新版精选2019年七年级下册数学期中模拟题库(含标准答案)

合集下载

2019-2020年七年级下学期期中考试数学试题 Word版含答案(II)

2019-2020年七年级下学期期中考试数学试题 Word版含答案(II)

xx 学年度宜兴市周铁学区期中考试试卷 2019-2020年七年级下学期期中考试数学试题 Word 版含答案(II) 一、选择题:(本大题共有10小题,每小题3分,共30分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x) 3÷(-3x)=9x 2D .(-ab 2) 2=-a 2b 42. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是 ( )A.八边形B.九边形C.十边形D.十二边形3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3) 2C .x 2+2x +1=x(x +2)+1D .-18x 4y 3=-6x 2y 2•3x 2y4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C . 60°D .72°5. 若x 、y 满足0)2(12=++++-y x y x ,则 ( )A .1B .2C .–1D .–26.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有… ( )A .1B .2C .3D .47. 如果a =(-xx) 0、b =(-110)-1、c =(-53)2,那么a 、b 、c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数 ( )A .88°B .92°C .98°D .112°9. 若a m =2,a n =3,则a 2m-n 的值是 ( )A .1B .12C .34D .4310.为求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S=2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+3+32+33+…+3xx 的值是( )A .3xx -1B . 3xx -1C .D .二、填空题:(本大题共8小题,每空2分,共18分.)(第4题) (第8题)(第6题)第16题 第15题11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示 米.12. 因式分解:m 2-16= ;2x 2-8xy +8y 2= .13.一个三角形的两边长分别为3 cm 、5 cm ,且第三边为偶数,则这个三角形的周长为______________ cm .14.若,,则15. 如图,BC ⊥ED 于O ,∠A =45°,∠D =20°,则∠B =________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。

人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)4的算术平方根是()A.16B.±2C.2D.2.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.(3分)如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.(3分)在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.(3分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.(3分)小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.(3分)我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1010.(3分)根据表中的信息判断,下列语句中正确的是()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.(4分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.(4分)有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形ABCD 中,AB=8m ,BC=12cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒4cm 的速度,由点B 向点C 运动,同时,点Q 在线段CD 上以v 厘米/秒的速度,由点C向点D运动,设运动时间为t秒.(1)直接写出:PC= 厘米,CQ= 厘米;(用含t、v的代数式表示) (2)若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,试求v、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针方向沿长方形ABCD的四边运动,求经过多长时间点P与点Q第一次在长方形ABCD 的哪条边上相遇?备用图参考答案1.C.2.C.3.B4.B.5.A.6.B.7.A.8.D.9.A.10.A.11.4x3y;12.AF//DE;13.40°;14.174;15.9秒;16.173;17.原式=7;18.解:原式=-3xy=2;19.画图略;20.解:(1)∵∠A=∠ADE∴AD//DE∴∠CDE+∠C=180°设∠C=x,∠CDE=3x∴4x=180°∴x=45°∴∠C=45°(2)证明:BE//CD.证明如下:∵∠C=∠E∴∠E=45°∵AC//DE∴∠B=∠E=45°∵∠B=∠C=45°∴BE//CD.21.证明:在△ABC和△ADE中∵AD=AB,AE=AC,DE=BC∴△ABC≌△ADE(SSS).22.(1)4,6,4;12;(2)面积为24;23.解:(1)∠ECF=70°;(2)∠APC=2∠AFC.(3)∠APC=40°;24.(1)(a-b )2;a 2-2ab+b 2;(a-b )2=a 2-2ab+b 2;(2)ab=-2.5;(x-2019)2=5; 25.(1)12-4t ;vt ;(2)当BP=CQ 时,t=2,v=4;当BP=PC 时,t=1.5,v=38; (3)4t-38t=12,解得t=9;所以P 点路程为36cm ,所以P 、Q 相遇在边AD 上.七年级(下)期中考试数学试题及答案一、选择题(第1至4题每小题3分,第5至10题每小题2分,共24分)1.4的平方根是( )A.4 B.±4 C.±2 D.22.如图,∠1,∠2是对顶角的是()3.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是( )A.30°B.105° C.120° D.135°4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A.60°B.45°C.50°D.30°5.( )A.点PB.点QC.点RD.点S6.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.点A (2,-1)关于x轴对称的点B的坐标为()A.(2, 1) B.(-2,1) C.(2,-1) D.(-2,- 1)+=,则a与b的关系是()8.0A.a=b=0 B.a=b C.a与b互为相反数D.a=9.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2), 那么水立方的坐标为()A .(-2, -4)B .(-1, -4)C .(-2, 4)D .(-4, -1) 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018, 2)B .(2019, 2)C .(2019,1)D .(2017,1)二、填空题(第11至16题每小题3分,第17、18题每小题2分,共22分) 11.在平面直角坐标系中,点(2,3)到x 轴的距离是________.12x 的取值范围是________.13.若33a b-<-,则a_________b .(填“<、>或=”号) 14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________.153=,则7-m 的立方根是________.16.在平面直角坐标系中,已知两点坐标A(m-1,3), B(1,m 2-1),若AB ∥x 轴,则m 的值是________.17.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。

