯”数学邀请赛赛前培训五年级培训资料(4)一、简便运算(每题5分)。
31.8÷2.3+386÷46-4.88÷0.23 2008×200920092009—2009×200820082008二、填空题(每题10分)。
1.如果三个连续自然数的最小公倍数是1092,那么这三个数是.2.用绳子测量井深,把绳子折成三折,井外余2尺;把绳子折成四折,绳子上端在井口下1尺,则井深尺。
3.今有鸡兔同笼,鸡比兔多10只,笼中至少有脚58只,则至少有兔只。
4.甲、乙两车分别从A、B两地同时相向而行,分别与上午9点和下午1点经过途中的一座加油站,已知甲的速度是乙的速度的3倍。
则点时两车相遇。
5.平面上有10个点,任意三个点不在一条直线上,将这些点两两相连,得到以这些点为顶点的三角形120个,若去掉一条线,则还剩下个三角形。
6.图中共有个长方形。
7.如图,甲乙两村想在公路旁合建一个小集市,请问,这个小集市应设在何处,才能使两村所走的路程和最短?甲··乙公路8.由 100 个边长分别为100,99,98,…,2,1的正方形重叠而成,那么,按这种方式重叠而成的阴影部分的面积是______。
9.从1~20中,选出2个数,使它们的乘积是10的倍数,共有种选法。
10.若干名小朋友排成一行,从左边第一人开始每隔2人发一个苹果,从右边第一个人开始每隔4人发一个橘子,结果有10人拿到了两种水果,那么这群小朋友最少有人。
11.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),它的体积是,表面积是。
(单位:厘米)。
希望杯五年级数学竞赛培训教程全册.doc

希望杯五年级数学竞赛培训教程全册“希望杯”五年级数学竞赛培训教程全册目录◆第一讲消去问题(一)2 ◆第二讲消去问题(二)7 ◆第三讲一般应用题12 ◆第四讲盈亏问题(一)16 ◆第五讲盈亏问题(二)17 ◆第六讲流水问题19 ◆第七讲等差数列23 ◆第八讲找规律26 ◆能力测试(一)26 ◆第九讲加法原理28 ◆第十讲乘法法原理31 ◆第十一讲周期问题(一)35 ◆第十二讲周期问题(二)37 ◆第十三讲巧算(一)39 ◆第十四讲巧算(二)40 ◆第十五讲数阵问题(一)45 ◆第十五讲数阵问题(二)45 ◆能力测试(二)63 ◆第16讲平面图形的计算(一)◆第17讲平面图形的计算(二)◆第18讲列方程解应用题(一)◆第19讲列方程解应用题(二)◆第20讲行程问题(一)◆第21讲行程问题(二)◆第22讲行程问题(三)◆第23讲行程问题(四)◆阶段测试(一)◆第24讲平均数问题(一)◆第25讲平均数问题(二)◆第26讲长方体和正方体(一)◆第27讲长方体和正方体(二)◆第28讲数的整除特征◆第29讲奇偶性问题◆第30讲最大公约数和最小公倍数◆第30讲分解质因数(一)◆第31讲分解质因数(二)◆第32讲牛顿问题◆综合测试第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。
我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
这样的解题方法,我们通常把它叫做“消去法”。
例题与方法在学习例题前,我们先进行一些基本数量关系的练习,为用消去法解题作好准备。
1买1个皮球和1个足球共用去40元,买同样的5个皮球和5个足球一共用去多少元23袋子、大米和3袋面粉共重225、千克,1袋大米和1袋面粉共重多少千克(3)6行桃树和6行梨树一共120棵,照这样子计算8行桃树和8行梨树一共有多少棵(4)学校买了4个水瓶和25个茶杯,一共用去172元,每个水瓶18元,每个茶杯多少元例1 学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。
“希望杯”五年级数学竞赛培训教程全册(-精品)

