第四届希望杯数学竞赛五年级二试试题及答案
希望杯第1-10届五年级数学试题及答案(WORD版)

2003年3月30日上午8:30至10:00一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9。
中随意取出两个数字,一个作分子,一个作分母,组成一个分数,所有分数中,最大的是,循环小数有个。
2023希望杯五年级数学思维训练题(含答案)

2023希望数学——5年级培训100题1. 计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7) = ________.2. 计算:0.8750.8+0.750.4+0.50.2 =________.3. 计算:3.5634.50.73569.1535.6 1.96256 =________.4. 计算: 0.10.30.50.20150.20.40.60.2014 ________.5. 比较A 、B 、C 三个数的大小_____<_____<_____.147118369120A;3691204710121B ;111C .6. 对于任意两个自然数a 和b ,如果规定a @b =a ×b +a +1,那么41@99=________.7. 规定:a △b =(b – 0.2a )(a – 0.2b ),a □b =ab – a +b ,则5△(4□3) =________.8. 定义:[]a 表示不超过数a 的最大整数,如[0.1]0 ,[8.23]8 ,则57997993579597= ________.9. 小马虎在计算一道有余数的除法算式时,把被除数247错写成了427.这样商比原来大了6,而余数正好相同.那么这个算式的除数是________.10. 小明将20.08乘以一个数,误写成20.08乘以一个数,结果与正确答案正好相差20.08,则正确答案是________.11. 在横线上填写一个自然数,使下面的等式成立:2 + 0.6 + 0.06 + 0.006 + …… = 48 ÷ ________.12. 已知A – B = 1.981,但小华因没看到A 和B 中的小数点,得到“A – B = 4087”,则A = ________.13. a 除以7的商的小数点后面第2021个数字是2,则a 是________.(a 为小于7的自然数) 14. 11111111112345678910的结果的小数点后第2012位的数字是________.15. 在一列数:1357,,,3579……中,从哪一个数开始,1与每个数之差都小于11000?16. 已知1+2+3+ …… + n 的和的个位数字为3,十位数字为0,百位数字不为0,n 的最小值是________.17. 从1开始的n 个连续的自然数,从中去掉最大的3个数,若剩下的自然数的平均数是30,则n =________.18. 在下式中A 、B 、C 、D 、E 、F 代表1~9中的不同数字,那么ABCDEF =________.AB CC DEE C C F F19. 下面的乘法竖式谜中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数云雾花开是________.20. 图中的除法竖式中,商是一个循环小数,那么被除数可能是多少?21. 若两个不同的数字A 、B 满足3(70.6)AAB B,则A +B =________.22. 在三位数abc 中,2b +c =12,一定能整除这个三位数的最大自然数是________.23. 四名学生做加法练习:任写一个六位数,把它的个位数字(不等于0)移到这个数最左边得到一个新的六位数,然后与原六位数相加.他们的得数分别是172535,568741,620708,845267,其中只有一名同学做对了,他的得数是________.24. 互为反序数的两个自然数的积是92565,这两个互为反序数的自然数的和是________.(注:把一个数的数码倒过来写,所得的新数叫做原数的反序数,如123的反序数为321)25. 一个七位数,能被3、5、7、11、13整除,且各位数字互不相同,这个七位数最大是________.□是24的倍数,这样的四位数有________个.26.四位数54827.某个自然数除以2 余1,除以3 余2,除以4 余1,除以5 也余1,则这个数最小是________.28.2012201220122012的计算结果除以10的余数是________.123201329.三个不同质数的平方之和是9438,这三个质数分别是多少?30.一条道路由甲村经乙村到丙村.甲乙两村相距450米,乙丙两村相距630米.现在准备在路边栽树,要求相邻两棵树之间的距离相等,并且在甲乙两村中点和乙丙两村中点都要栽树.那么相邻两棵树之间的距离最多是________米.31.一个偶数恰有12个因数不是3的倍数,恰有15个因数不是5的倍数,这个数是________.32.要使下面算式的乘积的最后四个数字都是0,小括号中最小应填________.975×935×972×()33.5×6×7×…×2014×2015的末尾有_______个连续的零.34.360与一个三位数的乘积是完全平方数,这个三位数最小是_________.35.已知a与b的最大公因数是4,a与c、b与c的最小公倍数都是100,而且a ≤ b.满足条件的自然数a、b、c共有________组.36.已知两个自然数的乘积是2016,这两个数的最小公倍数是168,那么这两个数的最大公因数是_________.37.四位数ABBA的所有因数中,有3个是质数,其它39个不是质数,那么四位数BAAB有________个因数.38.算式125×125=16324是在________进制下的正确算式.39.老师写了一个三位数给甲、乙、丙、丁、戊五个同学看.甲说:这个数是27的倍数;乙说:这个数是11的倍数;丙说:这个数的数字之和为15;丁说:这个数是个平方数;戊说:它是648000的因数.老师说:他们中间只有三个人说真话.那么这个数是________.40.用3、4、5、7、9这5个数字组成两个各位数字不同的五位数,若这两个五位数的差是12555,则这两个数中较大的一个是_________.41.在一种数学游戏中,主持人要求某参赛者想好一个三位数abc,然后,主持人要求他记下5个数acb,bca,bac,cba,cab,并把这5个数加起来求出和N.只要参赛者讲出N的大小,主持人就能说出原数abc是什么.如果N=2743,那么abc=_________.42.如图,从长方形纸片上裁掉正方形ABCD和正方形CEFG,其中正方形ABCD的面积是1369,则余下的长方形纸片DGFH的周长是________.43.如图,已知正方形ABCD的边长为10,E为AD中点,F为CE中点,G为BF中点,则△BDG的面积是________.44.图中正六边形的面积是54,AP=2PF,CQ=2BQ.阴影部分的面积是________.45.如图,正方形中A1、A2、A3、A4为各边中点,B1、B2、B3、B4、C1、C2、C3、C4为各边三等分点,已知正方形的边长是6,那么阴影部分的面积是________.46.下图中的阴影部分的面积是_________.47.把一个正方形四个方向分别往外增加1厘米、2厘米、3厘米和4厘米,结果面积增加了74平方厘米,那么原正方形的面积为________平方厘米.48. 如图,若阴影部分的面积为53,则外侧的正方形的面积为________.49. 如图,在平行四边形ABCD 中,点M 在对角线AC 上,BM 延长线交AD 于点F .若ABM 的面积是3,BCM 的面积是5.则BCF 的面积是_______.50. 下图的大长方形是由6个正方形拼成的,已知最小的正方形的面积是4平方厘米,大长方形的面积是________平方厘米.51. 如图,直角△ABC 中,∠C =90 °,DE 和BC 平行,F 是BC 上一点,已知AD =2,BF =5,则阴影部分的面积是_________.52.如图,大、小两个正方形的周长和是128厘米,大正方形比小正方形的面积大128平方厘米,小正方形面积是________平方厘米.53.