人教版初中数学七年级下册期中试卷(2019-2020学年湖北省武汉市东湖高新区

人教版初中数学七年级下册期中试卷(2019-2020学年湖北省武汉市东湖高新区

2019-2020学年湖北省武汉市东湖高新区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题平台上勾选.1.(3分)100的平方根是()A.±50B.50C.±10D.102.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠44.(3分)如图,数轴上点A表示的数可能是()A.B.C.D.π5.(3分)下列六个实数:0,,,,,,3.14159265,0.101001000100001…,其中无理数的个数是()A.2 个B.3 个C.4 个D.5 个6.(3分)下列各式中正确的是()A.=±6B.=﹣3C.=4D.()3=﹣8 7.(3分)如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=20°,那么∠2的度数是()A.100°B.105°C.110°D.120°8.(3分)A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km9.(3分)下列命题中:①若mn=0,则点A(m,n)在原点处;②点(2,﹣m2)一定在第四象限;③已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴;④已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,4),是真命题的有()A.1个B.2个C.3个D.4个10.(3分)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.(3分)比较大小:8(填<,=或>).12.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为.13.(3分)已知点P在第四象限,距离x轴4个单位,距离y轴3个单位,则点P的坐标为.14.(3分)如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P 用坐标表示为.15.(3分)已知等式y=ax2+bx+c,a≠0,当x=﹣3时,y=0;当x=4时,y=0,则关于x的式子a(x﹣1)2=﹣4b﹣c中x的值为.16.(3分)已知m为整数,方程组有正整数解,则m=.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程13 17.(8分)计算:(1)+﹣(2)(+)18.(8分)计算:(1)(2)19.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,且∠2=∠3,求证:BC∥AD.20.(8分)已知正实数x的平方根是a和a+b.(1)当b=6时,求a;(2)若a2x+(a+b)2x=6,求x的值.21.(8分)如图,△ABC中任意一点P(x0,y0)经平移后对应点为P′(x0+3,y0+4),将△ABC作同样的平移得到△DEF,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)直接写出点D、E、F的坐标;(2)画出△DEF,若AB=2,AC=BC=,AD=5,DF=,CF=.(3)若将线段BC沿某个方向进行平移得到线段MN,点B(﹣1,﹣2)的对应点为M (m,0),则点C(0,1)的对应点N的坐标为.(用含m的式子表示)22.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?23.(10分)已知:两直线l1,l2满足l1∥l2,点C,点D在直线l1上,点A,点B在直线l2上,点P是平面内一动点,连接CP,BP,(1)如图1,若点P在l1、l2外部,则∠DCP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(2)如图2,若点P在l1、l2外部,连AC,则∠CAB、∠ACP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(不能用三角形内角和为180°)(3)若点P在l1、l2内部,且在AC的右侧,则∠ACP、∠ABP、∠CAB、∠CPB之间满足什么数量关系?(不需证明)24.(12分)如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.2019-2020学年湖北省武汉市东湖高新区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题平台上勾选.1.(3分)100的平方根是()A.±50B.50C.±10D.10【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:100的平方根是±10.故选:C.【点评】本题考查了平方根的定义.解题的关键是掌握平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.(3分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】熟悉平行线的性质,能够根据已知的平行线找到构成的内错角.【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.【点评】正确运用平行线的性质.这里特别注意AD和BC的位置关系不确定.4.(3分)如图,数轴上点A表示的数可能是()A.B.C.D.π【分析】设A点表示的数为x,则1<x<2,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则1<x<2,∵1<<1.5,1.5<<2,2<<3,3<π<4,∴符合x取值范围的数为.故选:A.【点评】本题考查了实数与数轴的对应关系.关键是明确数轴上的点表示的数的大小,估计无理数的取值范围.5.(3分)下列六个实数:0,,,,,,3.14159265,0.101001000100001…,其中无理数的个数是()A.2 个B.3 个C.4 个D.5 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0、、是整数,属于有理数;是分数,属于有理数;3.14159265是有限小数,属于有理数,∴无理数有:、和0.101001000100001…共3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.(3分)下列各式中正确的是()A.=±6B.=﹣3C.=4D.()3=﹣8【分析】根据二次根式的性质:=|a|进行化简即可.【解答】解:A、=6,故原题计算错误;B、=3,故原题计算错误;C、=2,故原题计算错误;D、()3=﹣8,故原题计算正确;故选:D.【点评】此题主要考查了二次根式的性质与化简,关键是掌握二次根式的性质.7.(3分)如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=20°,那么∠2的度数是()A.100°B.105°C.110°D.120°【分析】根据矩形性质得出AD∥BC,推出∠2=∠DEF,求出∠DEF即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEF,∵∠1=20°,∠GEF=90°,∴∠2=20°+90°=110°,故选:C.【点评】本题考查了矩形的性质和平行线的性质的应用,关键是运用:两直线平行,内错角相等.8.(3分)A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km【分析】根据题意可知,顺风的速度为飞机无风时的速度与风速之和,逆风的速度为飞机无风时的速度与风速之差,然后即可列出相应的方程组,从而可以求得飞机无风时的平均速度.【解答】解:设飞机无风时的平均速度是akm/h,风速为bkm/h,,解得,,即飞机无风时的速度为750km/h,故选:B.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组.9.(3分)下列命题中:①若mn=0,则点A(m,n)在原点处;②点(2,﹣m2)一定在第四象限;③已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴;④已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,4),是真命题的有()A.1个B.2个C.3个D.4个【分析】利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用m=0或m ≠0可对②进行判断;利用A、B点的纵坐标相同可对③进行判断;通过把A点坐标向上或向下平移5个单位得到B点坐标可对④进行判断.【解答】解:若mn=0,则m=0或n=0,所以点A(m,n)坐标轴上,所以①为假命题;点(2,﹣m2)在第四象限或x轴,所以②为假命题;已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴,所以③为真命题;已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,2)或(2,﹣8),所以④为假命题.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.(3分)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)【分析】根据f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),可得答案.【解答】解:g(f(3,﹣4))=g(﹣3,﹣4)=(﹣3,4),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b),g(m,n)=(m,﹣n)是解题关键.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.(3分)比较大小:>8(填<,=或>).【分析】比较出两个数的平方的大小关系,即可判断出原来两个数的大小关系.【解答】解:=65,82=64,∵65>64,∴>8.故答案为:>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是比较出两个数的平方的大小关系.12.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为145°.【分析】根据垂直定义可得∠EOC=90°,然后求出∠AOC的度数,再利用对顶角相等可得答案.【解答】解:∵EO⊥CD,∴∠EOC=90°,∵∠AOE=55°,∴∠AOC=145°,∴∠BOD=145°.故答案为:145°.【点评】此题主要考查了垂线,关键是掌握对顶角相等.13.(3分)已知点P在第四象限,距离x轴4个单位,距离y轴3个单位,则点P的坐标为(3,﹣4).