2014-2015学年人教版八年级上数学期末试卷及答案
2014-2015年新人教版数学八年级上期末试题(经典)

八年级(上)期末数学模拟测试卷一、选择题(本题共12小题;每小题3分,共36分) ( )1.下面是某同学在一次测验中的计算摘录:① 325a b ab += ②23345m n mn m n -=- ③3253(2)6x x x ⋅-=- ④324(2)2a b a b a ÷-=- ⑤325()a a = ⑥32()()a a a --=-其中正确的个数是A 、1个B 、2个C 、3个D 、4个 ( )2.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使△AB C ≌△AED 的条件有A .1个B .2个C .3个D .4个( )3. 已知如图,图中最大的正方形的面积是A .2aB .22b a +C .222b ab a ++D .22b ab a ++ ( )4.下列图形中,是.轴对称图形的为( )5.在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A’点,则A 与A’的关系是A 、关于x 轴对称;B 、关于y 轴对称;C 、关于原点对称;D 、关于直线x=-1对称.( ) 6.如图,在△AB C 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD :∠BAC=1:3则∠C 的度数是A. 44°B. 18° C55° D50°BDCEA( )7.已知x+y=-5,xy=6, 则x 2+y 2的值是A 、1B 、13C 、17D 、25( ).8 在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是 A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE 的中点 ( )9. 纳米(nm )是非常小的长度单位,1nm=m,把1的物体放到乒乓球上,就如同把乒乓球放到地球上,1的空间可以放多少个1的物体(物体间的间隙忽略不计) A.B.C.D.( )10.在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,求∠B 的度数A.65°B. 25°C. 50°D.65°或25°( )11. 如图,AB=AC ,AD=AE ,∠B=50°,∠AEC=120°,则∠DAC 的度数等于A .120°B .70°C .60°D .50°( )12.改良玉米品种后,迎春村玉米平均每公顷增加玉米产量a t,原来产m t 玉米的一块土地,现在的总产量增加了20t ,设原来玉米的平均每公顷产量是x t ,则列出方程是A.=B = C.=D. =x+a二、填空题(本题共6小题;每小题3分,共18分)请把最后结果填在题中横线上. 13.一个多边形的内角和是1080°,则它的所有对角线的条数是 。
八年级上册2014-2015期末测试10套题

2014-2015年新人教版八年级数学上册期末测试(一)班级 姓名一、选择题:(3′×10=30′)1.如图所示,图中不是轴对称图形的是( )A B C D 2.三角形中,到三边距离相等的点是( ) A .三条高线的交点 B .三条中线的交点 C .三条角平分线的交点 D .三边垂直平分线的交点 3. 下列各式是完全平方式的是()A . 412+-x x B . 241x + C. 22b ab a ++ D. 122-+x x4. 若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 5. 若一个多边形的每一个外角都等于60°,则它的内角和等于( ) A 、180° B 、720° C 、1080° D 、540° 6. 下列命题中,正确的说法有( )①两个全等三角形合在一起是一个轴对称图形; ②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. A .1个 B .2个 C .3个 D .4个7. 若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是( ) A .0 B .5 C .-5 D .-5或58. 一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9. 如图:已知∠A O P =∠B O P =15°,P C ∥O A ,P D ⊥O A ,若P C=4,则P D 的长为( )A .4B .3C .2D .1PA ECBD9题 10题10. 如图:等边三角形AB C 中,B D =CE ,A D 与B E 相交于点P ,则∠AP E 的度数是( ) A .45° B .55° C .60° D .75°二、填空题:(3′×10=30′) 11. 已知51=+x x ,那么221xx +=_______。
人教版2014-2015八年级数学上期末试卷【精选3套】

人教版2014-2015八年级数学上册期末考试试卷后附答案一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。
)9、若1=x,21=y,则2244yxyx++的值是()A.2 B.4 C.23D.2110、把多项式322x x x-+分解因式结果正确的是()A.2(2)x x x-B.2(2)x x-C.(1)(1)x x x+-D.2(1)x x-11、如图,在△ABC中,∠C=错误!未找到引用源。