“希望杯”五年级数学竞赛培训教程全册目录◆第一讲消去问题(一) (2)◆第二讲消去问题(二) (7)◆第三讲一般应用题 (12)◆第四讲盈亏问题(一) (16)◆第五讲盈亏问题(二) (17)◆第六讲流水问题 (19)◆第七讲等差数列 (23)◆第八讲找规律 (26)◆能力测试(一) (26)◆第九讲加法原理 (28)◆第十讲乘法法原理 (31)◆第十一讲周期问题(一) (35)◆第十二讲周期问题(二) (37)◆第十三讲巧算(一) (39)◆第十四讲巧算(二) (40)◆第十五讲数阵问题(一) (45)◆第十五讲数阵问题(二) (45)◆能力测试(二) (63)◆第16讲平面图形的计算(一)……………◆第17讲平面图形的计算(二)……………◆第18讲列方程解应用题(一)………………◆第19讲列方程解应用题(二)………………◆第20讲行程问题(一)…………………………◆第21讲行程问题(二)…………………………◆第22讲行程问题(三)…………………◆第23讲行程问题(四)……………………◆阶段测试(一)……………………◆第24讲平均数问题(一)………………………◆第25讲平均数问题(二)………………◆第26讲长方体和正方体(一)………………◆第27讲长方体和正方体(二)……………………◆第28讲数的整除特征……………………………◆第29讲奇偶性问题……………………◆第30讲最大公约数和最小公倍数…………………◆第30讲分解质因数(一)……………………◆第31讲分解质因数(二)……………………◆第32讲牛顿问题……………………◆综合测试………………………………………第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。
我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
希望杯小学五年级数学竞赛《数阵问题》专题辅导培训资料导学讲义

数阵问题(一)把给定的一些数,按照一定的要求或规律填在规定形状的图形中,这样的图形叫做数阵图。
传说在四千年前,洛河洪水泛滥,大禹去治水。
有一天,从河里浮出其不意一只大乌龟,龟驮着一本书,称为“洛书”,书上有一幅奇特的图案(见下左图)。
这幅图用现在的数字表示,即为1到9这九个数字,填在九个格子里,每一纵列、每一横行以及两条对角线上的三个数字之和都是15(见上右图)。
多么巧妙、奇特的数字图!我国古代数学家称它为“纵横图”可“九宫图”,国外称它为“魔方”或“幻方”。
我们这一讲学习的数阵问题就是由幻方演变而来的填数问题。
数阵问题的题型主要有三种:(1)辐射型;(2)封闭型;(3)综合型。
这一讲我们学习三阶幻方和辐射型数阵图。
例题与方法例1.将1~9九个数字填在右图正方形的九个方格中,使得每个横行、竖列和对角线上三个数的和都相等。
例2.用7、9、11、13、15、17、19、21、23构制一个三阶幻方。
例3.下面是一个九宫图,第一行第三列上的数是6,第二行第一列上的数是7,请你在其他位置上填上适当的数,使每行、每列以及每条对角线上三个数的和为30。
例4.把3、4、5、6、7这五个数分别填入下图中的五个方格里,使横行、竖列三个数的和都是14。
例5.将1~7分别填入右图中的○内,使每条线段上三个○内数的和相等。
例6.把1~9九个数填入“七一”内,使每一横行、竖行的数字和是13。
练习与思考1.按四个填数步骤把4~12这9个数填在右图3×3的格内,制成三阶幻方。
2.用“杨辉法”,将9~17这9个数制成三阶幻方。
3.用11,13,15…,25,27这9个数制一个三阶幻方。
4.用 4,6,8,14,16,18,24,26,28制一个三阶幻方。
5.在图中空格内填上适当的数,使每行、每列、每条对角线上的数的和都为27。
第5题 第6题6.将图中的数重新排列,使每行、每列以及每条对角线上三个数的和相等。
7.将5,6,7,8,9五个数分别填入图中,使横行、竖行三个数的和都是21。
2024 IHC(希望杯) 5培训题五年级数学-答案版

2024 IHC 5培训题答案1.计算:223×7.5+22.3×12.5+230÷4 – 0.7×2.5+1=________。
答案:20082.计算:202.32024.2024202.42023.2023⨯-⨯=________。