如图,F是长方形ABCD的边BC上的一点,BM=MF,AF与对角线BD交于点O,DF与CO交于点N.△OND的面积是70平方厘米,△OMF的面积是25平方厘米.△NFC的面积是________平方厘米.54.D是三角形ABC一边上的中点,两个长方形分别以B、D为顶点,并且有一个公共顶点E,已知上、下两块阴影部分的面积分别是150平方厘米和180平方厘米,则三角形BDE的面积是________平方厘米.55.如图,ABCD是一张正方形纸片,将纸片沿着CE对折,点D被折到点G的位置,再沿着CF对折纸片,将点B折到点G的位置.如果DE=18,BF=6,那么△AEF的面积是_________.56.四个正方形如图摆放,如果较小的两个正方形面积分别为15和60,那么较大的两个正方形面积差为__________.57.一个正方体的木块,各个面上分别写着1,2,3,4,5,6,并且相对面上的两个数字的和是7,将这个木块按如图所示箭头方向翻转,当翻到最后一格时,木块上方的数字是________.58.地面上放置着一个由若干个小正方体搭成的立体图形,且三视图如下图所示,则这个立体图形中共有________个小正方体.59.如图,一个棱长为6厘米的大正方体,从前向后打穿一个“L”形方洞.挖洞后剩余部分的表面积是________平方厘米.(单位:厘米)60.如图,在空的长方体容器内放入一个圆柱体铁块,然后往容器中灌水.5分钟时水面恰好与圆柱体的顶面相平,再过12分钟水灌满容器.已知长方体容器的高是50厘米,圆柱体铁块的高是20厘米,则长方体容器的底面积是圆柱体铁块底面积的________倍.61.一堆模具中长方形模具的数量是圆形模具的2倍,现要将它们装箱出售,每24个长方形模具和9个圆形模具合装一箱,如此装了若干箱后,长方形模具还剩8个,圆形模具还剩37个.这堆模具中,有长方形模具________个.62.一片牧场,每天草生长的速度相同.这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4只羊的吃草量相当于1头牛的吃草量.那么17头牛和20只羊一起吃这片牧场上的草,可以吃_________天.63.一辆汽车的速度是每小时121千米,现有一个每小时比标准表多走30秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时________千米.64.张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是110°,回家时发现还未到七点,且时针与分针的夹角仍是110°.张强外出锻炼了_______分钟.65.月底了,小明把这个月节省下来的钱全部兑换成1元硬币,放在桌面上.他先把全部的硬币围成一个正三角形,刚好用完;又改围成一个正方形,也刚好用完(都是只围最外圈一层).已知正方形每条边比正三角形的每条边少用8枚硬币,那么小明的所有硬币总共价值_________元.66.歌唱比赛中有5名评委为选手打分,小强的得分情况是:如果去掉一个最高分和一个最低分,平均分是9.56分;如果只去掉一个最高分,平均分是9.45分;如果只去掉一个最低分,平均分是9.62分;如果保留最高分和最低分,而去掉其他评委的打分,小强的平均分是________分.67.工厂举办劳动技能竞赛,一车间的平均分是85分,二车间的平均分是92分,两个车间的平均分是88分.已知一车间参加竞赛的人数比二车间多10人,那么一车间参加竞赛的人数是________人.68.爷爷告诉李刚:“当我在你爸爸现在这个年龄时,你爸爸当时的年龄比你现在的年龄大了5岁.”如果爷爷、爸爸和李刚三人今年的年龄和刚好是100岁,则爸爸今年是_______岁.69.若干年后,爷爷的年龄比小高年龄的12倍多1岁;再过几年,爷爷的年龄比小高年龄的8倍多4岁.已知今年小高 4 岁,那么爷爷今年_______岁.(今年爷爷年龄不到100岁)70.某车间加工一批零件,计划每天加工50个.为提高质量,放缓了加工速度,实际每天少加工6 个,这样超过计划时间2 天的时候,还有32 个零件没有完成,这批零件有________个.71.甲、乙、丙、丁四人一起完成一项工程,按工作时间分配报酬,开始每人预领了相等的劳动报酬,可是丁工作一天就病倒了,结果是甲工作6天,乙工作5天,丙工作4天后把工程完成了,丁退回480元补偿给其他三人,最后甲得报酬________元.72.一项工程,按甲、乙、丙各一天的顺序循环工作,恰好整数天完成;如果按照丙、甲、乙各一天的顺序循环工作,比原计划晚0.5天完成;如果按照乙、丙、甲各一天的顺序循环工作,比原计划晚1天完成.已知乙单独完成这项工程需30天,那么甲、乙、丙同时做的话,需要________天完成.73.已知一艘轮船顺水航行48千米需4小时,逆水航行48千米需6小时.现在轮船从上游A码头到下游B码头,距离72千米,开船时一乘客扔到水里了一块木板,那么船到B码头时,木板离B码头还有________千米.74.A地位于河流的上游,B地位于河流的下游.每天早上,甲船从A地、乙船从B地同时出发相向而行.从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍.今天两船的相遇地点与12月2号相比,将变化________千米.75.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快________千米.76.A,B两地相距1000米,甲从A 地、乙从B地同时出发,在A,B间往返锻炼.甲跑步每分钟行150米,乙步行每分钟行60米.在30分钟内,甲、乙两人第________次相遇时距A地最近,最近距离是________米.(同向追上也算作相遇,结果四舍五入取整数)77.甲、乙两人分别从A、B两地同时出发,相向而行,并在A、B两地往返运动.甲每分钟行120米,乙每分钟行80米.若两人第一次相遇点C与第二次相遇点D之间的距离是100米.则A、B两地间的距离________米.78.某一天,甲乙两人分别从A、B两地同时出发相向而行,两人在C点相遇.第二天,甲乙两人分别从B、A两地出发相向而行,甲比乙提前20分钟出发,两人又在C点相遇.第三天,甲乙两人分别从A、B两地出发相向而行,甲行了360米后乙才出发,结果两人在A、B中点相遇.甲的速度是每分钟________米.79.如图,一个长方形的房屋长13米,宽8米,甲乙两人分别从房屋的两个墙角出发,甲每秒行3米,乙每秒行2米,经过________秒,甲第一次看见乙.80.如图,AB是圆的直径,甲、乙分别从A、B两点同时沿圆周顺时针方向出发,已知甲走一圈需要12分钟,乙走一圈需要15分钟.那么甲出发后________分钟可以追上乙.81.某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么这个班中三项运动都会的至少有________人.82.科学家A、B、C、D、E依次坐成一排为同学们答疑解惑,已知每位同学都恰好找座位相邻的三位科学家答疑,一共有22个同学同时找了B和D答疑,C一共答疑38次,A比E多答疑6次,那么B一共答疑________次.83.用4种颜色给下图中的9个小圆圈染色,要求有线段相连的两个圆圈的颜色不能相同.那么一共有_________种不同的染法.84.“过五关、斩六将”是小说《三国演义》中的著名故事,故事中关羽连过曹操的东岭关、洛阳关、虎牢关、荥阳关、滑州黄河渡口五个关卡,斩了六员大将,才摆脱曹操投奔刘备.以下为五个关口的方位简图,请用红、黄、蓝、绿、黑五种颜色对这五块区域进行染色,要求相邻区域颜色不同,那么共有________种不同的染色方法.85.一张圆形纸片被对折成一个半圆形,在半圆形上画三条直线,然后沿直线切三刀,能将纸片最多分成_________块.86.将2019个小球放入编号分别为1,2,…,63的63个箱子中,要求:所有箱子中小球的个数不同,且小球个数不小于箱子的编号,则不同的放法有________种.87.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动.