新人教版2014-2015年八年级上学期期末考试数学试题及答案

新人教版2014—2015年八年级上学期期末考试数学试题考试范围:八年级上册;考试时间:120分钟;满 分:100分 2015、1、24一、选择题(每题3分,共24分)1.在x 1、31、212+x 、πy +5、m a 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知等腰三角形的一个角为75°,则其顶角为( )A .30°B .75°C .105°D .30°或75° 3.若a m =2,a n =3,,则a m+n 等于( ) A.5 B.6 C.8 D.9 4.下列运算正确的是( )A .232a a 3a +=B .()2a a a -÷= C .()326a a a -⋅=- D .()3262a 6a =5 ).(A )0 (B )1 (C )-1 (D )x6.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0 D .1 7.把方程103.02.017.07.0=--xx 中的分母化为整数,正确的是( ) A 、132177=--x x B 、13217710=--xx C 、1032017710=--x x D 、132017710=--xx 8.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).二、填空题(每题3分,共24分)9.等腰三角形的两边长分别为4和8,则第三边的长度是 .10.2211aa a a -∙+= ; 11. 计算(π﹣3)0=_________12.已知一个长方形的面积是x x22-,长为x ,那么它的宽为 .13.如下图,在△ABC 中,DE∥AB,CD :DA=2:3,DE=4,则AB 的长为 •14.已知4x 2+mx +9是完全平方式,则m =_________. 15. 因式分解:x a a x 2222---=.16.如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度.A . C .D .B .FD B A三、解答题(共题,计52分)17.计 算:(本题8分,每小题4分)(1)203(4)(π3)2|5|-+----; (2)2011×2013-2012218.解方程:(本题8分,每小题4分)(1)132+=x x ; (2)114112=---+x x x19.(7分)先化简 (1+ 11x -)÷221xx x -+,然后在0,1,-1中挑选一个合适的数代入求值.20. (7分)画出△ABC 关于原点对称的图形△DEF,并写出D 、E 、F 的坐标。
2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。
A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。
A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。
A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。
新人教版数学2014—2015学年八年级上学期期末试题(含答案)

2014—2015学年度第一学期期末考试八年级数学试题一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并1.等腰三角形两边长分别为4和10,则它的周长为A.18B.24C.18或24D.不能确定2.在△ABC中,若∠A:∠B:∠C=2:1:1,则△ABC是A.等边三角形B.锐角三角形C. 等腰直角三角形D. 钝角三角形3.如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC与BD相交于点E,且AC=BD.则下列关系:①△ABD≌△BAC;②△ABE是等腰三角形;③△ADE ≌△BCE;④AC平分∠DAB.其中一定成立的关系有A.4个 B.3个C.2个 D.1个4.下列命题中是假命题的是A.角的平分线上的点到角的两边的距离相等第3题图B.到角的两边的距离相等的点在这个角的平分线上C.线段垂直平分线上的点与这条线段两个端点的距离相等D.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上A B C D7.下列多项式在实数范围内能因式分解的是A.22x y +B. 22x y --C.2x x 1++D. 24x 4x 1+--8.下列各式中,无论x 取何值,分式都有意义的是 A.1x 1+ B. 2x 1x + C. 2x 1x 1++ D. 2x 1x 1+- 9. 雾霾天气是一种大气污染状态,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶” .已知1微米相当于1米的一百万分之一,那么2.5微米用科学记数法可表示为A. 70.2510-⨯米 B. 62.510-⨯米 C. 52510-⨯米 D. 52.510-⨯米 10.已知b >a >0,c >0,现将分式a b 的分子与分母都加上c ,那么所得分式a+cb+c的值与原分式ab的值相比是 A.增大了 B.减小了 C.不变 D.不确定 二、填空题:11.等腰三角形的一个外角为80°,则它的顶角是 °.12.在平面直角坐标系中,线段AB 被x 轴垂直平分,其中A 点坐标为(-3,5),则B 点的坐标是 .13.