第十三届小学“希望杯”全国数学邀请赛 五年级第2试试题及答案

合集下载

第十三届小学“希望杯”全国数学邀请赛-五年级第2试试题及答案

第十三届小学“希望杯”全国数学邀请赛-五年级第2试试题及答案

第十三届小学“希望杯”全国数学邀请赛五年级第2试试题一、填空题1、用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是__________.2. 有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=__________.3. 用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用)4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是__________分.5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有__________种.6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是 .7. 大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是__________.8. 从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.9、观察下表中的数的规律,可知第8行中,从左向右第5个数是__________.第1行 1第2行 2 3 4第3行 5 6 7 8 9第4行10 11 12 13 14 15 16第5行17 18 19 20 ………10. 如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换__________只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法)12. 将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是__________.二、解答题13. 甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14. 如图1,中有多少个三角形?15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边分别为8cm和5cm,乙直角三角形的两条直角边分别为6cm和2cm.求图中阴影部分的面积.16.有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.。

历届(9—13届)希望杯五年级答案及解析

历届(9—13届)希望杯五年级答案及解析

历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。

1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。

从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。

所以共有5 ×1 ×5 = 25种走法。

5、解:在3 ×4的长方形中有20个横平竖直的正方形。

斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。

共46个。

6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。

10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。

DE为60米,CE为40米。

SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。

11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。

第9-11届希望杯数学竞赛五年级二试试题含答案

第9-11届希望杯数学竞赛五年级二试试题含答案

第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。

2、 15+115+1115+……+1111111115=____________。

3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。

若用这个自然数除以 6,得余数____________。

4、数一数,图 1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在 1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。

7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。

8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。

9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。

这 24 块长方体木块的表面积的和是_____________平方米。

(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]

“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]

“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。

(每题6分,共72分。

) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。

2.8+88+888+…+88…8的和的个位上的数字是____________。

3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。

4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了____________名小朋友。

5.有这样一种算式:三个不同的自然数相乘,积是100。

这样的算式有____________种。

(交换因数位置的算同一种。

)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。

7.一天,小慧和刘老师一起谈心。

小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。

”刘老师今年的年龄是____________岁。

8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。

9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。

已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。

那么前3名同学的总分比后3名同学的总分多____________分。

10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。

2021年新希望杯五年级竞赛初赛数学试卷及分析答案.pdf

2021年新希望杯五年级竞赛初赛数学试卷及分析答案.pdf

(人教版三年级上册)《常考易错题专题卷》及《答案解析》数学海豚知道
一、选择题
1. 下列图形中,有4条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 三角形
答案:A. 正方形
2. 下列图形中,有5条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 五边形
答案:D. 五边形
3. 下列图形中,有6条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 六边形
答案:D. 六边形
4. 下列图形中,有8条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 八边形
答案:D. 八边形
5. 下列图形中,有9条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 九边形
答案:A. 正方形
二、填空题
6. 一个正方形的边长是4厘米,它的周长是()厘米。

A. 8
B. 16
C. 32
D. 64
答案:B. 16。

第9-11届希望杯数学竞赛五年级二试试题含答案

第9-11届希望杯数学竞赛五年级二试试题含答案

第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。

2、 15+115+1115+……+1111111115=____________。

3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。

若用这个自然数除以 6,得余数____________。

4、数一数,图 1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在 1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。

7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。

8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。

9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。

这 24 块长方体木块的表面积的和是_____________平方米。

(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

2021年第十三届希望杯五年级培训题100

2021年第十三届希望杯五年级培训题100

2021年第十三届希望杯五年级培训题1002021年第十三届希望杯五年级培训题1002021年第十三届小学“希望杯”全国数学邀请赛1、计算:0.685×5.6+3.4×0.685+0.6852、计算:2021-2021+2021-2021+……+3-2+13、计算:21×20.15+350×2.015+4.1×201.5+0.03×20214、计算:2021×20212021-2021×202120215、五个连续奇数的和是2021,求其中最大的奇数。

6、若将2021分解成5个自然数的和,则这5个数的积是“奇数”,“偶数”,还是“奇数或偶数”?7、若a是质数,b是合数,试写出一个合数(用a,b表示)。

8、1,3,8,23,229,2021的和是奇数还是偶数?9、有两个自然数,它们的最大公约数是14,最小公倍数是210,问:这样的自然数有多少组?10、由2,0,1,1可以组成多少个读法中只有一个“1”的两位小数?11、若10个不同整数的和为一个偶数,且偶数比奇数多,则偶数最少有多少个?12、根据表中的x,y的对应规律,求A的值。

13、10010÷99的余数是多少。

14、有四个数,其中的每一个数与另外三个数的平均数的和分别为19,90,20,15,求原来四个数的平均数。

15、20212021÷2021的余数是多少?16、有一列数3、4、2、8、……,从第三个数起,每个数都是它前面两个数的乘积的个位数字,求这列数的第150个数。

17、若四位数3a50能同时被2、3、5整除,则a有多少个不同的值?18、如果a,b都是质数,并且3a+7b=47,求a+b。

19、将2021人分成若干个组,要求任意两个组的人数都不相同,问:这些人至多可以分成20、规定:a△b=a×(a+b),求(2△3)△4。

a b4 2a b21、规定:ad bc,a b,求6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三届小学“希望杯”全国数学邀请赛
五年级第2试试题
一、填空题
1、用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是__________.
2. 有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=__________.
3. 用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用)
4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是__________分.
5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有__________种.
6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.
7. 大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是__________.
8. 从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.
9、观察下表中的数的规律,可知第8行中,从左向右第5个数是__________.
第1行 1
第2行 2 3 4
第3行 5 6 7 8 9
第4行10 11 12 13 14 15 16
第5行17 18 19 20 …
……
10. 如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换__________只鸡.
11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法)
12. 将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是__________.
二、解答题
13. 甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?
14. 如图1,中有多少个三角形?
15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边分别为8cm和5cm,乙直角三角形的两条直角边分别为6cm和2cm.求图中阴影部分的面积.
16.有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.。

相关文档
最新文档