常用复合材料陶瓷基30页PPT

合集下载

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。

法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

工制备艺浆体浸渍-热压法适用于长纤维。

首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干燥后进行烧结。

优点是加热温度较晶体陶瓷低,层板的堆垛次序可任意排列,纤维分布均匀,气孔率低,获得的强度较高。

缺点则是不能制造大尺寸的制品,所得制品的致密度较低,此外零件的形状不宜太复杂,基体材料必须是低熔点或低软化点陶瓷。

晶须与颗粒增韧陶瓷基复合材料的加工与制备晶须与颗粒的尺寸均很小,只是几何形状上有些区别,用它们进行增韧的陶瓷基复合材料的制造工艺是基本相同的。

基本上是采用粉末冶金方法。

制备工艺比长纤维复合材料简便很多。

所用设备也不复杂设备。

过程简单。

混合均匀,热压烧结即可制得高性能的复合材料制造工艺也可大致分为配料-成型-烧结-精加工等步骤。

直接氧化沉积法方法:将纤维预制体置于熔融金属上面,添加有镁、硅添加剂的熔融金属铝,在氧化气氛中,不断地浸渍预制体,在浸渍过程中,熔融金属或其蒸汽与气相氧化剂反应生成氧化物。

随着时间的延长,边浸渍边氧化,最终可制得纤维增强CMC。

优点:纤维几乎无损伤、纤维分布均匀、CMC性能优异,工艺简单、效率高成本低先驱体热解法方法:将单独合成的先驱体,通过加温调节其粘度,在高压-真空联合作用下使其浸入并充满多向纤维编织坯件的空隙,在高温下使先驱体热解。

复合材料课件第六章 陶瓷基复合材料-1

复合材料课件第六章 陶瓷基复合材料-1
抑制晶粒组织长大,获得超细晶粒结构材料, 显著改善材料的显微组织。
但在微波烧结陶瓷中存在一些值得关注的特殊 现象。
1)过热点。由于微波场的不均匀分布或 材料组分不均匀导致某些部分局部明显高于 其它部分,出现过热点。
2)热应力开裂。一些热膨胀系数大而热 导率又较小的陶瓷材料在微波降温段,由于 试样中存在的温度梯度而引起的热应力开裂。
1930年,美国科学家提出利用等离子体脉冲烧结原理 1965年,脉冲电流烧结技术在美国和日本等国得到应用 1988年,日本研制出第一台工业型等离子体烧结装置 1996年,日本组织了等离子体烧结研讨会,每年召开一次 1998年,瑞典购进等离子体烧结系统,对碳化物、氧化物及 生物陶瓷等进行较多研究工作 2006年6月武汉理工大学购置了国内首台等离子体烧结装置, 此后国内多所高校及研究所相继引进该装置,成为材料制备 的全新技术
微波烧结:微波烧结是一种新型的粉末 冶金烧结致密化工艺,微波烧结是利用 微波加热来对材料进行烧结。
微波加热中出现区别与常规加热的现象有促
进物质的扩散、加快致密化进程、降低反应
温度、加快反应进程。作为一种新型加热技 术具有以下优点:1)可经济地获得2000℃高 温;2)加热速度快,升温速率可达50℃/min; 3)具有即时性特点,只要有微波辐射,物料 即刻得到加热,微波停止加热也立刻停止;4) 微波能量转换率高,可达80~90;5)与常规 烧结相比烧结温度降低,同时快速升温可以
化学制粉 优点:高纯、超细、均匀 缺点:需复杂的设备,工艺严格,成本高
液相共沉淀法 溶胶-凝胶法 冰冻干燥法 喷雾干燥法
②成型
成型后,胚体的密度越高,烧结样品的收缩率越小, 尺寸约容易控制,缺陷约少。
模压成型 热压成型 轧膜成型 注射成型