答案:03.计算:(1+3+5+…+2025) – (2+4+6+…+2024)=________。
答案:10134.如果:21120.7530.39852⎡⎤⎛⎫+⨯++⊗⨯÷=⎪⎢⎥⎝⎭⎣⎦,那么⊗=()。
A. 10B. 9.5C. 9D. 8.5E. 8答案:E5.定义A&B=A×A÷B,则3&(2&1)=________。
答案:2.256.定义新运算“⊕”和“◎”:a⊕b=a×b,c◎d=d×d×d…×d(c个d相乘),如2⊕4=8,3◎4=64,则(5⊕7) ⊕(3◎6)=________。
答案:75607.一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是15,那么原来的分母是________。
答案:898. 在计算一个大于0的数与3.57∙的乘积时,小明误把3.57∙看成了3.57,结果与正确答案相差1.4,则其正确答案是________。
答案:6449. A 是比90大,比100小的质数,它被B 除,得商C ,余D ,如果C =B +D ,那么B =________。
答案:710. 将1,2,3,4,6,7六个数字,填入图中正方体的6个顶点上,使每个面4个数之和相等。
答案:11. 将1~11这11个数填入下图圆圈中,使每条线上的数之和都相等。
答案:12.如图是一个4×4的“魔方阵”,其中7个格子已经填好,在剩余格子中填入合适的数,使每行、每列及每条对角线上4个数的和都相等,则“?”处应该填的是________。
希望杯五年级培资料

五年级希望杯培训资料希望杯全国数学邀请赛五年级考查内容1.小数的四则运算,巧算与估算,小数近似,小数与分数的互换。
2.因数与倍数,质数与合数,奇偶性的应用,数与数位。
3.三角形、平行四边形、梯形、多边形的面积。
4.长方体和正方体的表面积、体积,三视图,图形的变换(旋转、翻转)。
5.简易方程。
6.应用题(还原问题、鸡兔同笼、盈亏问题、行程问题等),生活数学。
7.包含与排除,分析推理能力,加法原理、乘法原理。
8.几何计数,找规律,归纳,统计,可能性。
五年级培训(一)主要内容:小数的四则运算,巧算与估算,小数近似。
例1:除法分配性质(a+b)÷c= a÷c+b÷c计算:31.8÷2.3+386÷46-4.88÷0.23例2:拆分因数计算:200.9 × 200.8 - 200.5 × 201.2例3:乘法分配律(a+b)×c= a×c+b×c计算:7.81 × 49 - 78.1 × 3.8 + 0.78 × 90例4:巧去(加)括号a÷(b×c)=a÷b÷c a×(b×c)= a×b×c 计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷……÷(2013÷2014)例5:分解因数计算:2013×201420142014-2014×201320132013例6:整体代换计算:(7.88+6.77+5.66)×(9.31+10.98+10)-(7.88+6.77+5.66+10)×(9.31+10.98)例7:比较大小(填“>”、“<”或“=”):20122012 × 20132013()20112011 × 20142014例8:定义新运算规定运算“⊗”:a是b的倍数时,a ⊗ b = a ÷ b + 1;b是a的倍数时,a⊗b = b ÷ a + 1;a不是b的倍数时,b也不是a的倍数时,a⊗b = 13。
希望杯小学五年级数学竞赛《长方体和正方体》专题辅导培训资料导学讲义

长方体和正方体(一)我们已经学习了长方体和正方体的有关知识,如长方体和正方体的特征,长方体和正方体表面积、体积的计算。
在数学竞赛中,有许多问题涉及到长方体和正方体的知识,这些问题既有趣,又具有一定的思考性,解答这些问题,不仅需要我们具备较扎实的基础知识和较强的观察能力、作图能力和空间想象能力,还要能掌握一此致解题的思路的技巧。
通过本讲的学习,同学们将从解题的过程中得到一些启示,悟出一些道理,从而提高空间想象能力和分析推理能力。