已知电子跳蚤速度相同,且每步只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3步,途中从未相遇的跳法共有________种.88.数一数,图中有________个梯形.89.图中有________个平行四边形.90.如图,由若干个小等边三角形构成,其中每个三角形的顶点都被称为格点,则以图中的格点为顶点的等边三角形有________个.91.某次书法比赛,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有________个学校参加了这次比赛.92.从1~9中至少要取出________个数,才能保证取出的数中一定有3个数可以排成等差数列.93.光大小学要从12名候选同学中投票选出“校庆十佳少年”,规定每位同学必须从这12人中任选两名,那么至少有_______人参加投票,才能保证必有不少于4个同学投了完全相同的票型.94.一列数21,22,24,28,……,从第二个数开始,每一个数都等于它前一个数加上这个数的个位数字,例如22=21+1.那么这列数中的第21个是________.95.有一列长度为90米的火车A和一列长度为180米的火车B,两车相向而行,有四人分别发布了一条消息:甲说:我坐在火车A上,看到火车B经过用时6秒.乙说:我坐在火车B上,看到火车A经过用时2秒.丙说:我在路边看风景,火车B从我身边经过用时9秒.丁说:我在路边跑步,先被火车B超过,1分钟后火车A从我身边经过,用时3秒.已知四人中只有1人的话是错误的,那么丁的速度是每秒________米.96.天天、Cindy、Kimi、石头、Angela五人按某种顺序依次取出21个球.Kimi:“我取了剩下个数的三分之二”;Cindy:“我取了剩下的小球的个数的一半”,天天:“我取了剩下的小球的个数的一半”,石头:“我取了剩下的全部”,Angela:“大家取的个数都不同哎!”请问:Kimi是第______个取小球的,取了______个.97.将1、2、3……49、50任意分成10组,每组5个数,在每组中取数值居中的那个数为“中位数”,这10个中位数之和的最大值是________.98.小聪玩一个三国集卡游戏,有曹操、刘备、孙权三种武将卡,每种武将卡都有一星、二星、三星这三个星级,三张同名称的低星级卡片可以合成一张同名称的高一星级卡片,一张高星级卡片可以分解成另两种低一星级的卡片各一张(比如:三个一星曹操可以合成一个二星曹操,一个三星曹操可以分解为一个二星孙权和一个二星刘备).已知小聪可以购买的卡片只有一星卡片,武将随机.那么小聪至少一次性购买_________张卡片,才能保证自己可以通过合成或者分解获得互不相同的三张三星卡片.99.2000个学生排成一行,依次从左到右编号1~2000,然后从左到右按1、2报数,凡是报1的离开队伍,然后剩下的人再从左到右按1、2报数,重复进行,直到剩1人为止.那么最后剩余的人原来的编号是________.100.将1到16这16个数填入4×4的网格中,将一个数与相邻(相邻是指上、下、左、右,角上的数只有2个相邻的数)的数进行比较,如果最多只有1个数比它大,那么就称这个数是“欢乐数”.1到16这16个数中最多有________个“欢乐数”.2023希望数学——5年级培训100题答案1. 计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7) = ________.答案:182. 计算:0.8750.8+0.750.4+0.50.2 =________.答案:1.13. 计算:3.5634.50.73569.1535.6 1.96256 =________.答案:1964. 计算: 0.10.30.50.20150.20.40.60.2014 ________.答案:1.45085. 比较A 、B 、C 三个数的大小_____<_____<_____.147118369120A ; 3691204710121B ; 111C .答案:A < C < B6. 对于任意两个自然数a 和b ,如果规定a @b =a ×b +a +1,那么41@99=________.答案:41017. 规定:a △b =(b – 0.2a )(a – 0.2b ),a □b =ab – a +b ,则5△(4□3) =________.答案:288. 定义:[]a 表示不超过数a 的最大整数,如[0.1]0 ,[8.23]8 ,则57997993579597= ________. 答案:489. 小马虎在计算一道有余数的除法算式时,把被除数247错写成了427.这样商比原来大了6,而余数正好相同.那么这个算式的除数是________.答案:3010. 小明将20.08乘以一个数,误写成20.08乘以一个数,结果与正确答案正好相差20.08,则正确答案是________.答案:45380.811. 在横线上填写一个自然数,使下面的等式成立:2 + 0.6 + 0.06 + 0.006 + …… = 48 ÷ ________.答案:1812. 已知A – B = 1.981,但小华因没看到A 和B 中的小数点,得到“A – B = 4087”,则A = ________.答案:4.32113. a 除以7的商的小数点后面第2021个数字是2,则a 是________.(a 为小于7的自然数)答案:414. 11111111112345678910 的结果的小数点后第2012位的数字是________.答案:515. 在一列数:1357,,,3579……中,从哪一个数开始,1与每个数之差都小于11000? 答案:1999200116. 已知1+2+3+ …… + n 的和的个位数字为3,十位数字为0,百位数字不为0,n 的最小值是________.答案:3717. 从1开始的n 个连续的自然数,从中去掉最大的3个数,若剩下的自然数的平均数是30,则n =________.答案:6218. 在下式中A 、B 、C 、D 、E 、F 代表1~9中的不同数字,那么ABCDEF =________.AB CC DEE C C F F答案:78614219. 下面的乘法竖式谜中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数云雾花开是________.答案:865020. 图中的除法竖式中,商是一个循环小数,那么被除数可能是多少?答案:19,2621. 若两个不同的数字A 、B 满足3(70.6)AAB B,则A +B =________.答案:622. 在三位数abc 中,2b +c =12,一定能整除这个三位数的最大自然数是________.答案:423. 四名学生做加法练习:任写一个六位数,把它的个位数字(不等于0)移到这个数最左边得到一个新的六位数,然后与原六位数相加.他们的得数分别是172535,568741,620708,845267,其中只有一名同学做对了,他的得数是________.答案:62070824. 互为反序数的两个自然数的积是92565,这两个互为反序数的自然数的和是________.(注:把一个数的数码倒过来写,所得的新数叫做原数的反序数,如123的反序数为321)答案:72625. 一个七位数,能被3、5、7、11、13整除,且各位数字互不相同,这个七位数最大是________.答案:7402395□是24的倍数,这样的四位数有________个.26.四位数548答案:127.某个自然数除以2 余1,除以3 余2,除以4 余1,除以5 也余1,则这个数最小是________.答案:4128.2012201220122012的计算结果除以10的余数是________.1232013答案:129.三个不同质数的平方之和是9438,这三个质数分别是多少?答案:2,5,9730.一条道路由甲村经乙村到丙村.甲乙两村相距450米,乙丙两村相距630米.现在准备在路边栽树,要求相邻两棵树之间的距离相等,并且在甲乙两村中点和乙丙两村中点都要栽树.那么相邻两棵树之间的距离最多是________米.答案:4531.一个偶数恰有12个因数不是3的倍数,恰有15个因数不是5的倍数,这个数是________.答案:4050032.