第十四章--陶瓷基复合材料PPT课件

第十四章--陶瓷基复合材料PPT课件
制备方法:反应烧结、常压烧结、热压烧结等。
.
47
性能特点: 优异的高温强度,可保持到1600℃; 热传导能力高,仅次于氧化铍陶瓷; 抗磨损性高、摩擦系数低,良好的耐腐蚀
性,低热膨胀系数,适宜的力学性能。 缺点:断裂韧性较低且在任何温度下都很
脆。
.
53
14.3 增强体
1.纤维 2.晶须 3.颗粒
.
18
.
19
.
20
.
21
.
22
主要性能: 硬度很高,2000MPa,仅次于金刚石、氮化 硼、碳化硅 耐磨性好 耐腐蚀性强:由于铝氧之间键合力很大,氧化 铝又具有酸碱两重性。 电绝缘性好 抗热震性能差,不能承受环境温度的突然变化
.
23
2、氧化锆陶瓷
以氧化锆(ZrO2)为主要成分的陶瓷称为氧 化锆陶瓷。
.
54
碳纤维
1、碳纤维是指纤维中含碳量95%左右的碳纤维和含 碳量99%左右的石墨纤维。制造陶瓷基复合材料最 常用的纤维之一。
2、原料:
人造丝(粘胶纤维) 聚丙烯腈PAN(主要原料) 沥青
.
55
3、制造
热牵伸法
预氧化
碳化
.
石墨化
58
碳化
石墨化
.
59
.
60
4、性能特点
• 强度和模量高、密度小,和碳素材料一样具有很 好的耐酸性。
➢ 耐磨性,轴承、密封件和替代人骨(如髋关节)等 ➢ 低热传导性,汽车发动机中作活塞顶、缸盖底板
和汽缸内衬。 ➢ 氧化锆增韧氧化物陶瓷基体,制成韧性较基体材
料高的复合材料。 ➢ 氧化锆的韧性在所有陶瓷中是最高的。
.
30
二、氮化物陶瓷

复合材料概论精_第六章_陶瓷基复合材料ppt课件

复合材料概论精_第六章_陶瓷基复合材料ppt课件

• 延性(金属)颗粒:延性颗粒强化CMC的韧性 显著提高,但强度变化不明显,且高温性能下降。
• 高性能连续纤维:加入数量较多的高性能连续纤 维(如CF、SiC纤维)除韧性显著提高外,强 度和模量均有不同程度的提高。
表6-2 C纤维增韧Si3N4复合材料的性能
完整编辑ppt
7
表6-1 SiCw增韧氧化铝陶瓷性能
➢CMC的制备过程通常分为两个步骤: • 首先将增强材料掺入未固结的(或粉末
状的)基体材料中; • 使基体固结。
完整编辑ppt
13
6.3.1 连续纤维增强CMC成型工 艺
连续纤维增强CMC制备方法有料浆浸渍及 热压烧结法、化学气相沉积(CVD)法、直 接氧化沉积法、先驱体热解法等
1)料浆浸渍及热压烧结法:
晶须含量 弯曲强度
/vol% /MPa
0
250
10
500
20
550
30
600
维氏硬度HV /GPa 14.5 16.5 17.5 18.2
断裂韧性1K/2 IC /MPa·m 4.5 6 6.5 7
完整编辑ppt
8
表6-2 C纤维增韧Si3N4复合材料
的性能 材料
性能
Si3N4
C/Si3N4
密度
3.44
第六章 陶瓷基复合材料
• 现代陶瓷:具有耐高温、硬度高、耐磨 损、耐腐蚀及其相对密度低等优异的性 能。但它有致命的缺点即脆性。
• 陶瓷强韧化途径:颗粒弥散、纤维(晶 须)补强增韧、层状复合增韧、与金属 复合增韧及相变增韧。
• 陶瓷中加入适量的纤维(晶须)可明显 改善韧性,与高温合金相比密度低。
完整编辑ppt
• 优点:比常压烧结的烧结温度低,时间短, 致密度高;