如图,BD 是△ABC 的中线,点E 、F 分别为BD 、AE 的中点,如果△DEF 的面积是2,那么△ABC 的面积是 .14.若一个多边形的内角和与外角和之比是5:2,则它是 边形.15.如图,△ABD 和△AEC 都是等边三角形,CD 与BE 相交于点F ,则∠BFD 的度数为 .16.计算:2222342a b a b a ----⋅÷()()= . 第13题图 第15题图17.如果15x x 2+=,那么221x x += . 18.已知2015aa 1-=(a ≠0),则a 的值为 . 三、解答题:19.计算:223323xy xy xy 6x y 0.5x y ⎡⎤--÷-⎣⎦()(5)()20.运用乘法公式计算:2x y 1x y+1+-⋅-()(2)21.分解因式:(1)2m a b n b a (-)-6(-)(2)2a 2b 8ab +(-)22.先化简,再求值:x35x2x2x2-÷+---(),其中x=212--().23.解方程:32x1 x+13x+3=+24.列方程解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量..25.如图,AO平分∠BAC,CO⊥AB,BO⊥AC,垂足分别为D,E.求证:∠OBC=∠OCB.第25题图26.(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”.请直接写出此题答案:BE的长为 .(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:△ABE≌△CAF.(3)拓展应用:如图③,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠BED=∠CFD=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为 .(直接填写结果,不需要写解答过程)第26题图①第26题图②第26题图③2014—2015学年第一学期八年级数学试题参考答案及评分标准一、选择题:二、填空题:11.100; 12.(-3,-5); 13.16; 14.七(写成7的扣一分); 15.60°(没写度号扣一分);16.8b ; 17.1714 4.2544(写成或都可以);18.1或-1或2015.(少一种情况扣一分) 三、解答题:(共46分)19. 223323xy xy xy 6x y 0.5x y ⎡⎤--÷-⎣⎦()(5)() =()24244229x y x y 6x y 0.5x y -+÷-5() ……………2分=2424224x y 0.5x y 6x y 0.5x y ÷-+÷-()()……………3分 =328y 12x y -- ……………4分 20. 2x y 1x y+1+-⋅-()(2)=[][]2x (1)2(1)y x y +--- ……………1分=222x y 1--()() ……………2分 =224x y 2y 1--+()……………3分 =224x y 2y 1-+- ……………4分 21. (1)2m a b n b a (-)-6(-) = 2m a b n a b (-)+6(-) ……………1分=2a b (m n (-)+3) ……………3分(2)2a 2b 8ab +(-) = 22a ab+b 8ab +-4 ……………1分=2a+2b () ……………3分 22. 解:x 35x 2x 2x 2-÷+---()= 2x 3x 9x 2x 2--÷-- ……………1分 =x 3x 2x 2x+3(x 3--⋅--()) ……………2分 =1x 3+ ……………3分当x=212--()=-4时 ……………4分 原式=1x 3+=143-+=-1 ……………5分23. 解:方程两边乘3(x+1),得92x 3x 1=++()……………1分 解得 x=65 ……………3分检验:当x=65时,3(x+1)≠0. ……………4分所以,原分式方程的解为x=65. ……………5分24. 解:设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏树叶一年的平均滞尘量为(2x -4)毫克.由题意得:10005502x 4x=- ……………2分 解得:x=22 ……………4分 经检验:x=22是原分式方程的解. ……………5分 答:一片国槐树叶一年的平均滞尘量为22毫克. ……………6分 25. 证明:∵A O 平分∠BAC,OD ⊥AB,OE ⊥AC∴OD=OE ,∠OEC=∠ODB ……………2分 又∠DOB=∠EOC∴△D OB ≌△EOC , ……………4分 ∴OB=OC∴∠OBC =∠OCB. ……………6分26. (1)0.8cm.(没写单位的扣一分) ……………2分(2)证明:∵∠B ED=∠BAE+∠ABE, ∠B AC=∠BAE+∠CAF又∠B ED=∠BAC∴∠ABE =∠CAF ……………4分∵∠B ED=∠CFD∴∠AEB =∠CFA ……………6分又AB=AC∴△ABE≌△CAF. ……………8分(3)5 ……………10分。