要使下面算式的乘积的最后四个数字都是0,小括号中最小应填________.975×935×972×()答案:2033.5×6×7×…×2014×2015的末尾有_______个连续的零.答案:50234.360与一个三位数的乘积是完全平方数,这个三位数最小是_________.答案:16035.已知a与b的最大公因数是4,a与c、b与c的最小公倍数都是100,而且a ≤ b.满足条件的自然数a、b、c共有________组.答案:936.已知两个自然数的乘积是2016,这两个数的最小公倍数是168,那么这两个数的最大公因数是_________.答案:1237.四位数ABBA的所有因数中,有3个是质数,其它39个不是质数,那么四位数BAAB有________个因数.答案:1238.算式125×125=16324是在________进制下的正确算式.答案:七39.老师写了一个三位数给甲、乙、丙、丁、戊五个同学看.甲说:这个数是27的倍数;乙说:这个数是11的倍数;丙说:这个数的数字之和为15;丁说:这个数是个平方数;戊说:它是648000的因数.老师说:他们中间只有三个人说真话.那么这个数是________.答案:32440.用3、4、5、7、9这5个数字组成两个各位数字不同的五位数,若这两个五位数的差是12555,则这两个数中较大的一个是_________.答案:5793441.在一种数学游戏中,主持人要求某参赛者想好一个三位数abc,然后,主持人要求他记下5个数acb,bca,bac,cba,cab,并把这5个数加起来求出和N.只要参赛者讲出N的大小,主持人就能说出原数abc是什么.如果N=2743,那么abc=_________.答案:36542.如图,从长方形纸片上裁掉正方形ABCD和正方形CEFG,其中正方形ABCD的面积是1369,则余下的长方形纸片DGFH的周长是________.答案:7443.如图,已知正方形ABCD的边长为10,E为AD中点,F为CE中点,G为BF中点,则△BDG的面积是________.答案:6.2544.图中正六边形的面积是54,AP=2PF,CQ=2BQ.阴影部分的面积是________.答案:3145.如图,正方形中A1、A2、A3、A4为各边中点,B1、B2、B3、B4、C1、C2、C3、C4为各边三等分点,已知正方形的边长是6,那么阴影部分的面积是________.答案:21.646.下图中的阴影部分的面积是_________.答案:12047.把一个正方形四个方向分别往外增加1厘米、2厘米、3厘米和4厘米,结果面积增加了74平方厘米,那么原正方形的面积为________平方厘米.答案:2548.如图,若阴影部分的面积为53,则外侧的正方形的面积为________.答案:10049.如图,在平行四边形ABCD中,点M在对角线AC上,BM延长线交AD于点F.若△ABM的面积是3,△BCM的面积是5.则△BCF的面积是_______.答案:850.下图的大长方形是由6个正方形拼成的,已知最小的正方形的面积是4平方厘米,大长方形的面积是________平方厘米.答案:57251.如图,直角△ABC中,∠C=90 °,DE和BC平行,F是BC上一点,已知AD=2,BF=5,则阴影部分的面积是_________.答案:552.如图,大、小两个正方形的周长和是128厘米,大正方形比小正方形的面积大128平方厘米,小正方形面积是________平方厘米.答案:19653.如图,F是长方形ABCD的边BC上的一点,BM=MF,AF与对角线BD交于点O,DF与CO交于点N.△OND的面积是70平方厘米,△OMF的面积是25平方厘米.△NFC的面积是________平方厘米.答案:2054.D是三角形ABC一边上的中点,两个长方形分别以B、D为顶点,并且有一个公共顶点E,已知上、下两块阴影部分的面积分别是150平方厘米和180平方厘米,则三角形BDE的面积是________平方厘米.答案:1555.如图,ABCD是一张正方形纸片,将纸片沿着CE对折,点D被折到点G的位置,再沿着CF对折纸片,将点B折到点G的位置.如果DE=18,BF=6,那么△AEF的面积是_________.答案:10856.四个正方形如图摆放,如果较小的两个正方形面积分别为15和60,那么较大的两个正方形面积差为__________.答案:2757.一个正方体的木块,各个面上分别写着1,2,3,4,5,6,并且相对面上的两个数字的和是7,将这个木块按如图所示箭头方向翻转,当翻到最后一格时,木块上方的数字是________.答案:458.地面上放置着一个由若干个小正方体搭成的立体图形,且三视图如下图所示,则这个立体图形中共有________个小正方体.答案:959.如图,一个棱长为6厘米的大正方体,从前向后打穿一个“L”形方洞.挖洞后剩余部分的表面积是________平方厘米.(单位:厘米)答案:25860.如图,在空的长方体容器内放入一个圆柱体铁块,然后往容器中灌水.5分钟时水面恰好与圆柱体的顶面相平,再过12分钟水灌满容器.已知长方体容器的高是50厘米,圆柱体铁块的高是20厘米,则长方体容器的底面积是圆柱体铁块底面积的________倍.8答案:361.一堆模具中长方形模具的数量是圆形模具的2倍,现要将它们装箱出售,每24个长方形模具和9个圆形模具合装一箱,如此装了若干箱后,长方形模具还剩8个,圆形模具还剩37个.这堆模具中,有长方形模具________个.答案:27262.一片牧场,每天草生长的速度相同.这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4只羊的吃草量相当于1头牛的吃草量.那么17头牛和20只羊一起吃这片牧场上的草,可以吃_________天.答案:10。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
五年级数学培优:基本行程问题(含解析)

五年级数学培优:基本行程问题(含解析)知识概述一、相遇问题:1.相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和;② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间.2.相遇问题基本数量关系:相遇时间=路程和÷速度和二、追及问题:1.追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差;② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间.2.追及问题基本数量关系:追及时间=路程差÷速度差三、火车过桥问题:3.火车通过大桥是指从车头上桥到车尾离桥.即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和.四、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题.流水问题还有两个特殊的速度,即顺水速度=船速+水速逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度.水速是指水流的速度.顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度.历届杯赛考试中,行程问题是最大的难点之一,一般情况下每次比赛都会出现多次.行程问题首先考察学生对于题目的理解以及分析能力,其次考察学生转化题意变成数学语言的能力.并且行程问题的形式非常多样化,对于这类题目需要针对不同题型,具体问题具体分析.名师点题例1(第四届希望杯一试试题)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后________秒相遇.【解析】原速度和:1500÷10=150(米/分)相遇时间:1500÷【150×(1+20%)】×60=500(秒)例2(第五届小机灵杯邀请赛试题)在同一高速公路上,乙车在甲车前面若干千米同向行驶,如果甲车的速度是65千米/时,它5小时可追上乙车;如果甲车的速度是75千米/时,它3小时可追上乙车.