陶瓷基复合材料 ppt课件

陶瓷基复合材料  ppt课件
陶瓷基复合材料
PPT课件
1
回顾一下:
陶瓷致命缺点:
脆性
改善韧性的有效手段:
向陶瓷材料中加入起增韧作用的第二相
增韧机制:
靠纤维(晶须)的拔出、裂纹的桥连与转向机 制对强度和韧性的提高产生作用。
PPT课件
2
10.3 陶瓷基复合材料的种类及基本性能
10.3.1 纤维增强陶瓷基复合材料
纤维增强陶瓷材料是常见的重要手段!! 按纤维排布方式的不同,可将其分为
裂纹垂直于纤维方向扩展示意图 PPT课件
5
当外加应力进一步提高时,由于基体与纤维间
的界面离解,同时又由于纤维的强度高于基体的强
度,从而使纤维从基体中拔出。 当拔出的长度达到某一临界值时,会使纤维发 生断裂。
裂纹垂直于纤维方向扩展示意图 PPT课件
6
因此,裂纹的扩展必须克服纤维的拔出功和
纤维断裂功,结果就是使得材料的断裂变得更为
困难,从而起到了增韧的作用。
单向排布纤维增韧陶瓷只是在纤维排列方向 上的轴向性能较为优越,而其横向性能显著低于 纵向性能,所以只适用于单轴应力的场合。
PPT课件
7
二、多向排布纤维增韧复合材料
而许多陶瓷构件则要求在二维及三维方向上 均具有优良的性能,这就要进一步的制备多向排 布纤维增韧陶瓷基复合材料。
莫来石+ Si3;SiCw
452
551~580
4.4
5.4~6.7
很明显,由ZrO2+SiCw与莫来石制得的复合材料要比 单独用SiCw与莫来石制得的复合材料的性能好得多。
PPT课件 32
10.4 陶瓷基复合材料的制备
陶瓷基复合材料的制造分为两个步骤:
第一步是将增强材料掺入未固结(或粉末状)的基

陶瓷基复合材料PPT课件

陶瓷基复合材料PPT课件
定的成果。
面临的挑战
高成本
陶瓷基复合材料的制备工 艺复杂,导致其成本较高, 限制了大规模应用。
性能稳定性
陶瓷基复合材料在复杂环 境下性能稳定性不足,易 受温度、湿度等外部因素 影响。
生产效率
目前陶瓷基复合材料的生 产效率相对较低,影响了 其推广和应用。
未来展望
降低成本
通过技术创新和规模化生产,降低陶瓷基复合材 料的成本,提高其市场竞争力。
制备工艺的优化
熔融浸渗法
压力辅助成型法
通过优化熔融浸渗工艺参数,如温度、 压力和时间,提高陶瓷基复合材料的 致密化程度和力学性能。
通过调整压力辅助成型的压力、温度 和时间等参数,提高复合材料的密度 和力学性能。
化学气相沉积法
优化化学气相沉积工艺参数,如反应 温度、气体流量和沉积时间,以获得 均匀、致密的陶瓷基复合材料。
04
陶瓷基复合材料的性能优化
增强相的选择与优化
增强相种类
选择合适的增强相是提高陶瓷基 复合材料性能的关键,常用的增 强相包括碳纤维、玻璃纤维、晶
须等。
增强相分散与分布
优化增强相在基体中的分散和分布, 确保其均匀分布,以提高复合材料 的整体性能。
增强相表面处理
通过表面处理技术改善增强相与基 体之间的界面结合力,提高复合材 料的力学性能。
陶瓷基复合材料的性能优化主要通过 添加增强相、调整基体组成和工艺参 数实现。
陶瓷基复合材料在高温、高强度、抗 氧化等极端环境下的应用前景广阔, 但需要解决其可靠性、寿命和成本等 问题。
对未来研究的建议
01
02
03
04
深入研究陶瓷基复合材料的微 观结构和性能之间的关系,为 材料设计和优化提供理论支持