例题与方法例1.一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和表面积各是多少?例2.在一个长15分米,宽12分米的长方体水箱中,有10分米深的小。
如果在水中沉入一个棱长为30厘米的正方体铁块,那么,水箱中水深多少分米?例3.一个长方体容器内装满水,现在有大、中、小三个铁球。
每一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次把中球取出,把小球和大球一起沉入水中。
已知每次从容器中溢出的水量的情况:第二次是第一次的3倍,第三次是第一次的2.5倍。
问:大球的体积是小球的多少倍?例4.一个长方体容器的底面是一个边长60厘米的正方形,容器里直立着一个高1米,底面边长15厘米的长方体铁块。
这时容器里的水深0.5米。
如果把铁块取出,容器里水深多少厘米?练习与思考1.一个长方体棱长的总和是48厘米,已知长是宽的1.5倍,宽是高的2倍,求这个长方体的体积。
2.用2100个棱长是1厘米的正方体木块堆成一个实心的长方体。
已知长方体的高是10厘米,并且长和宽都大于高。
这个长方体的长和宽各是多少厘米?3.在一个长20分米,宽15分米的长方体容器中,有20分米深的水。
现在在水中沉入一个棱长30厘米的正方体铁块,这时容器中水深多少分米?4.把一个长9厘米,宽7厘米,高3厘米的长方体铁块和一块棱长5厘米的正方体铁块熔铸成一个底面积是20平方厘米的长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“希望杯”五年级数学竞赛培训教程全册目录◆第一讲消去问题(一) (2)◆第二讲消去问题(二) (7)◆第三讲一般应用题 (12)◆第四讲盈亏问题(一) (16)◆第五讲盈亏问题(二) (17)◆第六讲流水问题 (19)◆第七讲等差数列 (23)◆第八讲找规律 (26)◆能力测试(一) (26)◆第九讲加法原理 (28)◆第十讲乘法法原理 (31)◆第十一讲周期问题(一) (35)◆第十二讲周期问题(二) (37)◆第十三讲巧算(一) (39)◆第十四讲巧算(二) (40)◆第十五讲数阵问题(一) (45)◆第十五讲数阵问题(二) (45)◆能力测试(二) (63)◆第16讲平面图形的计算(一)……………◆第17讲平面图形的计算(二)……………◆第18讲列方程解应用题(一)………………◆第19讲列方程解应用题(二)………………◆第20讲行程问题(一)…………………………◆第21讲行程问题(二)…………………………◆第22讲行程问题(三)…………………◆第23讲行程问题(四)……………………◆阶段测试(一)……………………◆第24讲平均数问题(一)………………………◆第25讲平均数问题(二)………………◆第26讲长方体和正方体(一)………………◆第27讲长方体和正方体(二)……………………◆第28讲数的整除特征……………………………◆第29讲奇偶性问题……………………◆第30讲最大公约数和最小公倍数…………………◆第30讲分解质因数(一)……………………◆第31讲分解质因数(二)……………………◆第32讲牛顿问题……………………◆综合测试………………………………………第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。
我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
这样的解题方法,我们通常把它叫做“消去法”。
例题与方法在学习例题前,我们先进行一些基本数量关系的练习,为用消去法解题作好准备。
(1)买1个皮球和1个足球共用去40元,买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克,1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵,照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯,一共用去172元,每个水瓶18元,每个茶杯多少元?例1 学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。