乙车的速度是()千米/时.【解析】解:设乙车的速度是x千米/时,依题意得5(65-x)=3(75-x)2x=100x=50答:乙车的速度是50千米/时.例3一列火车通过小明身边用了10秒钟,通过一座长486米的铁桥用了37秒,问这列火车多长?【解析】通过小明身边,可以看成火车通过它自己的身长所用的时间;过桥的时候,可以看成火车通过自己车长和桥一并所用的时间.486÷(37-10)=18(米/秒)18×10=180(米)答:这列火车长180米.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【解析】顺水速:208÷8=26(千米/时)逆水速:208÷13=16(千米/时)静水速:(26+16)÷2=21(千米/时)水流速度:(26-16)÷2=5(千米/时)答:船在静水中的速度是21千米/时,水流速度是5千米/时.【巩固拓展】1.甲、乙两人分别从A、B 两地同时出发,相向而行.如果两人都按照原定速度行进,3小时可以相遇.现在甲比原计划每小时少走1千米,乙比原计划每小时少走0.5千米,结果两人用了4小时相遇. AB两地相距()千米.【解析】3×(1+0.5)÷(4-3)=4.5(千米/时)4.5×4=18(千米)答:AB两地相距18千米.2.早晨,小王骑车从甲地出发去乙地.中午12点,小李开车也从甲地出发前往乙地.下午1点30分时两人之间的距离是18千米,下午2点30分时两人之间的距离又是18千米.下午4点时小李到达乙地,晚上6点时小王到达乙地.小王是早晨()点出发的.【解析】速度差:(18+18)÷1=36(千米)小王速度:(36×1.5+36)÷(6-4)=45(千米/时)(18+36×1.5)÷45=1.6(小时)小王比小李提前出发1.6小时,所以小王是10点24分出发的.答:小王是早晨10点24分出发的.例43.一列火车通过一座长456米的巧需要80秒,用同样的速度通过一条长399米的隧道需要77秒.求这列火车的速度和长度.【解析】(456-399)÷(80-77)=19(米/秒)19×80-456=1064(米)答:火车的速度是每秒19米,火车的长度是1064米.4.甲、乙两港相距360千米,一轮船往返两港共需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【解析】逆流时间:(35+5)÷2=20(小时)顺流时间:(35-5)÷2=15(小时)顺水速度:360÷15=24(千米/时)逆水速度:360÷20=18(千米/时)水速:(24-18)÷2=3(千米/时)往返时间:360÷(12+3)+360÷(12-3)=64(小时)答:这机帆船往返两港要64小时.例1(第六届小机灵杯邀请赛试题)甲乙两人的步行速度之比是5:3,两人分别从A、B两地同时出发,如果相向而行,1小时后相遇;如果分别从A、B两地同向而行,甲需要()小时才能追上乙.【解析】设甲车的速度是5a,乙车的速度是3a,则AB距离是(5a+3a)×1=8a,追及时间是,8a÷(5a-3a)=4(小时)例2(第四届希望杯二试试题)甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米.甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇.A、B两地相距______米.【解析】甲乙相遇时,甲比乙行驶的时间少了30分钟,但行驶的路程多80×15×2=2400(千米).如果甲行驶的时间和乙一样多,则甲比乙多行驶:2400+80×30=4800(千米).乙行驶时间是:4800÷(80-60)=240(分钟)A、B两地距离是:80×(240-15-30)=15600(米)【巩固拓展】(第六届希望杯一试试题)北京、天津相距140千米,客车和货车同时从北京出发驶向天津.客车每小时行70干米,货车每小时行50千米,客车到达天津后停留15分钟,又以原速度返回北京.则两车首次相遇的地点距离北京______千米.(结果保留整数)【解析】首次相遇时,两车一共行驶了2×140=280千米,货车比客车多行驶了15分钟,货车行驶的时间是:(280+70×0.25)÷(50+70)货车行驶的路程是:(280+70×0.25)÷(50+70)×50≈124(千米)即两车首次相遇的地点距离北京124千米.(第九届中环杯初赛试题)A 、B 两地相距27 千米.甲、丙两人从A 地向B 地行走,乙从B 地向A 地行走.甲每小时行4 千米,乙每小时行3千米,丙每小时行2 千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得4x+3x+(4x-2x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.例3【巩固拓展】(第十届中环杯初赛试题)A、B两地相距1600米,甲、乙两人分别以每分钟140米和120米的速度同时从A地出发,前往B地.同时,丙以每分钟160米的速度从B地出发,前往A地.()分钟后,甲恰好位于乙丙两人的中间.【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得140x+160x+(140x-120x)=1600320x=1600x=5答:5分钟后,甲恰好位于乙丙两人的中间.(第六届中环杯复赛试题)一列客车以每小时90千米的速度从南往北行驶,车上一位乘客以每秒钟1米的速度向车尾行走.一列长156米的货车从北往南行驶,4秒钟后从乘客身边驶过.货车每小时行驶()千米.【解析】90千米/时=25米/秒156÷4-(25-1)=15(米/秒)15米/秒=54千米/时【巩固拓展】(第五届中环杯复赛试题)铁路与公路平行,公路上有一个人在行走,速度是每小时4千米.一列火车追上并超过这个人用了6秒;公路上还有一辆汽车行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度是每小时多少千米?火车的长度为多少米?例4【解析】火车追上并超过人的过程中,火车6秒行驶了“火车长+人6秒行驶的路程”,火车追上并超过汽车的过程中,火车48秒行驶了“火车长+汽车48秒行驶的路程”,所以火车42秒行驶的路程是:汽车48秒行驶的路程减去人6秒行驶的路程.火车速度:(67÷3600×48-4÷3600×6)÷(48-6)×3600=76(千米/时)火车长度:76×1000÷3600×6-4×1000÷3600×6=120(米)答:火车速度是每小时76千米,火车的长度为120米.(第六届中环杯复赛试题)一艘客船在两个码头之间航行,顺水5小时行完全程,逆水7小时行完全程.水速每小时5千米,两个码头之间的距离是()千米.【解析】解:设客船静水的速度是x千米/时,依题意得5(x+5)=7(x-5)2x=60x=30(30+5)×5=175(千米)答:两个码头之间的距离是175千米.【巩固拓展】(第八届希望杯一试试题)一艘客轮在静水中的航行速度是26千米/时,往返于A、B两港之间,河水的流速是6千米/时.如果客轮在河中往返4趟共用13小时,那么A、B两港之间相距______千米.(客轮掉头时间不计)【解析】解:客轮往返一趟时间是13÷4=3.25(小时)设客轮顺水行完AB全程需要x小时,依题意得(26+6)x=(26-6)(3.25-x)52x=65x=1.25例51.25×(26+6)=40(千米)答:A、B两港之间相距40千米.例1(第五届希望杯一试试题)李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的______倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)【解析】早到的5分钟路程就是李经理家到相遇点路程的2倍,,所以相遇点到李经理家的路程开车只要2.5分,所以相遇时间为7点27分30秒开车2.5分的路程李经理走了27.5分,所以车速是步行速度的27.5÷2.5=11倍.例2(第九届中环杯初赛试题)甲、乙两人从A 、B 两地同时出发相向而行,甲每分钟行70 米,乙每分钟行50 米.出发一段时间后,两人在距中点100米处相遇.