《陶瓷基复合材》课件

《陶瓷基复合材》课件

2
陶瓷基复合材料的问题及挑战
陶瓷基复合材料在制备过程中存在工艺复杂、成本高等问题,需要进一步解决和 改进。
结论
陶瓷基复合材料的综合性能评价
综合考虑陶瓷基复合材料的力学性能、热学性能、耐久性等方面,可以评价其综合性能水平。
陶瓷基复合材料的发展前景
陶瓷基复合材料在高科技领域有着广阔的应用前景,将为科学技术的发展提供重要支持。
参考文献
1. 文献1 2. 文献2 3. 文献3
陶瓷基复合材料的组成包括陶瓷基体和增强材料,其结构形式可以是颗粒增强、 纤维增强等。
性能测试
1 陶瓷基复合材料的力学性能测试
力学性能测试包括强度、硬度、韧性等方面的评估,以确保陶瓷基复合材料的可靠性和 耐久性。
2 陶瓷基复合材料的热学性能测试
热学性能测试包括热导率、热膨胀系数等方面的评估,以确保陶瓷基复合材料在高温环 境下的稳定性。
应用案例
陶瓷基复合材料在航天领域的应用
陶瓷基复合材料在航天器结构、导航系统和热保护 层等方面发挥重要作用。
陶瓷基复合材料在医疗领域的应用
陶瓷基复合材料应用于仿生器官、骨修复、人工关 节等方面,为医疗技术的发展带来新的突破。
进一步研究
1
陶瓷基复合材料的未来发展趋势
随着科学技术的不断进步,陶瓷基复合材料将会在性能、制备技术等方面取得更 大突破。
陶瓷基复合材 PPT课件
研究陶瓷基复合材料是为了探索新型材料的结构与性能,本PPT课件将介绍陶 瓷基复合材料的概述、制备方法、性能测试、应用案例、未来发展趋势以及 参考文献。Leabharlann 概述什么是陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强物质组成的复合材料,具有优异的力学和热学 性能。

《陶瓷基体复合材料》课件

《陶瓷基体复合材料》课件

溶胶-凝胶法
总结词
通过溶胶-凝胶转变过程制备陶瓷材料的方法。
详细描述
溶胶-凝胶法是一种制备陶瓷材料的方法。它通过将前 驱体溶液(通常为金属醇盐或无机盐)与适当的溶剂 混合,形成均匀的溶胶,然后经过凝胶化过程形成凝 胶。在凝胶化过程中,前驱体分子间的相互作用导致 形成三维网络结构,最终经过干燥和热处理得到所需 的陶瓷材料。溶胶-凝胶法可以制备出高纯度、高均匀 性的陶瓷材料,但需要严格控制制备过程中的温度、 浓度等参数。
除污染物和杂质。
催化剂载体
陶瓷基体复合材料可作为催化剂 载体,用于废气处理和工业废水 处理等领域,能够有效降低污染
物排放和提高处理效率。
热能回收
陶瓷基体复合材料具有高热导率 和耐高温性能,可用于制造高效 热能回收装置,将工业余热转化 为可利用的能源,实现能源的循
环利用。
05
CATALOGUE
陶瓷基体复合材料的研究展望
界面优化
改善陶瓷基体与增强相之 间的界面结合强度,提高 复合材料的整体性能。
工艺参数优化
通过调整制备工艺参数, 如温度、压力、时间等, 优化陶瓷基体复合材料的 组织结构和性能。
应用领域的拓展
航空航天领域
利用陶瓷基体复合材料的高温性能和轻量化特点,拓展其在航空 航天领域的应用。
能源领域
利用陶瓷基体复合材料的优异热稳定性和耐腐蚀性,拓展其在能 源领域的应用,如燃气轮机、核反应堆等。
能源
用于制造燃气轮机叶片、核反 应堆的屏蔽层等。
化工
用于制造耐腐蚀、高温的管道 、反应器等。
陶瓷基体复合材料的发展历程
20世纪40年代
玻璃纤维增强陶瓷基复合材料的出现,主要 用于航空航天领域。
20世纪70年代
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档