水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元,买同样的6个篮球和3个足球共用去519元。
篮球和足球的单价各是多少元?练习与思考(第1~4题5分,其余每题10分,共100分)1、 1袋黄豆和1袋绿豆共重50千克,同样的7袋黄豆和7袋绿豆共重()千克。
2、买5条毛巾和5条枕巾共用去90元,买1条毛巾和1条枕巾要()元。
3、买4本字典和4本笔记本共、用去了68元,买同样的9本字典和9本笔记本一共要()元。
4、9筐苹果和9筐梨共重495千克,找这样计算,2筐苹果和2筐梨共重()千克。
5、妈妈买了5米画布和3米白布,一共用去102元。
花布每米15元,白布每米多少元?6、果园里有14行桃树和20行梨树,桃树和梨树一共有440棵。
每行梨树15棵,每行桃树多少棵?7、买3千克茶叶和5千克糖,一共用去420元,买同样的3千克茶叶和3千克糖,一共用去874元。
每千克茶叶和每千克糖各多少元?8、食堂第一次运来6袋大米和4袋面粉,一共重400千克;第二次又运来9袋大米和4袋面粉,一共重550千克。
每袋大米和每袋面粉各重多少千克?9、3豹味精和7包糖共重3800克,同样的3包味精和14包糖共重7300克。
每包味精和每包糖各重多少克?10、育新小学买了8个足球和12个篮球,一共用去了984元;青山小学买了同样的16个足球和10个篮球,一共用去1240元。
每个足球和每个篮球各多少元?11、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子,需要1600元。
买一张桌子和一把椅子需要多少元?12、3头牛和6只羊一天共吃草93千克,6头牛和5只羊一天共吃草130千克。
每头牛每天比每只羊多吃多少千克?第二讲消去问题(二)例1、7袋大米和3袋面粉共重425千克同样的3袋大米和7袋面粉共重325千克。
求每袋大米和每袋面粉的重量。
例2、甲买了8盒糖和5盒蛋糕共用去元;乙买了5盒糖和2盒蛋糕共用去90元。
每盒糖和每盒蛋糕各多少元?例3、三头牛和8只羊每天共吃青草93千克,5头牛和15只羊每天吃青草165千克。
一头牛和一只羊每天各吃青草多少千克?练习与思考(第1~4题13分,其余每题12分,共100分。
)1.3个皮球和5个足球共245元,同样的6个皮和10个足球共()元。
2.2条床单和3条毛巾共280元。
一条床单和一条毛巾共()元,2条床单和2条毛巾共()元。
3.5盒铅笔和9盒钢笔共190支,同样的2盒铅笔和6盒钢笔共100支。
3盒铅笔和3盒钢笔共()支,1盒铅笔和1支钢笔共()支。
4.育才小学体育组第一次买了4个篮球和3个排球,共用去了141元;第二次买了5个篮球和4个排球,共用去180元。
每个篮球和每个排球各多少元?5.3筐苹果和5筐梨共重138千克,5筐同样的苹果和3筐同样的共重134千克。
,每筐苹果和每筐梨各重多少千克?6.某食堂第一次运进大米5袋,面粉7袋,共重1350千克;第二次运进大米3袋,面粉5袋,共重850千克。
一袋大米和一袋面粉各重多少千克?7.3件上衣和7条裤子共430元,同样的7件上衣和3条裤子共470元。
每件上衣和每条棵子各多少元?8.2千克水果糖和5千克饼干共64元,同样的3千克水果糖和4千克饼干共68元。
每千克水果糖和每千克饼干各多少元?9.5包科技书和7包故事书共620本,6包科技书和3包故事书共420本。
每包科技书比每包故事书少多少本?10.3个水瓶和8个茶杯共92元,5个水瓶和6个茶杯共102元。
每个水瓶和每个茶杯各多少元?11.甲有5盒糖,乙有4盒糕共值44元。
如果甲、乙两人对换一盒,则每人所有物品的价值相等。
一盒糖、一盒糕各值多少元?第三讲一般应用题在小学里,通常把应用题分为“一般应用题”和“典型应用题|”两大类。
“典型应用题”有基本的数量关系、解题模式,较复杂的问题可以通过“转化”,向基本的问题靠拢。
我们已经学过的“和差问题”、和“倍差问题”等等,都是“典型应用题”。