【分析】根据到x轴的距离即为纵坐标的绝对值、到y轴的距离即为横坐标的绝对值,再由第四象限点的坐标符号特点可得答案.【解答】解:∵点P位于第四象限,且距离x轴4个单位长度,距离y轴3个单位长度,∴点P的纵坐标为﹣4,横坐标为3,即点P的坐标为(3,﹣4),故答案为:(3,﹣4).【点评】本题主要考查点的坐标,解题的关键是掌握到x轴的距离即为纵坐标的绝对值、到y轴的距离即为横坐标的绝对值及四个象限内点的坐标的符号特点.14.(3分)如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P 用坐标表示为(6,6).【分析】由猴山M,狮虎山N的位置确定x轴和y轴的位置,由猴山M(2,1)可知M 的下一横线为x轴,左第二个列是y轴,据此即可用数对表示出熊猫馆P的位置.【解答】解:如图所示,点P的坐标为(6,6)故答案为:(6,6).【点评】解答此题的关键是根据已知条件弄清x轴和y轴的位置,从而确定P的坐标.15.(3分)已知等式y=ax2+bx+c,a≠0,当x=﹣3时,y=0;当x=4时,y=0,则关于x的式子a(x﹣1)2=﹣4b﹣c中x的值为5或﹣3.【分析】把x=﹣3时,y=0;x=4时,y=0代入y=ax2+bx+c求得b=﹣a,c=﹣12a,然后代入a(x﹣1)2=﹣4b﹣c,解方程即可得到结论.【解答】解:当x=﹣3时,y=0;当x=4时,y=0,∴,解得:b=﹣a,c=﹣12a,∵a(x﹣1)2=﹣4b﹣c,∴a(x﹣1)2=﹣4(﹣a)﹣(﹣12a)=16a,∵a≠0,∴(x﹣1)2=16,∴x=5或﹣3,故答案为:5或﹣3.【点评】本题考查了解二元一次方程组,一元二次方程,正确的理解题意是解题的关键.16.(3分)已知m为整数,方程组有正整数解,则m=4或﹣4.【分析】首先将m看作已知量,解二元一次方程组,用m表示出x与y,根据方程组有正整数解即可求出m的值.【解答】解:,②×2﹣①×3得:(2m+9)y=34,解得:y=,将y=代入①得:x=(+6)=,∵方程组有正整数解,∴2m+9=1,2,17,34,解得:m=﹣4,﹣3.5,4,12.5,代入x=中,检验,得到m的值为4或﹣4.故答案为:4或﹣4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程13 17.(8分)计算:(1)+﹣(2)(+)【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式乘法法则计算即可求出值.【解答】解:(1)原式=﹣2+4﹣=;(2)原式=3+1=4.【点评】此题考查了实数的运算,熟练掌握各自的性质是解本题的关键.18.(8分)计算:(1)(2)【分析】(1)方程组利用加减消元法求出解即可.(2)首先化简方程组,然后方程组利用加减消元法求出解即可.【解答】解:(1),①×4+②得,11x=22,∴x=2,把x=2代入①得,4﹣y=5,∴y=﹣1,∴;(2)原方程组可化为:,①×3﹣②得,2v=4,∴v=2,把v=2代入①得,u=﹣,∴.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,且∠2=∠3,求证:BC∥AD.【分析】欲证明BC∥AD,只要证明∠1=∠3即可.【解答】证明:∵BE、DF分别是∠ABC和∠ADC的平分线,∴∠1=∠ABC,∠2=∠ADC,∵∠ABC=∠ADC,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∴BC∥AD.【点评】本题考查平行线的性质和判定,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(8分)已知正实数x的平方根是a和a+b.(1)当b=6时,求a;(2)若a2x+(a+b)2x=6,求x的值.【分析】(1)利用正实数平方根互为相反数即可求出a的值;(2)利用平方根的定义得到(a+b)2=x,a2=x,代入式子a2x+(a+b)2x=6即可求出x值.【解答】解:(1)∵正实数x的平方根是a和a+b,∴a+a+b=0,∵b=6,∴2a+6=0∴a=﹣3;(2)∵正实数x的平方根是a和a+b,∴(a+b)2=x,a2=x,∵a2x+(a+b)2x=6,∴x2+x2=6,∴x2=3,∵x>0,∴x=.【点评】本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.21.(8分)如图,△ABC中任意一点P(x0,y0)经平移后对应点为P′(x0+3,y0+4),将△ABC作同样的平移得到△DEF,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)直接写出点D、E、F的坐标;(2)画出△DEF,若AB=2,AC=BC=,AD=5,DF=,CF=5.(3)若将线段BC沿某个方向进行平移得到线段MN,点B(﹣1,﹣2)的对应点为M (m,0),则点C(0,1)的对应点N的坐标为(m+1,3).(用含m的式子表示)【分析】(1)根据平面直角坐标系中点的坐标的平移规律“右加左减,上加下减”求解可得;(2)画出平移后的对应点,首尾顺次连接可得△DEF,再根据平移变换的性质可得DF 和CF的长;(3)由点B(﹣1,﹣2)的对应点为M(m,0)知平移的方式为右移m+1个单位,上移2个单位,据此利用点的坐标的平移规律【解答】解:(1)点D的坐标是(﹣3+3,0+4),即(0,4),点E的坐标是(﹣1+3,﹣2+4),即(2,2),点F的坐标为(0+3,1+4),即(3,5);(2)△DEF即为所求,DF=AC=,CF=AD=5,故答案为:,5;(3)由点B(﹣1,﹣2)的对应点为M(m,0)知平移的方式为右移m+1个单位,上移2个单位,∴点C(0,1)的对应点N的坐标为(0+m+1,1+2),即(m+1,3),故答案为:(m+1,3).【点评】本题主要考查作图﹣平移变换,解题的关键是掌握平移变换的定义与性质及点的坐标的平移规律.22.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据“这两次运输共支出公路运输费14000元,铁路运输费87000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售款比原料费与运输费的和多的钱数=销售收入﹣进货成本﹣运输费,即可求出结论.【解答】解:(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:.答:该工厂从A地购买了300吨原料,制成运往B地的产品200吨.(2)5000×200﹣2000×300﹣14000﹣87000=299000(元).答:这批产品的销售款比原料费与运输费的和多299000元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(10分)已知:两直线l1,l2满足l1∥l2,点C,点D在直线l1上,点A,点B在直线l2上,点P是平面内一动点,连接CP,BP,(1)如图1,若点P在l1、l2外部,则∠DCP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(2)如图2,若点P在l1、l2外部,连AC,则∠CAB、∠ACP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(不能用三角形内角和为180°)(3)若点P在l1、l2内部,且在AC的右侧,则∠ACP、∠ABP、∠CAB、∠CPB之间满足什么数量关系?(不需证明)【分析】(1)过P作PM∥AB,根据平行线的性质可得∠ABP=∠2,∠3=∠CPM,再利用等量代换可得答案;(2)过A作AE∥PB,过C作CF∥BP,根据平行线的性质可得∠1=∠2,∠3=∠P,∠ABP=∠1+∠4,再利用等量代换可得答案;(3)分别画出图形,再利用平行线的性质进行推理即可.【解答】解:(1)如图1,数量关系:∠DCP=∠CPB+∠ABP,理由:过P作PM∥AB,∴∠ABP=∠2,∠3=∠CPM,∵∠3=∠2+∠CPB,∴∠3=∠CPB+∠ABP,∵CD∥AB,∴∠1=∠3,∴∠DCP=∠CPB+∠ABP;(2)数量关系:∠CAB+∠ACP=∠CPB+∠ABP,理由:过A作AE∥PB,过C作CF∥BP,∴AE∥CF∥BP,∴∠1=∠2,∠3=∠P,∠ABP=∠1+∠4,∴∠CAB+∠ACP=∠4+∠2+∠3,∴∠CPB+∠ABP=∠3+∠1+∠4=∠3+∠2+∠4,∴∠CAB+∠ACP=∠CPB+∠ABP;(3)如图3,数量关系:∠CPB=∠CAB+∠ACP+∠ABP;理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠DCA=∠CAB,∠DCP=∠CPM,∠MPB=∠PBA,∴∠CPB=∠DCA+∠ACP=∠CAB+∠ACP,∵∠CPB=∠CPM+∠MPB,∴∠CPB=∠CAB+∠ACP+∠ABP;如图4,数量关系:∠CAB+∠ACP+∠CPB+∠ABP=360°,理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠CAB=∠DCA,∠DCP+∠CPM=180°,∠ABP+∠MPB=180°,∴∠CAB+∠ACP+∠CPB+∠ABP=∠DCA+∠ACP+∠CPM+∠MPB+∠ABP=360°.【点评】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握平行线的性质.24.(12分)如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.【分析】(1)由立方根及算术平方根的定义求出a,b的值,得出A,B两点的坐标,连接OC,设OD=x,根据三角形AOC的面积可求出x的值,则答案可求出;(2)求出三角形ABC的面积为35,设点P的坐标为(0,y),根据S△ACP=S△ADP+S△CDP,可求出y的值,则点P的坐标可求出;(3)当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,由△QBC 的面积为20可得出7m+3n的值;当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,根据△QBC的面积为20,可得出答案.【解答】解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC=S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP=S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC=S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC=S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.【点评】本题是三角形综合题,考查了立方根及算术平方根,三角形的面积,坐标与图形的性质,正确进行分类讨论是解题的关键.。