如果甲出发后在途中某地停留了一会儿,两人还将在距中点250米处相遇.那么甲在途中停留了_________分钟.【解析】第1次相遇:相遇时甲比乙多行了100×2=200(米)相遇时间:200÷(70-50)=10(分钟)A、B距离:(70+50)×10=1200(米)第2次相遇:相遇时乙比多甲行了250×2=500(米)乙和甲一共行了1200米,乙行的路程:(1200+500)÷2=850(米)甲行的路程:1200-850=350(米)850÷50-350÷70=12(分钟)答:甲在途中停留了12分钟.(第五届希望杯一试试题)A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分.如果甲、乙从A地,丙从B地同时出发相向而行,那么,在______分钟或______分钟后,丙与乙的距离是丙与甲的距离的2倍.【解析】第一种情况:丙处于甲乙之间,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(203-4x-5x)=6x+5x-20329x=609x=2121分钟后,丙与乙的距离是丙与甲的距离的2倍.第二种情况:丙处于甲的左侧,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(4x+5x-203)=6x+5x-2037x=203x=2929分钟后,丙与乙的距离是丙与甲的距离的2倍.综上所述,在21分钟或29分钟后,丙与乙的距离是丙与甲的距离的2倍.例3一艘游艇装满油,能够航行180个小时,已知游艇在静水中的速度为每小时24千米,水速为每小时4千米,现在要求这艘游艇开出之后沿原路回港,而且途中没有油料补给,请问:这艘游艇最多能够开出多远?【解析】解:设这艘游艇能够开出最远的距离,顺水航行需要x小时,依题意得(24+4)x=(24-4)×(180-x)48x=3600x=75(24+4)×75=2100(千米)答:艘游艇最多能够开出2100千米.一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时.求水流的速度.【解析】第一次:顺流140千米,逆流80千米,15小时;第二次:顺流60千米,逆流120千米,15小时;等量代换,可知顺流80千米时间=逆流40千米时间.即顺流速度是逆流速度的2倍.由第1次,顺流140千米,逆流80千米,15小时可知,若全顺流可行140+80×2=300(千米),由此顺流速度:300÷15=20(千米/时),逆流速度:20÷2=10(千米/时)水流的速度:(20-10)÷2=5(千米/时)【练习1】甲乙两地方相距14850米,自行车队8点整从甲地出发到乙地去,前一半时间的平均速度是每分钟250米,后一半时间的平均速度是每分钟200米.那么,自行车队到达乙地的时间是()点()分.【解析】解:14850÷(250+200)×2=66(分)到达时间是9点6分.【练习2】甲乙两车同时同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米.途中甲车停车3小时,结果甲车比乙车迟到1小时到达目的地.那么,两地的距离是()千米.【解析】解:设乙行完全程要x小时,甲行完全程要(x-3+1)小时,根据题意列方程,得:40(x-3+1)=35x5x=80x=16两地距离:35×16=560(千米)【练习3】一艘轮船从A地出发去B地为顺流,需10小时.从B地返回A地为逆流,需15小时.水流速度为每小时10千米.那么A、B两地间的航程有()千米.【解析】逆水速:(10×2)×10÷(15-10)=40(千米/时)40×15=600(千米)答:A、B两地间的航程有600千米.【练习4】沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船的速度为每小时15千米,那么乙船往返两城市需要___________小时.【解析】甲顺水时间:(35+5)÷2=20(小时)甲逆水时间:35-20=15(小时)水速:(600÷15-600÷20)÷2=5(千米/时)乙顺水速:15+5=20(千米/时),乙逆水速:15-5=10(千米/时)600÷20+600÷10=90(小时)答:乙船往返两城市需要90小时.【练习5】小明站在一条直行的铁道旁,从远处向小明驶来的火车拉响汽笛,过了一会儿,小明听见了汽笛声,再过27秒,火车行驶到他面前.已知火车的速度是34米/秒,音速是340米/秒,那么火车拉响汽笛时距离小明多少米远?【解析】行驶同样多的路程——火车拉响汽笛时和小明的距离,火车需要的时间比声音需要的时间多27秒.声音需要的时间:34×27÷(340-34)=3(秒)3×340=1020(米)(本题亦可用方程求解,设火车拉响汽笛到小明听到汽笛需要x秒.)答:火车拉响汽笛时距离小明1020米远.【练习6】某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河流中顺流航行12千米;逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的()倍.【解析】顺流航行21-12=9千米的时间和逆流航行7-4=3千米的时间相同,9÷3=3顺水船速是逆水船速的3倍.【练习7】A、B两地相距27千米.甲、丙两人从A地向B地行走,乙从B向A地行走.甲每小时行4千米,乙每小时行3.5千米,丙每小时行2.5千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设甲用x小时走到乙丙两人相距的中点,依题意得:4x+3.5x+(4x-2.5x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.【练习8】一架飞机所带的燃料最多可以用9小时,飞机顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,这架飞机最多飞出_________千米,就需往回飞?【解析】解:设这架飞机最多飞出的距离,顺风航行需要x小时,依题意得1500x=1200×(9-x)2700x=10800x=41500×4=6000(千米)答:这架飞机最多飞出6000千米,就需往回飞.。
小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]
]](https://img.taocdn.com/s3/m/f473ed0e0912a21614792942.png)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯”全国数学邀请赛考查内容提要

“希望杯”全国数学邀请赛考查内容提要加入时间:2008-9-8 9:33:52点击:25637(一)小学四年级1.整数的四则运算,运算定律,简便计算,等差数列求和。
2.基本图形,图形的拼组(分、合、移、补),图形的变换,折叠与展开。
3.角的概念和度量,长方形、正方形的周长和面积,平行四边形、梯形的概念和周长计算。
4.整除概念,数的整除特征,带余除法,平均数。
5.小数意义和性质,分数的初步认识(不要求运算)。
6.应用题(植树问题、年龄问题、鸡兔同笼、盈亏问题、行程问题)。
7.几何计数(数图形),找规律,归纳,统计,可能性。
8.数谜,分析推理能力,数位,十进制表示法。
9.生活数学(钟表,时间,人民币,位置与方向,长度、质量的单位)。
(二)小学五年级1.小数的四则运算,巧算与估算,小数近似,小数与分数的互换。
2.因数与倍数,质数与合数,奇偶性的应用,数与数位。
3.三角形、平行四边形、梯形、多边形的面积。
4.长方体和正方体的表面积、体积,三视图,图形的变换(旋转、翻转)。
5.简易方程。
6.应用题(还原问题、鸡兔同笼、盈亏问题、行程问题等),生活数学。
7.包含与排除,分析推理能力,加法原理、乘法原理。
8.几何计数,找规律,归纳,统计,可能性。
(三)小学六年级1.分数的意义和性质,四则运算,巧算与估算。
2.百分数,百分率。
3.比和比例。
4.计数问题,找规律,统计图表,可能性。