2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015年人教版八年级数学上册期末测试题带详细讲解一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1 6.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x+3)A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+68.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=_________.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=_________.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________.(只需填一个即可)16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_________度.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)(2012•咸宁)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC 边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.点评:此题考查了整式的有关运算公式和性质,属基础题.6.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x+3)A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.点评:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.解答:解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).点评:此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=1或2.考点:分式方程的增根.专题:计算题.分析:把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)考点:全等三角形的判定.专题:开放型.分析:要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).解答:解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).点评:本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.考点:三角形的外角性质;等腰三角形的性质.分析:根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.考点:平方差公式的几何背景.分析:根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.考点:整式的加减—化简求值.分析:首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.点评:熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:提公因式法与公式法的综合运用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.20.(8分)(2012•咸宁)解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:.(1分)方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.(4分)化简,得2x+4=8.解得:x=2.(7分)检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.(8分)点评:此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判定.分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论.(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.解答:解:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)垂直.延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.点评:利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?考点:分式方程的应用.专题:应用题.分析:(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.解答:解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.点评:本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.考点:轴对称-最短路线问题.分析:(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解答:解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.2013八年级上学期期末数学试卷及答案二一、选择题(每小题3分,共24分)1. 的值等于()A.4 B.-4 C.±4 D.±22.下列四个点中,在正比例函数的图象上的点是()A.(2,5) B.(5,2) C.(2,-5) D.(5,―2)3.估算的值是()A.在5与6之间B.在6与7之间 C.在7与8之间 D.在8与9之间4.下列算式中错误的是()A. B.C.D.5. 下列说法中正确的是()A.带根号的数是无理数 B.无理数不能在数轴上表示出来C.无理数是无限小数 D.无限小数是无理数6.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B. 12m C.13m D.18m7. 已知一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()座位号(考号末两位)A. B.C.D.8. 点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A.y1>y2 B.y2>y1 C.y1=y2 D.不能确定二、填空题(每小题3分,共24分)9. 计算:.10.若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐标为.11.写出一个解是的二元一次方程组.12.矩形两条对角线的夹角是60°,若矩形较短的边长为4cm,则对角线长.13.一个正多边形的每一个外角都是36°,则这个多边形的边数是.14.等腰梯形ABCD中,AD=2,BC=4,高DF=2,则腰CD长是.15.已知函数的图象不经过第三象限则 0, 0.16.如图,已知A地在B地正南方3千米处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(千米)与所行时间t(小时)之间的函数关系图象如右图所示的AC和BD给出,当他们行走3小时后,他们之间的距离为千米.三、解答题(每小题5分,共15分)17.(1)计算(2)化简(3)解方程组四、解答题(每小题6分,共12分)18.如图:在每个小正方形的边长为1个单位长度的方格纸中,有一个△ABC和点O,△ABC的各顶点和O点均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得△A1B1C1,请画出△A1B1C1.(2)在方格纸中,将△ABC绕点O顺时针旋转180°得到△A2B2C2,请画出△A2B2C2.19.某校教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了下表零花钱数额/元 5 10 15 20学生人数10 15 20 5(1)求出这50名学生每人一周内的零花钱数额的平均数、众数和中位数(2)你认为(1)中的哪个数据代表这50名学生每人一周零花钱数额的一般水平较为合适?简要说明理由.五、解答题(20题6分,21题7分,共13分)20.已知点A(2,2),B(-4,2),C(-2,-1),D(4,-1).在如图所示的平面直角坐标系中描出点A、B、C、D,然后依次连结A、B、C、D得到四边形ABCD,试判断四边形ABCD的形状,并说明理由.21.阅读下列材料:如图(1)在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为“筝形”解答问题:如图(2)将正方形ABCD绕着点B逆时针旋转一定角度后,得到正方形GBEF,边AD与EF相交于点H.请你判断四边形ABEH是否是“筝形”,说明你的理由.六、(每小题10分,共20分)22.如图所示,已知矩形ABCD中,AD=8c m,AB=6cm,对角线AC的垂直平分线交AD于E,交BC于F.(1)试判断四边形AFCE是怎样的四边形?(2)求出四边形AFCE的周长.23.某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(1)(2)两班共102人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?七、(12分)24. 我国是世界上严重缺水的国家之一,为了增强居民的节水意识,某自来水公司对居民用水采取以户为单位分段计费办法收费;即每月用水10吨以内(包括10吨)的用户,每吨水收费a元,每月用水超过10吨的部分,按每吨b元(b>a)收费,设一户居民月用水x(吨),应收水费y(元),y与x之间的函数关系如图所示.(1)分段写出y与x的函数关系式.(2)某户居民上月用水8吨,应收水费多少元?(3)已知居民甲上月比居民乙多用水4吨,两家一共交水费46元,求他们上月分别用水多少吨?八年级数学参考答案四、18略(1)3分(2)3分19(1)平均数是12元(2分)众数是15元(1分)中位数是12.5元(1分)(2)用众数代表这50名学生一周零花钱数额的一般水平较为合适,因为15元出现次数最多,所以能代表一周零花钱的一般水平(2分)五、20画出图形(3分)说明是平行四边形(3分)21可以判断ABEH是筝形,证△HAB≌△HEB(7分)六、22(1)菱形(5分)(2)周长是25cm(5分)23(1)设一班学生x名,二班学生y名根据题意(5分)解得(2分)答(1分)(2)两班合并一起购团体票1118-102×8=302 (2分)∴可节省302元故两家用水均超过10吨(1分)设甲、乙两户上月用水分别为m、n吨则(3分)解得(2分)∴甲用水16吨,乙用水12吨。
人教版2014-2015学年度第一学期八年级数学期末试题答案