2019年春季学期七年级下册期中教学质量检测数学试题(有答案和解析)

2019年春季学期七年级下册期中教学质量检测数学试题(有答案和解析)

2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(本大题共14小题,共28.0分)1.下列哪个图形是由如图平移得到的()A. B. C. D.2.下列命题中,是真命题的是()A. 同位角相等B. 有且只有一条直线与已知直线垂直C. 相等的角是对顶角D. 邻补角一定互补3.在实数,,0.121221221…,3.1415926,,-中,无理数有()A. 2个B. 3个C. 4个D. 5个4.在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A. B. C. D.6.下列各式正确的是()A. B. C. D.7.若方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,则a的值是()A. B. C. 1 D. 28.下列图形中,∠1与∠2是对顶角的是()A. B.C. D.9.下列方程组中,是二元一次方程组的有()①②③④⑤⑥A. ①③⑤B. ①③④C. ①②③D. ③④10.介于()之间.A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间11.如图,a1∥a2,∠1=56°,则∠2的度数是()A.B.C.D.12.如图,把一块直角三角形的直角顶点放在直尺的一边上,如果∠1=67°,那么∠2等于()A.B.C.D.13.如图,AB∥CD,PF⊥CD于F,∠AEP=40°,则∠EPF的度数是()A.B.C.D.14.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC的周长为16cm,则四边形ABFD的周长为()A. 22cmB. 20cmC. 18cmD. 16cm二、填空题(本大题共6小题,共18.0分)15.把命题“邻补角互补”写成如果…那么…的形式为______,它是一个______(填“真”或“假”)命题.16.到原点距离等于的数是______,的相反数是______,它的绝对值是______.17.把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为______.18.一个数的平方根是a+4和2a+5,则a=______,这个正数是______.19.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______.20.我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[-0.56]=-1,则按这个规律[-]=______.三、计算题(本大题共2小题,共26.0分)21.计算:(1)(2)(3)4y2-36=0(4)+-()222.化简.(1)=______,=______,=______,=______.(2)=______,=______.=______,=______.(3)根据以上信息,观察a,b所在位置,完成化简.+-四、解答题(本大题共4小题,共28.0分)23.如图,已知∠1+∠2=180°,∠3=∠B,则DE∥BC?下面是王冠同学的部分推导过程,请你帮他在括号内填上推导依据或内容.解:∵∠1+∠2=180°,(已知)∠1=∠4,(______)∴∠2+______=180°∴EH∥AB.(______)∴∠B=∠EHC.(______)∵∠3=∠B,(已知)∴∠3=∠EHC.(______)∴DE∥BC.(______)24.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.25.在平面直角坐标系中,线段AB的两端点的坐标分别为A(-1,3),B(-3,1),将线段AB向下平移2个单位,再向右平移4个单位得线段CD(A与D对应,B与C对应).(1)画出线段AB与线段CD,并求点C、点D的坐标.(2)求四边形ABCD的面积26.(1)将直角三角形ACB按如图①放置,使得坐标原点与点C重合,已知A(a,3)B(b,-3),且a+b=8,求三角形ACB的面积.(2)将直角三角形ACB按如图②方式放置,使得点O在边AC上,D是y轴上一点,过D作DF‖x轴,交AB于点F,AB交x轴于G点,BC交DF于E点,若∠AOG=50°,求∠BEF的度数.(CM平行于x轴)(3)将直角三角形ACB按照如图③方式放置,使得∠C在x轴与DF之间,N为AC边上一点,且∠NEC+∠CEF=180°,写出∠NEF与∠AOG之间的数量关系,并证明你的结论.答案和解析1.【答案】C【解析】解:A、图形属于旋转得到,故错误;B、图形属于旋转得到,故错误;C、图形的形状和大小没的变化,符合平移性质,故正确;D、图形属于旋转得到,故错误.故选:C.根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.【答案】D【解析】解:A、只有两直线平行同位角才相等,故错误,是假命题;B、过直线外一点有且只有一条直线与已知直线垂直,故错误,是假命题;C、相等的角是对顶角,错误,是假命题;D、邻补角一定互补,正确,是真命题,故选:D.利用平行线的性质、对顶角的性质及邻补角的定义分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及邻补角的定义等知识,难度不大.3.【答案】A【解析】解:无理数有,,共2个.故选:A.根据无理数的定义选出即可.本题考查了对无理数的应用,注意:无理数是指无限不循环小数.4.【答案】B【解析】解:因为点P(-1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.【答案】A【解析】解:∵点P位于第二象限,距离x轴4个单位长度,∴点P的纵坐标为4,∵距离y轴3个单位长度,∴点P的横坐标为-3,∴点P的坐标是(-3,4).故选:A.根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.【答案】D【解析】解:A、=4,故本选项错误;B、=±4,故本选项错误;C、=4,故本选项错误;D、正确;故选:D.根据平方根、算术平方根、立方根,即可解答.本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根.7.【答案】B【解析】解:∵方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,∴a-2≠0且|a|-1=1,解得:a=-2,故选:B.根据二元一次方程的定义得出a-2≠0且|a|-1=1,求出即可.本题考查了二元一次方程的定义,能根据二元一次方程的定义得出a-2≠0且|a|-1=1是解此题的关键.8.【答案】C【解析】解:∠1与∠2是对顶角的是C,故选:C.根据对顶角的定义进行选择即可.本题考查了对顶角,掌握对顶角的定义是解题的关键.9.【答案】D【解析】解:①中有3个未知数x,y,z.不符合二元一次方程组的定义,故错误;②、⑥中未知数项的最高次数是2,不符合二元一次方程组的定义,故错误;③、④符合二元一次方程组的定义,故正确;⑤,此方程组中第二个方程不是整式方程,不符合二元一次方程组的定义,故错误;故选:D.分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.10.【答案】B【解析】解:∵<<,∴3<<4,故选:B.求出的范围即可.本题考查了估算无理数的大小的应用,关键是确定的范围.11.【答案】B【解析】解:∵a1∥a2,∠1=56°,∴∠3=∠1=56°.∴∠2=180°-56°=124°,故选:B.根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,熟记性质是解题的关键.12.