5.圆的周长和面积,圆柱与圆锥。
6.抽屉原理的简单应用。
7.应用题(行程问题、工程问题、牛吃草问题、钟表问题等)。
8.统筹问题,最值问题,逻辑推理。
(四)初中一年级1.有理数的加、减、乘、除、乘方、正数和负数、数轴、绝对值、近似数的有效数字2.一元一次方程、二元一次方程的整数解3.直线、射线、线段、角的度量、角的比较与运算、余角、补角、对顶角;相交线、平行线4.三角形的边(角)关系、三角形的内角和5.用字母表示数、合并同类项、去括号、代数式求值、探索规律、整式的加减6.统计表、条形统计图和扇形统计图、抽样调查、数据的收集与整理7.展开与折叠、展开图8.可能还是确定、可能性、概率的基本概念、简单逻辑推理9.整式的运算(主要是整式的加减乘运算,乘法公式的正用逆用)10.数论最初步、高斯记号、应用问题11.三视图(北师大)、平面直角坐标系(人教)、坐标方法的简单应用(五)初中二年级1.平方根、立方根、实数2.整式的加减乘除、乘法公式、提取公因式法、因式分解的简单应用3.二元一次方程组4.平面直角坐标系、一次函数、反比例函数5.一元一次不等式(组)6.勾股定理7. 轴对称,中心对称8.全等三角形9.多边形及其内角和、镶嵌10.统计图的选择、抽样调查、平均数、中位数与众数11.分式加减乘除、整数指数幂、分式方程12.平移、旋转13.逻辑问题、概率问题、数论初步、应用问题14.平行四边形的性质、判别,菱形、矩形、正方形、梯形的概念、计算(六)高中一年级1.指数、对数函数(概念、性质、应用)2.集合、映射、函数(指、对、幂)3.充要条件4.等差、等比数列5.一元二次不等式和二次函数6.三角(不包含反三角函数、三角方程)7.整除、同余8.不定方程9.平面向量10.立体几何11.直线与圆12.算法初步13.逻辑问题14.实际问题(七)高中二年级1.三角2.立体几何3.解析几何4.矢量应用5.统计、概率6.不等式7.逻辑问题8.实际问题第二十二届“希望杯”全国数学邀请赛章程加入时间:2010-8-31 17:42:05点击:5488特别通告: 1.自2010年起,台湾已参加本邀请赛。
全国小学五年级“希望杯”奥数试题解析(邀请赛第二试)

希望杯5年级2试一、填空题(每题5分,共计60分)(2010年第8届希望杯5年级2试第1题,5分)计算:587÷26.8×19×2.68÷58.7×1.9=( )。
【分析】58726.819 2.6858.7 1.9÷⨯⨯÷⨯58719 2.68 1.926.858.719 1.936.1⨯⨯⨯=⨯=⨯=(2010年第8届希望杯5年级2试第2题)在下面两个小数的小数部分数字的上方加上表示循环节的一个或两个点,使不等式成立。
0.285〈27〈0.285 【分析】由于20.2857147=,因此有两种答案:20.2850.2857<<或20.2850.2857<<(2010年第8届希望杯5年级2试第3题)3、如图,在长500米、宽300米的长方形广场的外围,每隔2.5米摆放一盆花,现要改为每隔2米摆放一盆花,并且广场的4个顶点处的花盆不动,则需增加___盆花;在重新摆放花盆时,共有___盆花不用挪动。
【分析】封闭图形上的植树问题,棵树与间隔数相等。
由于周长为(500300)21600+⨯=米,从而原先的摆了1600 2.5640÷=盆,后来摆了16002800÷= 盆, 需要增加800640160-=盆。
2与2.5的最小公倍数为10,因此不需要移动的有160010160÷=盆。
(2010年第8届希望杯5年级2试第4题)4、一只蚂蚁站在1号位置上,它第1次跳1步,到达2号位置;第2次跳2步,到达4号位置;第3次跳3步,到达1号位置…..第n 次跳n 步,当蚂蚱沿着顺时针跳了100次时,到达___号位置。
654321分析:共跳了123...1005050++++=次,每6次跳回原地,50506841...4÷=,因此相当于跳了4次 从1开始跳4次到达5号位置。
(2010年第8届希望杯5年级2试第5题)5、5年级的平均身高是149厘米,女生的平均身高是144厘米,全班同学的平均身高是147厘米,则五年级的男生人数是女生人数的__倍。
希望杯五年级奥数试卷【含答案】

希望杯五年级奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 32答案:D3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A4. 一个正方形的边长是4厘米,那么它的面积是多少平方厘米?A. 8B. 16C. 32D. 64答案:B5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 所有的等差数列都是递增的。
(错误)3. 两个奇数相加的和是偶数。
(正确)4. 任何数乘以0都等于0。
(正确)5. 所有的质数都是奇数。
(错误)三、填空题(每题1分,共5分)1. 1+2+3++100的和是______。
(5050)2. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
(5)3. 两个质数相乘得到的数是______数。
(合)4. 一个数的因数个数是______。
(有限的)5. 0的阶乘是______。
(1)四、简答题(每题2分,共10分)1. 请列举出前5个质数。
答案:2,3,5,7,112. 请写出等差数列的通项公式。
答案:an = a1 + (n 1)d3. 请解释什么是偶数。
答案:偶数是能被2整除的整数。
4. 请解释什么是因数。
答案:因数是能整除一个数的数。
5. 请解释什么是等边三角形。
答案:等边三角形是三边长度相等的三角形。
五、应用题(每题2分,共10分)1. 一个数列的前三项分别是2,4,6,那么第10项是多少?答案:第10项是20。
2. 一个正方形的边长是6厘米,那么它的面积是多少平方厘米?答案:36平方厘米。
3. 请列举出10以内的所有质数。
答案:2,3,5,7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四届希望杯数学竞赛五年级二试试题及答案2010-12-25 10:32:13| 分类:希望杯真题题库 | 标签:null |举报|字号订阅第四届小学"希望杯''全国数学邀请赛五年级第2试2006年4月16日上午8:30至10:00 得分_________一、填空题(每小题4分,共60分。
)1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=___________________。
2.一个数的等于的6倍,则这个数是____________________。
3.循环小数0.123456789的小数点后第2006位上的数字是__________________。
4."△"是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如:5△7=5×c+7×d。
如果1△2=5,1△3=7,那么6△1000的计算结果是________________。
5.设a=,b=,c=,d=,则a,b,c,d这四个数中,最大的是___________,最小的是_________________。
6.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重____________千克。
7.从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。
8.如果a,b均为质数,且3a+7b=41,则a+b=________________。
9.数一数,图1中有_________________个三角形。
10.如图2,三个图形的周长相等,则a:b:c=____________________-。
11.如图3,点D、E、F在线段CG上,已知CD=2厘米,DE=8厘米,EF=20厘米,FG=4厘米,AB将整个图形分成上下两部分,下边部分面积是67平方厘米,上边部分面积是166平方厘米,则三角形ADG的面积是__________________平方厘米。