2014-2015学年度第一学期八年级数学期末试题亲爱的同学:寒假快要到了,祝贺你又完成了一个学期的学习,为了使你度过一个丰富多彩的寒假生活,过一个愉快、幸福的春节,请你认真思考、细心演算,尽情发挥,向一直关心你的亲爱的同学,请注意:★ 本试卷满分150分; ★ 考试时间120分钟; 一、精心选一选(本大题共有10个小题,每小题4分,共40分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内).1.化简(-2)2的结果是 ( ) A .-2 B .±2 C .2D .42.如图,AB ∥CD ,∠D =∠E =35°,则∠B 的度数为 ( )A .60°B .65°C .70°D .75°3.下面四个图案中,是轴对称图形的是)4.下列运算正确的是 ( )A .623x x x ÷=B .532x x x =⋅C .624x x x -=D .325()x x =B5.用一条长为16cm 的细绳围成一个等腰三角形,若其中有一边的长为4cm ,,则该等腰三角形的腰长为 ( ) A .4cm B .6cm C .4cm 或6cm D .4cm 或8cm6. 如图,点P 是△ABC 中,∠B 、∠C 对角线的交点,∠A=102°,则∠BPC 的读数为 ( )A .39°B .78°C .102°D .141°7.如图,A 、B 、C 、D 在同一条直线上,∠EAD=∠FAD ,∠EDA=∠FDA ,则图中共有全等三角形 ( ) A .3对B .4对C .5对D .6对8.若分式12142--x x 的值为0,则x 的值为 ( )A .0B .21C .21- D .21±9.解分式方程87178=----xx x ,可知方程 ( ) A .解为7=x B .解为8=x C .解为15=x D .无解10.若1002=m ,753=n 则n m , 的大小关系为 ( )A .n m >B .n m <C . n m =D .无法确定FE DCB A第7题PCBA 第6题二、细心填一填(本大题共有8小题,每小题4分,共32分.请把答案填在题中的横线上.)11. 把x 2y ﹣2y 2x+y 3分解因式为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年八年级数学上册 期末试卷 后附答案班级 姓名一、填空题(每小题3分,共30分)1、a(____)²a 4=a 20.2、计算:(2+3x )(-2+3x )=__________.3、如图,已知ACB DBC ∠=∠,要使⊿只需增加的一个条件是 .4、写出三个具有轴对称性质的汉字:5、如图,△ABC 中,∠C =90°,∠A =30直平分线交AC 于D ,交AB 于E ,CD =2,则6、分解因式:2294y x -= .7、y x xy 257=()78、如图所示,∠1=_______.9、在平面直角坐标系中.点P (-2,3)关于x 轴的对称点的坐标为 10、一个等腰三角形有两边分别为4和8,则它的周长是______ ___。
二、选择题(每小题3分,共30分)13、直线y=kx+2过点(1,-2),则k 的值是( ) A .4 B .-4 C .-8 D .814、下列四个图案中,是轴对称图形的是 ( )A D140︒80︒115、等腰三角形的一个内角是50°,则另外两个角的度数分别是( )A 65°、65°B 50°、80°C 65°、65°或50°、80°D 50°、50°16、打开某洗衣机开关,在(洗衣机内无水)洗涤衣服时,洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )三、解答题17、计算(每小题5分,共15分)(1)(2)、计算:32(1263)3a a a a -+÷-1. (3) 因式分解: 33abb a -18、先化简再求值:)52)(52()1(42-+-+m m m ,其中3-=m .(8分)19、已知52-=x y ,且y 的算术平方根是2,求x 的值。
(8分)20、已知:如图点D 是AB 上一点,DF 交AC 于点E ,DE=EF ,AE=CE ,求证:A B ∥CF 。
(8分)21、雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=31AB ,AF=31AC ,当O 沿AD滑动时,雨伞33227221(4)3(+--⨯+)开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.(8分)22、八年级(1)班班委发起慰问烈属王大妈的活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(8分)(1)求同学们卖出鲜花的销售额y (元)与销售量x (支)之间的函数关系式; (2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w (元)与销售量x (支)之间的函数关系式;若要筹集500元的慰问金,则要卖出鲜花多少支?(慰问金=销售额-成本) 23、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A(0,-1).求直线2l 的函数表达式. (8分)24、如图所示,直线1l 与2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (h )的函数关系图像,假设两种灯的使用寿命都是2000h ,照明效果一样.