【答案】B【解析】解:如图,∵直尺两边平行,∠1=67°,∴∠3=∠1=67°,∴∠2=90°-∠3=90°-67°=23°.故选:B.先根据两直线平行,同位角相等求出∠1的同位角,再根据直角为90°列式进行计算即可得解.本题主要利用了两直线平行,同位角相等的性质,熟记性质是解题的关键.13.【答案】B【解析】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°.∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90°,∴∠EPF=∠EPN+∠NPF=40°+90°=130°.故选:B.如图,过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.本题考查平行线的判定定理以及平行线的性质.注意如果两条直线都和第三条直线平行,那么这两条直线也互相平行的运用.14.【答案】B【解析】解:∵将三角形ABC沿BC方向平移2cm得到三角形DEF,∴AD=CF=2cm,∵三角形ABC的周长为16cm,∴AB+BC+AC=AB+BC+DF=16cm,∴四边形ABFD的周长为:16+2+2=20(cm).故选:B.利用平移的性质得出AD=CF=2cm,AC=DF,进而求出答案.此题主要考查了平移的性质,正确利用平移的性质得出对应线段是解题关键.15.【答案】如果两个角是邻补角,那么这两个角互补;真【解析】解:命题“邻补角互补”写成如果…那么…的形式为:如果两个角是邻补角,那么这两个角互补,它是一个真命题,故答案为:如果两个角是邻补角,那么这两个角互补;真.根据命题的概念、邻补角的概念解答.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.【答案】;-;【解析】解:到原点距离等于的数是,的相反数是-,它的绝对值是,故答案为:,-,.根据绝对值的意义,相反数的意义,可得答案.本题考查了实数的性质,利用绝对值的意义,相反数的意义是解题关键.17.【答案】(4,3)【解析】解:根据题意知,平移后点的坐标为(1+3,1+2),即(4,3),故答案为:(4,3).根据坐标的平移规律:左减右加、下减上加可得.本题主要考查坐标与图形的变化-平移,熟练掌握点的坐标的平移规律:左减右加、下减上加是解题的关键.18.【答案】-3;1【解析】解:∵一个数的平方根是a+4和2a+5,∴a+4+2a+5=0,∴a=-3,∴这个数的平方根是±1,这个数是1,故答案为-3,1.根据平方根的定义构建方程即可解决问题.本题考查平方根的定义、一元一次方程等知识,解题的关键是记住平方根的定义,学会构建方程解决问题.19.【答案】连接直线外一点与直线上所有点的连线中,垂线段最短【解析】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.20.【答案】-4【解析】解:∵2<<3,∴-4<--1<-3,∴[-]=-4.故答案为:-4.直接利用的取值范围得出-4<--1<-3,进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.21.【答案】解:(1)①②,由②,得:y=3x+1 ③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入③,得:y=4,所以方程组的解为;(2)原方程组整理可得:①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为;(3)∵4y2-36=0,∴4y2=36,则y2=9,∴y=±3;(4)原式=-2-=-1.【解析】(1)利用代入消元法求解可得;(2)方程组整理为一般式后,利用加减消元法求解可得;(3)利用平方根的定义求解可得;(4)根据实数的混合运算顺序和运算法则计算可得.此题考查了解二元一次方程组和实数的混合运算,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】2;2;0;|a|;3;-3;0;a【解析】解:(1)=2,=2,=0,=|a|,故答案为:2、2、0、|a|;(2)=3,=-3.=0,=a,故答案为:3、-3、0、a;(3)由图可得,a<0<b,|a|<|b|,∴=b+b-a-(a-b)=b+b-a+b=3b-a.(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a、b的大小与正负,从而可以化简题目中的式子.本题考查立方根、算术平方根、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】对顶角相等∠4 同旁内角互补,两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行【解析】解:∵∠1+∠2=180°,(已知)∠1=∠4,(对顶角相等)∴∠2+∠4=180°,∴EH∥AB,(同旁内角互补,两直线平行)∴∠B=∠EHC,(两直线平行,同位角相等)∵∠3=∠B,(已知)∴∠3=∠EHC,(等量代换)∴DE∥BC,(内错角相等,两直线平行)故答案为:对顶角相等,同旁内角互补,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,有等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.本题主要考查了利用平行线的性质和平行线的判定解答,命题意图在于训练学生的证明书写过程,难度适中.24.【答案】解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3∴DG∥AB,∴∠BAC+∠AGD=180°,∴∠AGD=110°【解析】根据平行线的性质与判定即可求出答案本题考查平行线的性质,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.25.【答案】解:(1)如图所示:点C的坐标为(3,1),点D的坐标为(1,-1);(2)四边形ABCD的面积=.【解析】(1)利用平移的性质得出对应点位置进而得出答案.(2)利用面积公式解答即可.此题主要考查了平移变换,正确根据题意得出的对应点位置是解题关键.26.【答案】解:(1)如图①中,过点A作AM⊥y轴于M,过点B作BN⊥y轴于N.∵A(a,3),B(b,-3),∴AM=a,OM=3,BN=b,ON=3,∴MN=3+3=6,△ABC的面积=(a+b)×6-×3a-×3b,=(a+b),∵a+b-8=0,∴a+b=8∴△ABC的面积=×8=12;(2)如图②中,作CM∥OG.∵∠AOG=50°,CM∥OG,∴∠ACM=50°,∵∠ACB=90°∴∠BCM=40°,∵DF∥OG,∴DF∥CM,∴∠BEF=∠BCM=40(3)如图③中,∵∠NEC+∠CEF=180°,∠CEF+∠CED=180°,∴∠NEC=∠CED,∵∠CED+∠NEC+∠NEF=180°,∴∠NEF+2∠CED=180°,∴∠NEF=2(90°-∠CED),∵∠CED=∠COD=90°-∠AOG,∴∠AOG=90°-CED,∴∠NEF=2∠AOG.【解析】(1)过点A作AM⊥y轴于M,过点B作BN⊥y轴于N,根据△ABC的面积等于梯形AMNB的面积减去两个直角三角形的面积列式计算即可得解;(2)如图②中,作CM∥OG.利用平行线的性质即可解决问题;(3))首先证明∠NEC=∠CED,由∠NEF=2(90°-∠CED),∠CED=∠COD=90°-∠AOG,推出∠AOG=90°-CED,即可推出∠NEF=2∠AOG;本题考查三角形综合题、直角三角形的性质、平行线的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线,利用平行线的性质解决问题,属于中考压轴题.。