“一般应用题|”没有各顶的数量关系,也没有可以以来的解题模式。
解题时要具体问题具体分析,在认真审题,理解题意的基础上,理清一知条件与所求问题之间的数量关系,从而确定解题的方法。
对于比较复杂的问题,可以借助线段图、示意图、直观演示等手段帮助分析。
例题与方法例 1、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加身一般的重量,而鱼身体、的重量等于鱼头的重量加上鱼尾的重量。
这条鱼重多少千克?例2、一所小学的五年级有四个班,其中五(1)班和五(2)班共有81人,五(2)班和五(3)班共有83人五(3)班和五(4)班共有86人,五(1)班比五(4)班多2人。
这所学校五年级四个班各有多少人?例 3、甲、乙两位渔夫在和边掉鱼,甲钓了5条,乙钓了3条,吃鱼时,来了一位客人和甲、乙平均分吃这条鱼。
吃完后来客付了8角钱作为餐费。
问:甲、乙两为渔夫各应得这8角钱中的几角?例 4、一个工地用两台挖土机挖土,小挖土机工作6小时,大挖土机工作8小时,一共挖土312方。
已知小挖土机5小时的挖土量等于大挖土机2小时的完土量,两种挖土机每小时各挖土多少方?例 5、甲、乙、丙三人用同样多的钱合买西瓜。
分西瓜时,甲和丙都比乙多拿西瓜7。
5千克。
结果甲和丙各给乙1.5元钱。
每千克西瓜多少元|?例 6、小红有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个。
而按钱数算,5分币比2分币多4角。
已知这些硬币中有36个1分币。
问:小红的储蓄筒里共存了多少钱?练习与思考(第1~4题13分,其余每题12分,共100分。
)1.有一段木头,不知它的长度。
用一根绳子俩量它,绳子多15米;如果将绳子对折以后再来量,又不够04米。
问:这段绳子长多少米?2.甲、乙两人拿出同样多的钱合买一段花布,原约定各拿花布同样多。
结果甲拿了6米,乙拿了14米。
这样,乙就要给甲12元钱。
每米花布的单价是多少元?3.甲、乙丙合三人各出同样多的钱合买苹果若干千克。
分苹果时,甲和丙都比乙多拿7。
8千克苹果,这样甲和丙各应给乙6元钱。
每千克苹果多少钱?4.学校买了2张桌子和5把椅子,共付了330元。
每张桌子的价钱是每把椅子的3倍。
每张桌子多少元?5.某校六年级有甲、乙、丙丁四个班,不算甲班,期于三个班的总人数是131人,不算丁班,期于三个班的总人数是134人。
已知乙、丙两个班的总人数比甲、丁两个班的总人数少1人,甲、乙丙、丁四个班共有多少人?6.李大伯买了15千克特制面粉和35千克大米,共用去31.2元。
已知1千克特特制面粉的价格是1千克大米的 2倍。
李大伯买特制面粉和大米各用去多少元?7.14千克大豆的价钱与8千克花生的价钱相等,已知1千克花生比1千克大豆贵12元,大豆和花生的单价各是多少元?8.某车间按计划每天应加工50个零件,实际每天加工56个零件。
这样,不仅提前3天完成原计划加工凌驾的任务,而求多加工了120个零件。
这个车间实际加工了多少个零件?9.某班学生植树,共、有杉树苗用途杨树苗10棵。
每小组分杉树苗6棵,杨树苗8棵。
这样杉树苗正好分完,而杨树苗还剩2棵。
原来杉树苗与杨树帽各有多少棵?10.用8千克丝可以织6分米宽的绸4米,现在有10千克的丝,要织75分米宽的绸,可以织几米?|第4讲盈亏问题(一)盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,又会不足(亏),求物品的数量和分配对象的数量。
例如:小朋友分苹果,如果每人分2个,就多余16个;如果每人分5个,就缺少14个。
小朋友有多少个?苹果有多少个?比较两次分的结果,第一次余16个,第二次少14个,两次相差1+ 14=30(个)。
这是因为第二次比第一次每人多分了5-2=3(个)苹果。
相差30个,就说明有30÷3=10(个)小朋友。
请小读者自己算出苹果的个数。
例题与方法例1、将一些糖果分给幼儿园小班的小朋友,如果每人分3 粒,就会余下糖果17粒;如果每人分5粒,就会缺少糖果13粒。