(10分) (1)根据图像分别求出L 1,L 2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h ,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.25、(1)在图25-1中,已知∠MAN =120°,AC 平分∠MAN . ∠ABC =∠ADC =90°,则能得如下两个结论:(13分) ① DC = BC; ②AD+AB=AC.请你证明结论②;M(2)在图25-2中,把(1)中的条件“∠ABC =∠ADC =90°” 改为∠ABC +∠ADC =180°,其他条件不变,则(1)中的结论是否仍然成立?若成立, 请给出证明;若不成立,请说明理由.26.2008年6月1日起,我国实施"限塑令",开始有偿使用环保购物袋.为了满足市场需求,某厂家生产 两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产 种购物袋 个,每天共获利 元.(1)求出 与 的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?ADMNC八年级 数 学 试 卷(A)参考答案一、填空题(每小题4分,共48分)1、12、2x ≥3、A D ∠=∠,(或AC=DB,或ABC DCB ∠=∠)4、25、 66、y =23x +47、56a 8、6 9、(-2,-3) 10、20 11、2)1(1)2(+=++n n n 12、22二、选择题(共16分)13、B 14、C 15、C 16、D17、(1)解:原式=3+(-2)-8+3 3分 =-4 5分(2)P163例3:解:原式=3212363331a a a a a a ÷-÷+÷- 3分 =24211a a -+- 4分 =242a a - 5分 (3)P168例4:解:原式=ab(a 2-b 2) 3分=ab(a+b)(a-b)5分18、P157习题4改造题解:原式=)254()12(422--++m m m4分 =25448422+-++m m m6分 =298+m7分当m =-3时原式=-24+29=58分19、课本改造题解:∵y 的算术平方根是2∴2=y ∴y=4 ……………………4分又∵y=x 2-5 ∴4=x 2-5∴x 2=9 ∴x=±3 ……………………8分20、P17习题12证明:∵在△AED 和△CEF 中,3分∴△AED ≌△CEF (SAS ) 5分 ∴EFC ADE ∠=∠ 7分 ∴A B ∥CF 8分 21、P22习题3改造题解:∠BAD =∠CAD ,理由如下: 1分∵AB=AC ,AE=31AB ,AF=31AC ,∴AE=AF , 3分在AOE AOF △与△中,⎧⎪⎨⎪⎩AE =AFAO =AO OE =OF ,∴AOE AOF △≌△, 6分 ∴∠BAD =∠CAD. 8分 22、解:(1)3y x = 3分(2)3 1.240w x x =-- 4分1.840x =-∴所筹集的慰问金w (元)与销售量x (支)之间的函数关系式为 1.840w x =- 6分由1.840500x -=,解得300x = 7分∙ 若要筹集500元的慰问金,要售出鲜花300支. 8分23、解:设点P 坐标为(-1,y ),代入y=2x+3,得y=1,∴点P (-1,1). 4分 设直线2l 的函数表达式为y=kx+b,把P (-1,1)、A (0,-1)分别代入y=kx+b ,得1=-k+b ,-1=b ,∴k=-2,b=-1. ∴直线2l 的函数表达式为y=-2x-1. 8分24、解:(1)设L 1的解析式为y 1=k 1x+b 1,L 2的解析式为y 2=k 2x+b 2. 1分 由图可知L 1过点(0,2),(500,17), 2分∴1112,17500,b k b =⎧⎨=+⎩ ∴k 1=0.03,b 1=2, 3分⎪⎪⎩⎪⎪⎨⎧=∠=∠=EFDE CEF AED CE AE∴y 1=0.03x+2(0≤x ≤2000). 4分 由图可知L 2过点(0,20),(500,26), 同理y 2=0.012x+20(0≤x ≤2000). 6分 (2)两种费用相等,即y 1=y 2, 7分 则0.03x+2=0.012x+20, 解得x=1000.∴当x=1000时,两种灯的费用相等. 8分 (3)显然前2000h 用节能灯,剩下的500h ,用白炽灯.10分 25、(1)证明:∵∠MAN =120°,AC 平分∠MAN . 1分 ∴∠DAC = ∠BAC =60 2分 ∵∠ABC =∠ADC =90°,∴∠DCA =∠BCA =30°, 在Rt △ACD 中,∠DCA =30°,Rt △ACB 中,∠BCA =30° ∴AC=2AD , AC = 2AB ,∴2AD=2AB ∴AD=AB 4分∴AD+AB=AC. 6分 (2)解:(1)中的结论① DC = BC; ②AD+AB=AC 都成立, 7分 理由如下:如图24-2,在AN 上截取AE=AC ,连结CE , ∵∠BAC =60°, ∴△CAE 为等边三角形,∴AC=CE ,∠AEC =60°, 8分 ∵∠DAC =60°,∴∠DAC =∠AEC , 9分 ∵∠ABC +∠ADC =180°,∠ABC +∠EBC =180°,∴∠ADC =∠EBC , 10分 ∴ADC △≌△EBC , ∴DC = BC ,DA = BE , 11分 ∴AD+AB=AB+BE=AE , 12分 ∴AD+AB=AC . 13分MNDC A26.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-<,y ∴随x 增大而减小 ∴当3500x =时,0.2350022501550y =-⨯+=。