五三(浑南新)初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

五三(浑南新)初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

五三(浑南新)初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在下列不等式中,是一元一次不等式的为()A. 8>6B. x²>9C. 2x+y≤5D. (x-3)<0【答案】D【考点】一元一次不等式的定义【解析】【解答】A、不含未知数,不是一元一次不等式,不符合题意;B、未知数的指数不是1,不是一元一次不等式,不符合题意;C、含有两个未知数,不是一元一次不等式,不符合题意;D、含有一个未知数,未知数的指数都为1,是一元一次不等式,符合题意.故答案为:D.【分析】根据一元一次不等式的定义,含有一个未知数,含未知数的最高次数是1的不等式,对各选项逐一判断。

2、(2分)某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售,但要保证利润率不低于10%,则最低折扣是()A. 5折B. 5.5折C. 6折D. 6.5折【答案】B【考点】一元一次不等式的应用【解析】【解答】解:设至多可以打x折1200x-600≥600×10%解得x≥55%,即最多可打5.5折.故答案为:B【分析】设至多可以打x折,根据利润=售价减进价,利润也等于进价乘以利润率,即可列出不等式,求解得出答案。

3、(2分)下列说法:①两个无理数的和一定是无理数;②两个无理数的积一定是无理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积一定是无理数。

其中正确的个数是()A. 0B. 1C. 2D. 3【答案】B【考点】无理数的认识【解析】【解答】解:①两个无理数的和不一定是无理数,如互为相反数的两个无理数的和为0;②两个无理数的积可能是无理数,也可能是有理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积可能是无理数,也可能是有理数.故正确的序号为:③,故答案为:B.【分析】无限不循环的小数就是无理数,根据无理数的定义,用举例子的方法即可一一判断。

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。

2019年辽阳市七年级数学下期中一模试卷(及答案)

2019年辽阳市七年级数学下期中一模试卷(及答案)
二、填空题
13.如图,已知AM//CN,点B为平面内一点,ABBC于B,过点B作BDAM于点D,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCBNCF180,BFC3DBE,则EBC的度数为______.
14.若 +(b-2)2=0,则ab=______.
15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠l=58°,则∠2=___________.
【解析】
【分析】
根据折叠的知识和直线平行判定即可解答.
【详解】
解:如图可知折叠后的图案∠ABC=∠EBC,
又因为矩形对边平行,根据直线平行内错角相等可得
∠2=∠DBC,
又因为∠2+∠ABC=180°,
所以∠EBC+∠2=180°,
即∠DBC+∠2=2∠2=180°-∠1=140°.
可求出∠2=70°.
2.C
解析:C
【解析】
【分析】
利用加减消元法解方程组即可.
【详解】

①+②+③得:
3x+3y+3z=90.
∴x+y+z=30④
②-①得:
y+z-2x=0⑤
④-⑤得:
3x=30
∴x=10
故答案选:C.
【点睛】
本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.
3.B
解析:B
【解析】
【分析】
根据不等式的性质即可求出答案.
A.40°B.50°C.60°D.70°
5.如图,在 中, ,把 沿着直线BC的方向平移 后得到 ,连接AE,AD,有以下结论:① ;② ;③ ;④ .其中正确的结论有()