12.甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米。
甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇。
A、B两地相距_____________米。
13.磁悬浮列车的能耗很低。
它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________________倍。
14.有红球和绿球若干个,如果按每组1个红球2个绿球分组,绿球恰好够用,但剩5个红球;如果按每组3个红球5个绿球分组,红球恰好够用,但剩5个绿球,则红球和绿球共有_________________________个。
15.A、B、C、D四位同学看演出,他们同坐一排且相邻,座号从东到西依次是1号、2号、3号、4号。
散场后他们遇到小明,小明问:你们分别坐在几号座位。
D说:B坐在C的旁边,A坐在B的西边。
这时B说:D全说错了,我坐在3号座位。
假设B的说法正确,那么4号座位上坐的是____________________________。
二、解答题(每小题10分,共40分。
) 要求:写出推算过程。
16.假设有一种计算器,它由A、B、C、D四种装置组成,将一个数输入一种装置后会自动输出另一个数。
各装置的运算程序如下:装置A:将输入的数加上6之后输出;装置B:将输入的数除以2之后输出;装置C:将输入的数减去5之后输出;装置D:将输入的数乘以3之后输出。
这些装置可以连接,如在装置A后连接装置B,就记作:A→B。
例如:输人1后,经过A→B,输出3.5。
(1)若经过A→B→C→D,输出120,则输入的数是多少?(2)若经过B→D→A→C,输出13,则输入的数是多少?17.如图4所示,长方形ABCD的长为25,宽为15。
四对平行线截长方形各边所得的线段的长已在图上标出,且横向的两组平行线都与BC平行。
求阴影部分的面积。
18.在如图5所示的圆圈中各填人一个自然数,使每条线段两端的两个数的差都不能被3整除。
请问这样的填法存在吗?如存在,请给出一种填法;如不存在,请说明理由。
19.40名学生参加义务植树活动,任务是:挖树坑,运树苗。
这40名学生可分为甲、乙、丙三类,每类学生的劳动效率如右表所示。
如果他们的任务是:挖树坑30个,运树苗不限,那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?第四届小学"希望杯"全国数学邀请赛五年级第2试解答一、填空题(每小题4分,共60分。
)1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=___________________。
解答:原式=(8.1+1.9)×1.3+(11.9-8)÷1.3=13+3=16。
2.一个数的等于的6倍,则这个数是____________________。
解答:6×÷=16。
3.循环小数0.123456789的小数点后第2006位上的数字是__________________。
解答:2006÷9=222……8,所以从小数部分的第一位开始向后数8位,就是所求,即8。
因此,第2006位上的数字是8。
4."△"是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如:5△7=5×c+7×d。
如果1△2=5,1△3=7,那么6△1000的计算结果是________________。
解答:1△2=1×c+2×d=5,即c+2×d=5;1△3=1×c+3×d=7,即c+3×d=7;由此可知d=2,c=1。
所以6△1000=6×c+1000×d=6×1+1000×2=2006。
5.设a=,b=,c=,d=,则a,b,c,d这四个数中,最大的是___________,最小的是_________________。
解答:a-1=-1=;b-1=-1=;1- c=1-=;1- d=1-=;由此可知,c<d<b<a.所以最大的是a,最小的是c。
6.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重____________千克。
解答:由题意可知,萝卜的四分之一等于20-15.6=4.4千克,萝卜重4.4÷=17.6千克,所以这个筐重20-17.6=2.4千克。
7.从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。
解答:第一问要用乘法原理,当分子有5种可能时,分母有4种可能,即5×4=20种,所以这样的分数有20个。
第二问中,分母为3的真分数有1个,分母为5的真分数有2个,分母为7的真分数有3个,分母为11的真分数有4个,所以真分数共有1+2+3+4=10个。
8.如果a,b均为质数,且3a+7b=41,则a+b=________________。
解答:因为41是奇数,只有奇数加偶数和才为奇数,且a,b均为质数,所以a,b中必有一个是2。
假设a=2,则b=(41-6)÷7=5。
所以a+b=7。
9.数一数,图1中有_________________个三角形。
解答:10个。
10.如图2,三个图形的周长相等,则a:b:c=____________________-。
解答:4 b+a=6a,也就是4 b=5 a,即a:b=4:5;6a=5c,即a:c=5:6;所以a:b:c=20:25:24。
11.如图3,点D、E、F在线段CG上,已知CD=2厘米,DE=8厘米,EF=20厘米,FG=4厘米,AB将整个图形分成上下两部分,下边部分面积是67平方厘米,上边部分面积是166平方厘米,则三角形ADG的面积是__________________平方厘米。
解答:由图可知,S△ADE与S△AGE的高相等,是S△ADG的高,故设S△ADG的高为h1;同理可得,S△BCG的高为h2.由此列式:S△ADE+S△BCE=67,S△AGE+S△BFE=166;带入面积公式可得:24×h1+20×h2=166×2,8×h1+10×h2=67×2;解得:h1=8。
所以,三角形ADG的面积是(8+20+4)×8÷2=128平方厘米。
12.甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米。
甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇。
A、B两地相距_____________米。
解答:设乙从出发到与甲相遇共行了x分钟,则甲行了(x-30-15)分钟。
60x+15×80=80×(x-30-15)60x+1200=80x-36004800=20xX=240所以A、B两地相距240×60+15×80=15600米。
13.磁悬浮列车的能耗很低。
它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________________倍。
解答:设磁悬浮列车的每个座位的平均能耗为1,则汽车的为1÷70%=,飞机的为÷=3,所以飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的3÷1=3倍。
14.有红球和绿球若干个,如果按每组1个红球2个绿球分组,绿球恰好够用,但剩5个红球;如果按每组3个红球5个绿球分组,红球恰好够用,但剩5个绿球,则红球和绿球共有_________________________个。
解答:设红球有a个,绿球有b个。
在第一种分法中,(a-5)÷1=b÷2;在第二种分法中,(b-5)÷5=a÷3。
解得:b=80,a=45.所以红球和绿球共有80+45=125个。
15.A、B、C、D四位同学看演出,他们同坐一排且相邻,座号从东到西依次是1号、2号、3号、4号。
散场后他们遇到小明,小明问:你们分别坐在几号座位。
D说:B坐在C的旁边,A坐在B的西边。
这时B说:D全说错了,我坐在3号座位。
假设B的说法正确,那么4号座位上坐的是____________________________。