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定3.如图,已知:∠1=∠2,那么下列结论正确的是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠44.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C 20° D. 15°5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( )A. 1B. 2C. 3D. 46.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7.下列从左到右的变形中,正确的是( ) A. 81=9± B. 3.60.6-=- C. 21010-=-() D. 3355-=- 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)9.既是方程1x y -=,又是方程25x y +=解是( )A. 12x y =-⎧⎨=⎩B. 21x y =⎧⎨=-⎩C. 12x y =⎧⎨=⎩D. 21x y =⎧⎨=⎩ 10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为( )A. 4.512x y y x +=⎧⎪⎨+=⎪⎩B. 4.512x y y x =+⎧⎪⎨+=⎪⎩C. 4.512x y x y =+⎧⎪⎨=+⎪⎩D. 4.512x y y x +=⎧⎪⎨=-⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.12.如图所示,OA ⊥OC 于点O ,∠1=∠2,则∠BOD 的度数是_____.32-的相反数是__________.14.16的算术平方根是____,﹣8的立方根是____.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +=_____.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-22.解方程组(1)5293411x y x y +=⎧⎨+=⎩; (2)2431y x x y =-⎧⎨+=⎩. 23.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( , )、B ( , );(2)求△ABC 的面积;(3)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′,写出A′、B′、C′三个点坐标.24.完成下面证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.26.已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.答案与解析一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.[答案]D[解析][详解]解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定[答案]B[解析]点到直线的距离,所以他的跳远成绩是BN,故选B.3.如图,已知:∠1=∠2,那么下列结论正确是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠4[答案]B[解析][分析]∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.[详解]解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选B .[点睛]正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°[答案]B[解析] 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( ) A. 1B. 2C. 3D. 4 [答案]D[解析][分析]根据无理数的定义,可得到无理数的个数.[详解]﹣23是分数,8=2238=2是有理数,﹣0.518是有理数;3π是无理数;37-|2是无理数 83π,37-|,2是无理数 故选:D[点睛]本题考查了无理数的定义,无限不循环小数叫做无理数.无理数是实数中不能精确地表示为两个整数之比的数,2等开不尽方的数都是无理数.6.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间 [答案]C[解析][分析]<<5<<6,即可解出.[详解]<<∴5<<6,故选C.[点睛]此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.7.下列从左到右的变形中,正确的是( )A. 9±B. 0.6=-C. 10=-D. =[答案]D[解析]选项A ,原式=9;选项B ,原式 ;选项C ,原式=10;选项D ,原式=故选D. 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)[答案]C[解析]因点P 在第三象限,可得P 点的横坐标为负,纵坐标为负,又因到x 轴的距离是4,所以纵坐标为-4,再由到y 轴的距离是3,可得横坐标为-3,即可得P(-3,-4),故选C.9.既是方程1x y -=,又是方程25x y +=的解是( ) A. 12x y =-⎧⎨=⎩ B. 21x y =⎧⎨=-⎩ C. 12x y =⎧⎨=⎩ D. 21x y =⎧⎨=⎩ [答案]D[解析]两方程的解相同,可联立两个方程,形成一个二元一次方程组,解方程组即可求得.解:根据题意,得:()()11252x y x y ⎧-=⎪⎨+=⎪⎩,①+②,得:3x=6,解得:x=2,x=2代入②,得:4+y=5,解得:y=1,∴21x y =⎧⎨=⎩,故选D.10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为()A.4.512x yyx+=⎧⎪⎨+=⎪⎩B.4.512x yyx=+⎧⎪⎨+=⎪⎩C.4.512x yxy=+⎧⎪⎨=+⎪⎩D.4.512x yyx+=⎧⎪⎨=-⎪⎩[答案]A [解析][详解]4.512x yyx+=⎧⎪⎨+=⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.[答案]对顶角相等[解析]试题分析:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.考点:对顶角、邻补角.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是_____.[答案]90°.[解析][分析]根据垂直求出∠AOC =90°,根据∠1=∠2求出∠BOD =∠AOC ,即可得出答案.[详解]∵OA ⊥OC ,∴∠AOC =90°,∵∠1=∠2,∴∠BOD =∠2+∠BOC =∠1+∠BOC =∠AOC =90°,故答案为:90°.[点睛]此题考查垂直定义和角的计算,能求出∠BOD=∠AOC 是解题的关键.-的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数叫做互为相反数进行解答.[详解[点睛]此题考查相反数,解题关键在于掌握其定义.14.16的算术平方根是____,﹣8的立方根是____.[答案]4,-2[解析]试题分析:164=,-82=-.考点:1.算术平方根;2. 立方根.15.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.[答案]0.[解析][分析]根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.[详解]∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴31ab c d -+++=﹣1+0+1=0.故答案为:0.[点睛]此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.[答案]2.[解析][分析]根据x 轴上的点的纵坐标等于0列式计算即可得解.[详解]∵点P (m +3,m ﹣2)x 轴上,∴m ﹣2=0,解得m =2.故答案为:2.[点睛]此题考查点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.[答案](3,3)[解析][分析]根据已知两点的坐标建立坐标系,然后确定其它点的坐标.[详解]由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)故答案:(3,3).18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.[答案]11.[解析][分析]利用相反数的性质及非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.[详解]∵|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,∴|x +y ﹣3|+(2x +3y ﹣8)2=0,∴=323=8x yx y+⎧⎨+⎩①②,①×3﹣②得:x=1,把x=1代入①得:y=2,则3x+4y=3+8=11.故答案为:11.[点睛]此题考查解二元一次方程组,非负数的性质,熟练掌握方程组的解法是解题的关键.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为_____.[答案]27cm2.[解析][分析]设小长方形的长为xcm,宽为ycm,观察大长方形,由大长方形的对边相等及大长方形的宽为12cm,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入xy中即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:2312x x yx y=+⎧⎨+=⎩,解得:93 xy=⎧⎨=⎩,∴27xy=.故答案为:27cm2.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.[答案](2019,2)[解析][分析]分析点P 的运动规律,找到循环次数即可.[详解]分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).[点睛]本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-[答案](1)3(2)6.[解析][分析](1)直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根分别化简再合并得出答案.[详解]解:(1)原式=2+5﹣(23=2+5﹣3=3(2)原式=9﹣3=6.[点睛]本题考查了实数的运算,涉及到的知识有,立方根、二次根式的性质、绝对值的性质等知识,熟练掌握运算法则是解题的关键.22.解方程组(1)529 3411 x yx y+=⎧⎨+=⎩;(2)24 31y xx y=-⎧⎨+=⎩.[答案](1)12xy=⎧⎨=⎩;(2)12xy=⎧⎨=-⎩.[解析]分析](1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.[详解]解:(1)529 3411x yx y+=⎧⎨+=⎩①②,①×2﹣②得:7x=7,解得:x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩;(2)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1, 解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , );(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.[答案](1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).[解析][分析](1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.[详解]解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).[点睛]本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)[答案]两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等[解析][分析]首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.[详解]证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.[答案](1)一间大餐厅可供960名学生就餐,一间小餐厅可供360名学生就餐;(2)能,理由见解析.[解析][分析](1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.[详解](1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280x y x y ==+⎧⎨+⎩ 解得:960360x y ⎧⎨⎩==, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.[点睛]考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.26.已知射线AB ∥射线CD ,P 为一动点,AE 平分∠PAB ,CE 平分∠PCD ,且AE 与CE 相交于点 E.(1)在图1中,当点P 运动到线段AC 上时,∠APC=180°.①直接写出∠AEC 的度数;②求证:∠AEC=∠EAB+∠ECD ;(2)当点P 运动到图2的位置时,猜想∠AEC 与∠APC 之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC 与∠APC 之间的关系,并加以证明.[答案](1))①∠AEC=90°②见解析;(2)∠AEC=12∠APC , 理由见解析;(3)不成立,∠AEC=180∘−12∠APC ,理由见解析[解析][分析](1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC 的度数;②在图1中,过E 作EF ∥AB ,根据平行线的性质可得出∠AEF=∠EAB 、∠CEF=∠ECD ,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD ;(2)猜想:∠AEC=12∠APC,由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=12(∠PAB+∠PCD)=12∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-12∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,结合(1)的结论即可证出∠AEC=180°-12∠APC.[详解](1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB. ∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=12∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)=12∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∘−12∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°. ∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180∘.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°−∠APC. ∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)= 180°-12∠APC.[点睛]此题考查平行线的判定与性质,解题关键在于作辅助线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.买一张电影票,座位号一定是偶数
B.投掷一枚均匀的硬币,正面一定朝上
C.三条任意长的线段可以组成一个三角形
D.从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大
答案:D
7.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△D
EF,不能添加的一组条件是( )
解析:135° 39.鸡免同笼,共有 8个头、26条腿,则鸡、兔的只数依次分别是 . 解析:3、5 40. 若△ABC≌△A′B′C′,∠A=∠A′,∠B =∠B′,∠C=70°,AB=15 cm,则∠C′= , A′B′= . 解析:70°,15cm
41.长方形是轴对称图形,它有 条对称轴. 解析:2
x2 2x
解析:无解 50.先化简 (2x 1)2 (3x 1)(3x 1) 5x(x 1) ,再选取一个你喜欢的数代替 x 求值.
解析: 9x 2 ;
A.
B.
C.
D.
答案:C
21.同时抛掷两枚 1 元硬币,其中正面同时朝上的概率是( )
A.1
答案:D
B. 1 2
C. 1 3
D. 1 4
22.下列现象中,属于平移变换的是( )
A.前进中的汽车轮子
B.沿直线飞行的飞机
C.翻动的书
D.正在走动中的钟表指针
答案:B
23. 下列事件中,属于不确定事件的是( )

n
解析: En
R rn
32.如图,在△ABC中,DE是AC的中垂线,AE=2.5cm,△ABD的周长是9cm,则△ABC
的周长是 cm.
解析:14
33.如图,在△ABC 中,∠A=40°,∠B=72°, CE平分∠ACB,CD⊥AB于点D,
DF⊥CE于点F,则∠CDF= .
解析:74°
34. 如图,△ABD≌△ACE,点B和点C是对应顶点,AB=8 cm,BD=7cm,AD=3 cm,则DC= cm.
A.2008年奥运会在北京举行
B.太阳从西边升起
C.在 1,2,3,4 中任取一个数比 5大
D.打开数学书就翻到第10页
答案:D
二、填空题
24.在△ABC中,∠A=60°, ∠C=52°, 则与∠B相邻的一个外角为 °.
解析:112 25.三角形三个内角的比为2:3:4,则最大的内角是 度. 解析:80 26.光的速度约为3×105千米/秒,太阳光照射到地球上大约需要5×102秒,则地球与太 阳间的距离为__________千米(用科学记数法表示).
9
答案:A
16.下列长度的三条线段,能组成三角形的是( )
A. 1,2,3
B.1,3,5
C. 2,2,4
答案:D
17.计算结果等于 a10 的式子是( )
A. a5 a2
B. a5 a5
C. (a5 )2
答案:C
D.2,3,4
D. a20 a2
18.已知某种植物花粉的直径约为 0.000 35米,用科学记数法表示是( )
答案:B
12.如图,已知点 B,F,C,E在同一直线上,若
AB=DE,∠B=∠E,且BF=CE,则要使△ABC≌△DEF的理由是( )
A.ASA
B.SAS
C.SSS
D.AAS
答案:B
13.用如图所示的两个转盘设计一个“配紫色”的游戏,则获胜的概率为( )
1
A.
2
1
B.
3
1
C.
4
2
D.
3
答案:C
14. 有四张不透明的卡片
解析:1.5 108
y
x
27.: - =__________. x-y x-y
解析:-1
11 1 1
1
28.在数学兴趣小组活动中,小明为了求2+22+23+24+…+2n
11 1 1
1
的值,在边长为1的正方形中,设计了如图所示的几何图形.则2+22+23+24+…+2n
的值为__________(结果用n表示).
()
答案:B 2x y 5
10.方程组 x y 1 的解是( )
x 3
A.
y
1
x 0
B.
y
1
x 2
C.
y
1
x 2
D.
y
1
答案:C
11.现有两根木棒,它们的长度分别是40 cm,50
cm,若要钉一个三角形的木架,则下列四根木棒中应选取( )
A.lOcm 的木棒
B. 40 cm 的木棒 C. 90 cm 的木棒D. 100 cm 的木棒
,每一张卡片除正面数据不同外,其余都相同,将它们背面朝上洗匀后,从中任意抽取一张
,抽到正面数据能构成三角形边长的卡片的概率是( )
1
A.
4
1
B.
3
1
C.
2
答案:C
3
D.
4
15. 如图所示, SABC 1,若 SBDE sDEC SACE ,则 SADE 等于( )
1
A.
6
1
B.
7
1
C.
8
1
D.
解析:5 35.一副三角板如图所示叠放在一起,则图中α的度数是 .
解析:75° 36.相似变换后得△DEF,若对应边AB=3DE,则△ABC的周长是△DEF的周长的 倍. 解析:3 37. 在如图所示的方格纸中,已知△DEF是由△ABC经相似变换所得的像,则△DEF的每条边 都扩大到原来的 倍.
解析:2 38.如图 ,一块两个锐角都是45°的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′ C的位置,使A、C、B′三点共线,那么旋转角度的大小为 .
C.线段BC的长度
D.线段EF的长度
答案:A
3.是方程3x+ay=1的一个解,则a的值是( )
A.
B.-1
C.2
D.-2
答案:C
4.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分
拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证( )
A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2
(1)
x 2y 2x y
5

(2)
2x y 3x 2y
5 4
解析:(1)
x 2yΒιβλιοθήκη 1(2)x2
y
1
45. 如图,已知 AC=CE,∠1=∠2=∠3.
(1)说明∠B=∠D的理由;
(2)说明AB=DE的理由.
解析:略
46.某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,
A. 3.5104 米
B. 3.5104 米
C. 3.5105 米 D. 3.5106 米
答案:B
19.如图 是一个自
由转动的转盘,转动这个转盘,当它停止转动时,指针最有可能停留的区域是( )
A. A区域
B.B区域
C.C区域
D. D区域
答案:B
20.下列各图中,正确画出△ABC的AC边上的高的是( )
A.∠B=∠E,BC=EF
B.BC=EF,AC=DF
C.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF
答案:D
8.已知三角形的三边长分别是3,8,x,若 x 的值为偶数,则 x 的值有( )
A. 6 个
B. 5 个
C. 4 个
D. 3 个
答案:D
9.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形和△ABC全等的图形是
初一年级 4000
2
4
初二年级 4200
3
3
初三年级
4
(1) 求x、y的值;
(2)
已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资
助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).
解析:(1)由题意得
2x 3x
4y 3y
4000 4200
,解得
x
y
800 600
;(2)7400,7.
48.如图,甲、乙两人蒙上眼睛投掷飞标.
(1)若甲击中黄色区域,则甲胜;若击中白色区域,则乙胜,此游戏公平吗?为什么?
(2)利用图中所示,请你再设计一个公平的游戏.
解析:(1)不公平,因为甲击中黄色区域的成功率小于击中白色区域的成功率;(2)公 平的规则:若甲击中黄色区域,则甲胜;若击中绿色区域,则乙胜 (答案不唯一) 49.解方程: 1 1 x 3
4.5x
5
y
486
,解得:
y
45
(2) 486 103 4 74 .
47.某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x元,一名
小学生的学习需要y元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生
人数的部分情况如下表:
捐款数额(元) 资助贫困中学生人数 资助贫困小学生人数
三、解答题
42.如图,在四边形ABCD中,线段AC与 BD互相垂直平分,垂足为点 0. (1)四边形ABCD是轴对称图形吗?如果是,它有几条对称轴?分别是什么? (2)图中有哪些相等的线段? (3)写出图中所有的等腰三角形. (4)判断点 0到∠ABC两边的距离大小关系,你能得到关于等腰三角形的怎样的结论?请用一句话叙 述出来.
A.
xy 10x 20
y
27 400
C.
x y 27 20x 10 y 400
答案:A
B.
xy 10x 20 y
27 700
相关文档
最新文档